/*
* File...........: linux/drivers/s390/block/dasd.c
* Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
* Horst Hummel <Horst.Hummel@de.ibm.com>
* Carsten Otte <Cotte@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Bugreports.to..: <Linux390@de.ibm.com>
* (C) IBM Corporation, IBM Deutschland Entwicklung GmbH, 1999-2001
*
*/
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/major.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/hdreg.h>
#include <asm/ccwdev.h>
#include <asm/ebcdic.h>
#include <asm/idals.h>
#include <asm/todclk.h>
/* This is ugly... */
#define PRINTK_HEADER "dasd:"
#include "dasd_int.h"
/*
* SECTION: Constant definitions to be used within this file
*/
#define DASD_CHANQ_MAX_SIZE 4
/*
* SECTION: exported variables of dasd.c
*/
debug_info_t *dasd_debug_area;
struct dasd_discipline *dasd_diag_discipline_pointer;
void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *);
MODULE_AUTHOR("Holger Smolinski <Holger.Smolinski@de.ibm.com>");
MODULE_DESCRIPTION("Linux on S/390 DASD device driver,"
" Copyright 2000 IBM Corporation");
MODULE_SUPPORTED_DEVICE("dasd");
MODULE_LICENSE("GPL");
/*
* SECTION: prototypes for static functions of dasd.c
*/
static int dasd_alloc_queue(struct dasd_device * device);
static void dasd_setup_queue(struct dasd_device * device);
static void dasd_free_queue(struct dasd_device * device);
static void dasd_flush_request_queue(struct dasd_device *);
static int dasd_flush_ccw_queue(struct dasd_device *, int);
static void dasd_tasklet(struct dasd_device *);
static void do_kick_device(struct work_struct *);
/*
* SECTION: Operations on the device structure.
*/
static wait_queue_head_t dasd_init_waitq;
static wait_queue_head_t dasd_flush_wq;
/*
* Allocate memory for a new device structure.
*/
struct dasd_device *
dasd_alloc_device(void)
{
struct dasd_device *device;
device = kzalloc(sizeof (struct dasd_device), GFP_ATOMIC);
if (device == NULL)
return ERR_PTR(-ENOMEM);
/* open_count = 0 means device online but not in use */
atomic_set(&device->open_count, -1);
/* Get two pages for normal block device operations. */
device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1);
if (device->ccw_mem == NULL) {
kfree(device);
return ERR_PTR(-ENOMEM);
}
/* Get one page for error recovery. */
device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA);
if (device->erp_mem == NULL) {
free_pages((unsigned long) device->ccw_mem, 1);
kfree(device);
return ERR_PTR(-ENOMEM);
}
dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2);
dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE);
spin_lock_init(&device->mem_lock);
spin_lock_init(&device->request_queue_lock);
atomic_set (&device->tasklet_scheduled, 0);
tasklet_init(&device->tasklet,
(void (*)(unsigned long)) dasd_tasklet,
(unsigned long) device);
INIT_LIST_HEAD(&device->ccw_queue);
init_timer(&device->timer);
INIT_WORK(&device->kick_work, do_kick_device);
device->state = DASD_STATE_NEW;
device->target = DASD_STATE_NEW;
return device;
}
/*
* Free memory of a device structure.
*/
void
dasd_free_device(struct dasd_device *device)
{
kfree(device->private);
free_page((unsigned long) device->erp_mem);
free_pages((unsigned long) device->ccw_mem, 1);
kfree(device);
}
/*
* Make a new device known to the system.
*/
static int
dasd_state_new_to_known(struct dasd_device *device)
{
int rc;
/*
* As long as the device is not in state DASD_STATE_NEW we want to
* keep the reference count > 0.
*/
dasd_get_device(device);
rc = dasd_alloc_queue(device);
if (rc) {
dasd_put_device(device);
return rc;
}
device->state = DASD_STATE_KNOWN;
return 0;
}
/*
* Let the system forget about a device.
*/
static int
dasd_state_known_to_new(struct dasd_device * device)
{
/* Disable extended error reporting for this device. */
dasd_eer_disable(device);
/* Forget the discipline information. */
if (device->discipline)
module_put(device->discipline->owner);
device->discipline = NULL;
if (device->base_discipline)
module_put(device->base_discipline->owner);
device->base_discipline = NULL;
device->state = DASD_STATE_NEW;
dasd_free_queue(device);
/* Give up reference we took in dasd_state_new_to_known. */
dasd_put_device(device);
return 0;
}
/*
* Request the irq line for the device.
*/
static int
dasd_state_known_to_basic(struct dasd_device * device)
{
int rc;
/* Allocate and register gendisk structure. */
rc = dasd_gendisk_alloc(device);
if (rc)
return rc;
/* register 'device' debug area, used for all DBF_DEV_XXX calls */
device->debug_area = debug_register(device->cdev->dev.bus_id, 1, 2,
8 * sizeof (long));
debug_register_view(device->debug_area, &debug_sprintf_view);
debug_set_level(device->debug_area, DBF_WARNING);
DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created");
device->state = DASD_STATE_BASIC;
return 0;
}
/*
* Release the irq line for the device. Terminate any running i/o.
*/
static int
dasd_state_basic_to_known(struct dasd_device * device)
{
int rc;
dasd_gendisk_free(device);
rc = dasd_flush_ccw_queue(device, 1);
if (rc)
return rc;
dasd_clear_timer(device);
DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device);
if (device->debug_area != NULL) {
debug_unregister(device->debug_area);
device->debug_area = NULL;
}
device->state = DASD_STATE_KNOWN;
return 0;
}
/*
* Do the initial analysis. The do_analysis function may return
* -EAGAIN in which case the device keeps the state DASD_STATE_BASIC
* until the discipline decides to continue the startup sequence
* by calling the function dasd_change_state. The eckd disciplines
* uses this to start a ccw that detects the format. The completion
* interrupt for this detection ccw uses the kernel event daemon to
* trigger the call to dasd_change_state. All this is done in the
* discipline code, see dasd_eckd.c.
* After the analysis ccw is done (do_analysis returned 0) the block
* device is setup.
* In case the analysis returns an error, the device setup is stopped
* (a fake disk was already added to allow formatting).
*/
static int
dasd_state_basic_to_ready(struct dasd_device * device)
{
int rc;
rc = 0;
if (device->discipline->do_analysis != NULL)
rc = device->discipline->do_analysis(device);
if (rc) {
if (rc != -EAGAIN)
device->state = DASD_STATE_UNFMT;
return rc;
}
/* make disk known with correct capacity */
dasd_setup_queue(device);
set_capacity(device->gdp, device->blocks << device->s2b_shift);
device->state = DASD_STATE_READY;
rc = dasd_scan_partitions(device);
if (rc)
device->state = DASD_STATE_BASIC;
return rc;
}
/*
* Remove device from block device layer. Destroy dirty buffers.
* Forget format information. Check if the target level is basic
* and if it is create fake disk for formatting.
*/
static int
dasd_state_ready_to_basic(struct dasd_device * device)
{
int rc;
rc = dasd_flush_ccw_queue(device, 0);
if (rc)
return rc;
dasd_destroy_partitions(device);
dasd_flush_request_queue(device);
device->blocks = 0;
device->bp_block = 0;
device->s2b_shift = 0;
device->state = DASD_STATE_BASIC;
return 0;
}
/*
* Back to basic.
*/
static int
dasd_state_unfmt_to_basic(struct dasd_device * device)
{
device->state = DASD_STATE_BASIC;
return 0;
}
/*
* Make the device online and schedule the bottom half to start
* the requeueing of requests from the linux request queue to the
* ccw queue.
*/
static int
dasd_state_ready_to_online(struct dasd_device * device)
{
device->state = DASD_STATE_ONLINE;
dasd_schedule_bh(device);
return 0;
}
/*
* Stop the requeueing of requests again.
*/
static int
dasd_state_online_to_ready(struct dasd_device * device)
{
device->state = DASD_STATE_READY;
return 0;
}
/*
* Device startup state changes.
*/
static int
dasd_increase_state(struct dasd_device *device)
{
int rc;
rc = 0;
if (device->state == DASD_STATE_NEW &&
device->target >= DASD_STATE_KNOWN)
rc = dasd_state_new_to_known(device);
if (!rc &&
device->state == DASD_STATE_KNOWN &&
device->target >= DASD_STATE_BASIC)
rc = dasd_state_known_to_basic(device);
if (!rc &&
device->state == DASD_STATE_BASIC &&
device->target >= DASD_STATE_READY)
rc = dasd_state_basic_to_ready(device);
if (!rc &&
device->state == DASD_STATE_UNFMT &&
device->target > DASD_STATE_UNFMT)
rc = -EPERM;
if (!rc &&
device->state == DASD_STATE_READY &&
device->target >= DASD_STATE_ONLINE)
rc = dasd_state_ready_to_online(device);
return rc;
}
/*
* Device shutdown state changes.
*/
static int
dasd_decrease_state(struct dasd_device *device)
{
int rc;
rc = 0;
if (device->state == DASD_STATE_ONLINE &&
device->target <= DASD_STATE_READY)
rc = dasd_state_online_to_ready(device);
if (!rc &&
device->state == DASD_STATE_READY &&
device->target <= DASD_STATE_BASIC)
rc = dasd_state_ready_to_basic(device);
if (!rc &&
device->state == DASD_STATE_UNFMT &&
device->target <= DASD_STATE_BASIC)
rc = dasd_state_unfmt_to_basic(device);
if (!rc &&
device->state == DASD_STATE_BASIC &&
device->target <= DASD_STATE_KNOWN)
rc = dasd_state_basic_to_known(device);
if (!rc &&
device->state == DASD_STATE_KNOWN &&
device->target <= DASD_STATE_NEW)
rc = dasd_state_known_to_new(device);
return rc;
}
/*
* This is the main startup/shutdown routine.
*/
static void
dasd_change_state(struct dasd_device *device)
{
int rc;
if (device->state == device->target)
/* Already where we want to go today... */
return;
if (device->state < device->target)
rc = dasd_increase_state(device);
else
rc = dasd_decrease_state(device);
if (rc && rc != -EAGAIN)
device->target = device->state;
if (device->state == device->target)
wake_up(&dasd_init_waitq);
}
/*
* Kick starter for devices that did not complete the startup/shutdown
* procedure or were sleeping because of a pending state.
* dasd_kick_device will schedule a call do do_kick_device to the kernel
* event daemon.
*/
static void
do_kick_device(struct work_struct *work)
{
struct dasd_device *device = container_of(work, struct dasd_device, kick_work);
dasd_change_state(device);
dasd_schedule_bh(device);
dasd_put_device(device);
}
void
dasd_kick_device(struct dasd_device *device)
{
dasd_get_device(device);
/* queue call to dasd_kick_device to the kernel event daemon. */
schedule_work(&device->kick_work);
}
/*
* Set the target state for a device and starts the state change.
*/
void
dasd_set_target_state(struct dasd_device *device, int target)
{
/* If we are in probeonly mode stop at DASD_STATE_READY. */
if (dasd_probeonly && target > DASD_STATE_READY)
target = DASD_STATE_READY;
if (device->target != target) {
if (device->state == target)
wake_up(&dasd_init_waitq);
device->target = target;
}
if (device->state != device->target)
dasd_change_state(device);
}
/*
* Enable devices with device numbers in [from..to].
*/
static inline int
_wait_for_device(struct dasd_device *device)
{
return (device->state == device->target);
}
void
dasd_enable_device(struct dasd_device *device)
{
dasd_set_target_state(device, DASD_STATE_ONLINE);
if (device->state <= DASD_STATE_KNOWN)
/* No discipline for device found. */
dasd_set_target_state(device, DASD_STATE_NEW);
/* Now wait for the devices to come up. */
wait_event(dasd_init_waitq, _wait_for_device(device));
}
/*
* SECTION: device operation (interrupt handler, start i/o, term i/o ...)
*/
#ifdef CONFIG_DASD_PROFILE
struct dasd_profile_info_t dasd_global_profile;
unsigned int dasd_profile_level = DASD_PROFILE_OFF;
/*
* Increments counter in global and local profiling structures.
*/
#define dasd_profile_counter(value, counter, device) \
{ \
int index; \
for (index = 0; index < 31 && value >> (2+index); index++); \
dasd_global_profile.counter[index]++; \
device->profile.counter[index]++; \
}
/*
* Add profiling information for cqr before execution.
*/
static inline void
dasd_profile_start(struct dasd_device *device, struct dasd_ccw_req * cqr,
struct request *req)
{
struct list_head *l;
unsigned int counter;
if (dasd_profile_level != DASD_PROFILE_ON)
return;
/* count the length of the chanq for statistics */
counter = 0;
list_for_each(l, &device->ccw_queue)
if (++counter >= 31)
break;
dasd_global_profile.dasd_io_nr_req[counter]++;
device->profile.dasd_io_nr_req[counter]++;
}
/*
* Add profiling information for cqr after execution.
*/
static inline void
dasd_profile_end(struct dasd_device *device, struct dasd_ccw_req * cqr,
struct request *req)
{
long strtime, irqtime, endtime, tottime; /* in microseconds */
long tottimeps, sectors;
if (dasd_profile_level != DASD_PROFILE_ON)
return;
sectors = req->nr_sectors;
if (!cqr->buildclk || !cqr->startclk ||
!cqr->stopclk || !cqr->endclk ||
!sectors)
return;
strtime = ((cqr->startclk - cqr->buildclk) >> 12);
irqtime = ((cqr->stopclk - cqr->startclk) >> 12);
endtime = ((cqr->endclk - cqr->stopclk) >> 12);
tottime = ((cqr->endclk - cqr->buildclk) >> 12);
tottimeps = tottime / sectors;
if (!dasd_global_profile.dasd_io_reqs)
memset(&dasd_global_profile, 0,
sizeof (struct dasd_profile_info_t));
dasd_global_profile.dasd_io_reqs++;
dasd_global_profile.dasd_io_sects += sectors;
if (!device->profile.dasd_io_reqs)
memset(&device->profile, 0,
sizeof (struct dasd_profile_info_t));
device->profile.dasd_io_reqs++;
device->profile.dasd_io_sects += sectors;
dasd_profile_counter(sectors, dasd_io_secs, device);
dasd_profile_counter(tottime, dasd_io_times, device);
dasd_profile_counter(tottimeps, dasd_io_timps, device);
dasd_profile_counter(strtime, dasd_io_time1, device);
dasd_profile_counter(irqtime, dasd_io_time2, device);
dasd_profile_counter(irqtime / sectors, dasd_io_time2ps, device);
dasd_profile_counter(endtime, dasd_io_time3, device);
}
#else
#define dasd_profile_start(device, cqr, req) do {} while (0)
#define dasd_profile_end(device, cqr, req) do {} while (0)
#endif /* CONFIG_DASD_PROFILE */
/*
* Allocate memory for a channel program with 'cplength' channel
* command words and 'datasize' additional space. There are two
* variantes: 1) dasd_kmalloc_request uses kmalloc to get the needed
* memory and 2) dasd_smalloc_request uses the static ccw memory
* that gets allocated for each device.
*/
struct dasd_ccw_req *
dasd_kmalloc_request(char *magic, int cplength, int datasize,
struct dasd_device * device)
{
struct dasd_ccw_req *cqr;
/* Sanity checks */
BUG_ON( magic == NULL || datasize > PAGE_SIZE ||
(cplength*sizeof(struct ccw1)) > PAGE_SIZE);
cqr = kzalloc(sizeof(struct dasd_ccw_req), GFP_ATOMIC);
if (cqr == NULL)
return ERR_PTR(-ENOMEM);
cqr->cpaddr = NULL;
if (cplength > 0) {
cqr->cpaddr = kcalloc(cplength, sizeof(struct ccw1),
GFP_ATOMIC | GFP_DMA);
if (cqr->cpaddr == NULL) {
kfree(cqr);
return ERR_PTR(-ENOMEM);
}
}
cqr->data = NULL;
if (datasize > 0) {
cqr->data = kzalloc(datasize, GFP_ATOMIC | GFP_DMA);
if (cqr->data == NULL) {
kfree(cqr->cpaddr);
kfree(cqr);
return ERR_PTR(-ENOMEM);
}
}
strncpy((char *) &cqr->magic, magic, 4);
ASCEBC((char *) &cqr->magic, 4);
set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
dasd_get_device(device);
return cqr;
}
struct dasd_ccw_req *
dasd_smalloc_request(char *magic, int cplength, int datasize,
struct dasd_device * device)
{
unsigned long flags;
struct dasd_ccw_req *cqr;
char *data;
int size;
/* Sanity checks */
BUG_ON( magic == NULL || datasize > PAGE_SIZE ||
(cplength*sizeof(struct ccw1)) > PAGE_SIZE);
size = (sizeof(struct dasd_ccw_req) + 7L) & -8L;
if (cplength > 0)
size += cplength * sizeof(struct ccw1);
if (datasize > 0)
size += datasize;
spin_lock_irqsave(&device->mem_lock, flags);
cqr = (struct dasd_ccw_req *)
dasd_alloc_chunk(&device->ccw_chunks, size);
spin_unlock_irqrestore(&device->mem_lock, flags);
if (cqr == NULL)
return ERR_PTR(-ENOMEM);
memset(cqr, 0, sizeof(struct dasd_ccw_req));
data = (char *) cqr + ((sizeof(struct dasd_ccw_req) + 7L) & -8L);
cqr->cpaddr = NULL;
if (cplength > 0) {
cqr->cpaddr = (struct ccw1 *) data;
data += cplength*sizeof(struct ccw1);
memset(cqr->cpaddr, 0, cplength*sizeof(struct ccw1));
}
cqr->data = NULL;
if (datasize > 0) {
cqr->data = data;
memset(cqr->data, 0, datasize);
}
strncpy((char *) &cqr->magic, magic, 4);
ASCEBC((char *) &cqr->magic, 4);
set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
dasd_get_device(device);
return cqr;
}
/*
* Free memory of a channel program. This function needs to free all the
* idal lists that might have been created by dasd_set_cda and the
* struct dasd_ccw_req itself.
*/
void
dasd_kfree_request(struct dasd_ccw_req * cqr, struct dasd_device * device)
{
#ifdef CONFIG_64BIT
struct ccw1 *ccw;
/* Clear any idals used for the request. */
ccw = cqr->cpaddr;
do {
clear_normalized_cda(ccw);
} while (ccw++->flags & (CCW_FLAG_CC | CCW_FLAG_DC));
#endif
kfree(cqr->cpaddr);
kfree(cqr->data);
kfree(cqr);
dasd_put_device(device);
}
void
dasd_sfree_request(struct dasd_ccw_req * cqr, struct dasd_device * device)
{
unsigned long flags;
spin_lock_irqsave(&device->mem_lock, flags);
dasd_free_chunk(&device->ccw_chunks, cqr);
spin_unlock_irqrestore(&device->mem_lock, flags);
dasd_put_device(device);
}
/*
* Check discipline magic in cqr.
*/
static inline int
dasd_check_cqr(struct dasd_ccw_req *cqr)
{
struct dasd_device *device;
if (cqr == NULL)
return -EINVAL;
device = cqr->device;
if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) {
DEV_MESSAGE(KERN_WARNING, device,
" dasd_ccw_req 0x%08x magic doesn't match"
" discipline 0x%08x",
cqr->magic,
*(unsigned int *) device->discipline->name);
return -EINVAL;
}
return 0;
}
/*
* Terminate the current i/o and set the request to clear_pending.
* Timer keeps device runnig.
* ccw_device_clear can fail if the i/o subsystem
* is in a bad mood.
*/
int
dasd_term_IO(struct dasd_ccw_req * cqr)
{
struct dasd_device *device;
int retries, rc;
/* Check the cqr */
rc = dasd_check_cqr(cqr);
if (rc)
return rc;
retries = 0;
device = (struct dasd_device *) cqr->device;
while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) {
rc = ccw_device_clear(device->cdev, (long) cqr);
switch (rc) {
case 0: /* termination successful */
cqr->retries--;
cqr->status = DASD_CQR_CLEAR;
cqr->stopclk = get_clock();
cqr->starttime = 0;
DBF_DEV_EVENT(DBF_DEBUG, device,
"terminate cqr %p successful",
cqr);
break;
case -ENODEV:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"device gone, retry");
break;
case -EIO:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"I/O error, retry");
break;
case -EINVAL:
case -EBUSY:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"device busy, retry later");
break;
default:
DEV_MESSAGE(KERN_ERR, device,
"line %d unknown RC=%d, please "
"report to linux390@de.ibm.com",
__LINE__, rc);
BUG();
break;
}
retries++;
}
dasd_schedule_bh(device);
return rc;
}
/*
* Start the i/o. This start_IO can fail if the channel is really busy.
* In that case set up a timer to start the request later.
*/
int
dasd_start_IO(struct dasd_ccw_req * cqr)
{
struct dasd_device *device;
int rc;
/* Check the cqr */
rc = dasd_check_cqr(cqr);
if (rc)
return rc;
device = (struct dasd_device *) cqr->device;
if (cqr->retries < 0) {
DEV_MESSAGE(KERN_DEBUG, device,
"start_IO: request %p (%02x/%i) - no retry left.",
cqr, cqr->status, cqr->retries);
cqr->status = DASD_CQR_FAILED;
return -EIO;
}
cqr->startclk = get_clock();
cqr->starttime = jiffies;
cqr->retries--;
rc = ccw_device_start(device->cdev, cqr->cpaddr, (long) cqr,
cqr->lpm, 0);
switch (rc) {
case 0:
cqr->status = DASD_CQR_IN_IO;
DBF_DEV_EVENT(DBF_DEBUG, device,
"start_IO: request %p started successful",
cqr);
break;
case -EBUSY:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"start_IO: device busy, retry later");
break;
case -ETIMEDOUT:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"start_IO: request timeout, retry later");
break;
case -EACCES:
/* -EACCES indicates that the request used only a
* subset of the available pathes and all these
* pathes are gone.
* Do a retry with all available pathes.
*/
cqr->lpm = LPM_ANYPATH;
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"start_IO: selected pathes gone,"
" retry on all pathes");
break;
case -ENODEV:
case -EIO:
DBF_DEV_EVENT(DBF_ERR, device, "%s",
"start_IO: device gone, retry");
break;
default:
DEV_MESSAGE(KERN_ERR, device,
"line %d unknown RC=%d, please report"
" to linux390@de.ibm.com", __LINE__, rc);
BUG();
break;
}
return rc;
}
/*
* Timeout function for dasd devices. This is used for different purposes
* 1) missing interrupt handler for normal operation
* 2) delayed start of request where start_IO failed with -EBUSY
* 3) timeout for missing state change interrupts
* The head of the ccw queue will have status DASD_CQR_IN_IO for 1),
* DASD_CQR_QUEUED for 2) and 3).
*/
static void
dasd_timeout_device(unsigned long ptr)
{
unsigned long flags;
struct dasd_device *device;
device = (struct dasd_device *) ptr;
spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
/* re-activate request queue */
device->stopped &= ~DASD_STOPPED_PENDING;
spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
dasd_schedule_bh(device);
}
/*
* Setup timeout for a device in jiffies.
*/
void
dasd_set_timer(struct dasd_device *device, int expires)
{
if (expires == 0) {
if (timer_pending(&device->timer))
del_timer(&device->timer);
return;
}
if (timer_pending(&device->timer)) {
if (mod_timer(&device->timer, jiffies + expires))
return;
}
device->timer.function = dasd_timeout_device;
device->timer.data = (unsigned long) device;
device->timer.expires = jiffies + expires;
add_timer(&device->timer);
}
/*
* Clear timeout for a device.
*/
void
dasd_clear_timer(struct dasd_device *device)
{
if (timer_pending(&device->timer))
del_timer(&device->timer);
}
static void
dasd_handle_killed_request(struct ccw_device *cdev, unsigned long intparm)
{
struct dasd_ccw_req *cqr;
struct dasd_device *device;
cqr = (struct dasd_ccw_req *) intparm;
if (cqr->status != DASD_CQR_IN_IO) {
MESSAGE(KERN_DEBUG,
"invalid status in handle_killed_request: "
"bus_id %s, status %02x",
cdev->dev.bus_id, cqr->status);
return;
}
device = (struct dasd_device *) cqr->device;
if (device == NULL ||
device != dasd_device_from_cdev_locked(cdev) ||
strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) {
MESSAGE(KERN_DEBUG, "invalid device in request: bus_id %s",
cdev->dev.bus_id);
return;
}
/* Schedule request to be retried. */
cqr->status = DASD_CQR_QUEUED;
dasd_clear_timer(device);
dasd_schedule_bh(device);
dasd_put_device(device);
}
static void
dasd_handle_state_change_pending(struct dasd_device *device)
{
struct dasd_ccw_req *cqr;
struct list_head *l, *n;
/* First of all start sense subsystem status request. */
dasd_eer_snss(device);
device->stopped &= ~DASD_STOPPED_PENDING;
/* restart all 'running' IO on queue */
list_for_each_safe(l, n, &device->ccw_queue) {
cqr = list_entry(l, struct dasd_ccw_req, list);
if (cqr->status == DASD_CQR_IN_IO) {
cqr->status = DASD_CQR_QUEUED;
}
}
dasd_clear_timer(device);
dasd_schedule_bh(device);
}
/*
* Interrupt handler for "normal" ssch-io based dasd devices.
*/
void
dasd_int_handler(struct ccw_device *cdev, unsigned long intparm,
struct irb *irb)
{
struct dasd_ccw_req *cqr, *next;
struct dasd_device *device;
unsigned long long now;
int expires;
dasd_era_t era;
char mask;
if (IS_ERR(irb)) {
switch (PTR_ERR(irb)) {
case -EIO:
dasd_handle_killed_request(cdev, intparm);
break;
case -ETIMEDOUT:
printk(KERN_WARNING"%s(%s): request timed out\n",
__FUNCTION__, cdev->dev.bus_id);
//FIXME - dasd uses own timeout interface...
break;
default:
printk(KERN_WARNING"%s(%s): unknown error %ld\n",
__FUNCTION__, cdev->dev.bus_id, PTR_ERR(irb));
}
return;
}
now = get_clock();
DBF_EVENT(DBF_ERR, "Interrupt: bus_id %s CS/DS %04x ip %08x",
cdev->dev.bus_id, ((irb->scsw.cstat<<8)|irb->scsw.dstat),
(unsigned int) intparm);
/* first of all check for state change pending interrupt */
mask = DEV_STAT_ATTENTION | DEV_STAT_DEV_END | DEV_STAT_UNIT_EXCEP;
if ((irb->scsw.dstat & mask) == mask) {
device = dasd_device_from_cdev_locked(cdev);
if (!IS_ERR(device)) {
dasd_handle_state_change_pending(device);
dasd_put_device(device);
}
return;
}
cqr = (struct dasd_ccw_req *) intparm;
/* check for unsolicited interrupts */
if (cqr == NULL) {
MESSAGE(KERN_DEBUG,
"unsolicited interrupt received: bus_id %s",
cdev->dev.bus_id);
return;
}
device = (struct dasd_device *) cqr->device;
if (device == NULL ||
strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) {
MESSAGE(KERN_DEBUG, "invalid device in request: bus_id %s",
cdev->dev.bus_id);
return;
}
/* Check for clear pending */
if (cqr->status == DASD_CQR_CLEAR &&
irb->scsw.fctl & SCSW_FCTL_CLEAR_FUNC) {
cqr->status = DASD_CQR_QUEUED;
dasd_clear_timer(device);
wake_up(&dasd_flush_wq);
dasd_schedule_bh(device);
return;
}
/* check status - the request might have been killed by dyn detach */
if (cqr->status != DASD_CQR_IN_IO) {
MESSAGE(KERN_DEBUG,
"invalid status: bus_id %s, status %02x",
cdev->dev.bus_id, cqr->status);
return;
}
DBF_DEV_EVENT(DBF_DEBUG, device, "Int: CS/DS 0x%04x for cqr %p",
((irb->scsw.cstat << 8) | irb->scsw.dstat), cqr);
/* Find out the appropriate era_action. */
if (irb->scsw.fctl & SCSW_FCTL_HALT_FUNC)
era = dasd_era_fatal;
else if (irb->scsw.dstat == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) &&
irb->scsw.cstat == 0 &&
!irb->esw.esw0.erw.cons)
era = dasd_era_none;
else if (irb->esw.esw0.erw.cons)
era = device->discipline->examine_error(cqr, irb);
else
era = dasd_era_recover;
DBF_DEV_EVENT(DBF_DEBUG, device, "era_code %d", era);
expires = 0;
if (era == dasd_era_none) {
cqr->status = DASD_CQR_DONE;
cqr->stopclk = now;
/* Start first request on queue if possible -> fast_io. */
if (cqr->list.next != &device->ccw_queue) {
next = list_entry(cqr->list.next,
struct dasd_ccw_req, list);
if ((next->status == DASD_CQR_QUEUED) &&
(!device->stopped)) {
if (device->discipline->start_IO(next) == 0)
expires = next->expires;
else
DEV_MESSAGE(KERN_DEBUG, device, "%s",
"Interrupt fastpath "
"failed!");
}
}
} else { /* error */
memcpy(&cqr->irb, irb, sizeof (struct irb));
if (device->features & DASD_FEATURE_ERPLOG) {
/* dump sense data */
dasd_log_sense(cqr, irb);
}
switch (era) {
case dasd_era_fatal:
cqr->status = DASD_CQR_FAILED;
cqr->stopclk = now;
break;
case dasd_era_recover:
cqr->status = DASD_CQR_ERROR;
break;
default:
BUG();
}
}
if (expires != 0)
dasd_set_timer(device, expires);
else
dasd_clear_timer(device);
dasd_schedule_bh(device);
}
/*
* posts the buffer_cache about a finalized request
*/
static inline void
dasd_end_request(struct request *req, int uptodate)
{
if (end_that_request_first(req, uptodate, req->hard_nr_sectors))
BUG();
add_disk_randomness(req->rq_disk);
end_that_request_last(req, uptodate);
}
/*
* Process finished error recovery ccw.
*/
static inline void
__dasd_process_erp(struct dasd_device *device, struct dasd_ccw_req *cqr)
{
dasd_erp_fn_t erp_fn;
if (cqr->status == DASD_CQR_DONE)
DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful");
else
DEV_MESSAGE(KERN_ERR, device, "%s", "ERP unsuccessful");
erp_fn = device->discipline->erp_postaction(cqr);
erp_fn(cqr);
}
/*
* Process ccw request queue.
*/
static inline void
__dasd_process_ccw_queue(struct dasd_device * device,
struct list_head *final_queue)
{
struct list_head *l, *n;
struct dasd_ccw_req *cqr;
dasd_erp_fn_t erp_fn;
restart:
/* Process request with final status. */
list_for_each_safe(l, n, &device->ccw_queue) {
cqr = list_entry(l, struct dasd_ccw_req, list);
/* Stop list processing at the first non-final request. */
if (cqr->status != DASD_CQR_DONE &&
cqr->status != DASD_CQR_FAILED &&
cqr->status != DASD_CQR_ERROR)
break;
/* Process requests with DASD_CQR_ERROR */
if (cqr->status == DASD_CQR_ERROR) {
if (cqr->irb.scsw.fctl & SCSW_FCTL_HALT_FUNC) {
cqr->status = DASD_CQR_FAILED;
cqr->stopclk = get_clock();
} else {
if (cqr->irb.esw.esw0.erw.cons &&
test_bit(DASD_CQR_FLAGS_USE_ERP,
&cqr->flags)) {
erp_fn = device->discipline->
erp_action(cqr);
erp_fn(cqr);
} else
dasd_default_erp_action(cqr);
}
goto restart;
}
/* First of all call extended error reporting. */
if (dasd_eer_enabled(device) &&
cqr->status == DASD_CQR_FAILED) {
dasd_eer_write(device, cqr, DASD_EER_FATALERROR);
/* restart request */
cqr->status = DASD_CQR_QUEUED;
cqr->retries = 255;
device->stopped |= DASD_STOPPED_QUIESCE;
goto restart;
}
/* Process finished ERP request. */
if (cqr->refers) {
__dasd_process_erp(device, cqr);
goto restart;
}
/* Rechain finished requests to final queue */
cqr->endclk = get_clock();
list_move_tail(&cqr->list, final_queue);
}
}
static void
dasd_end_request_cb(struct dasd_ccw_req * cqr, void *data)
{
struct request *req;
struct dasd_device *device;
int status;
req = (struct request *) data;
device = cqr->device;
dasd_profile_end(device, cqr, req);
status = cqr->device->discipline->free_cp(cqr,req);
spin_lock_irq(&device->request_queue_lock);
dasd_end_request(req, status);
spin_unlock_irq(&device->request_queue_lock);
}
/*
* Fetch requests from the block device queue.
*/
static inline void
__dasd_process_blk_queue(struct dasd_device * device)
{
request_queue_t *queue;
struct request *req;
struct dasd_ccw_req *cqr;
int nr_queued;
queue = device->request_queue;
/* No queue ? Then there is nothing to do. */
if (queue == NULL)
return;
/*
* We requeue request from the block device queue to the ccw
* queue only in two states. In state DASD_STATE_READY the
* partition detection is done and we need to requeue requests
* for that. State DASD_STATE_ONLINE is normal block device
* operation.
*/
if (device->state != DASD_STATE_READY &&
device->state != DASD_STATE_ONLINE)
return;
nr_queued = 0;
/* Now we try to fetch requests from the request queue */
list_for_each_entry(cqr, &device->ccw_queue, list)
if (cqr->status == DASD_CQR_QUEUED)
nr_queued++;
while (!blk_queue_plugged(queue) &&
elv_next_request(queue) &&
nr_queued < DASD_CHANQ_MAX_SIZE) {
req = elv_next_request(queue);
if (device->features & DASD_FEATURE_READONLY &&
rq_data_dir(req) == WRITE) {
DBF_DEV_EVENT(DBF_ERR, device,
"Rejecting write request %p",
req);
blkdev_dequeue_request(req);
dasd_end_request(req, 0);
continue;
}
if (device->stopped & DASD_STOPPED_DC_EIO) {
blkdev_dequeue_request(req);
dasd_end_request(req, 0);
continue;
}
cqr = device->discipline->build_cp(device, req);
if (IS_ERR(cqr)) {
if (PTR_ERR(cqr) == -ENOMEM)
break; /* terminate request queue loop */
DBF_DEV_EVENT(DBF_ERR, device,
"CCW creation failed (rc=%ld) "
"on request %p",
PTR_ERR(cqr), req);
blkdev_dequeue_request(req);
dasd_end_request(req, 0);
continue;
}
cqr->callback = dasd_end_request_cb;
cqr->callback_data = (void *) req;
cqr->status = DASD_CQR_QUEUED;
blkdev_dequeue_request(req);
list_add_tail(&cqr->list, &device->ccw_queue);
dasd_profile_start(device, cqr, req);
nr_queued++;
}
}
/*
* Take a look at the first request on the ccw queue and check
* if it reached its expire time. If so, terminate the IO.
*/
static inline void
__dasd_check_expire(struct dasd_device * device)
{
struct dasd_ccw_req *cqr;
if (list_empty(&device->ccw_queue))
return;
cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, list);
if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) &&
(time_after_eq(jiffies, cqr->expires + cqr->starttime))) {
if (device->discipline->term_IO(cqr) != 0) {
/* Hmpf, try again in 5 sec */
dasd_set_timer(device, 5*HZ);
DEV_MESSAGE(KERN_ERR, device,
"internal error - timeout (%is) expired "
"for cqr %p, termination failed, "
"retrying in 5s",
(cqr->expires/HZ), cqr);
} else {
DEV_MESSAGE(KERN_ERR, device,
"internal error - timeout (%is) expired "
"for cqr %p (%i retries left)",
(cqr->expires/HZ), cqr, cqr->retries);
}
}
}
/*
* Take a look at the first request on the ccw queue and check
* if it needs to be started.
*/
static inline void
__dasd_start_head(struct dasd_device * device)
{
struct dasd_ccw_req *cqr;
int rc;
if (list_empty(&device->ccw_queue))
return;
cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, list);
if (cqr->status != DASD_CQR_QUEUED)
return;
/* Non-temporary stop condition will trigger fail fast */
if (device->stopped & ~DASD_STOPPED_PENDING &&
test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
(!dasd_eer_enabled(device))) {
cqr->status = DASD_CQR_FAILED;
dasd_schedule_bh(device);
return;
}
/* Don't try to start requests if device is stopped */
if (device->stopped)
return;
rc = device->discipline->start_IO(cqr);
if (rc == 0)
dasd_set_timer(device, cqr->expires);
else if (rc == -EACCES) {
dasd_schedule_bh(device);
} else
/* Hmpf, try again in 1/2 sec */
dasd_set_timer(device, 50);
}
static inline int
_wait_for_clear(struct dasd_ccw_req *cqr)
{
return (cqr->status == DASD_CQR_QUEUED);
}
/*
* Remove all requests from the ccw queue (all = '1') or only block device
* requests in case all = '0'.
* Take care of the erp-chain (chained via cqr->refers) and remove either
* the whole erp-chain or none of the erp-requests.
* If a request is currently running, term_IO is called and the request
* is re-queued. Prior to removing the terminated request we need to wait
* for the clear-interrupt.
* In case termination is not possible we stop processing and just finishing
* the already moved requests.
*/
static int
dasd_flush_ccw_queue(struct dasd_device * device, int all)
{
struct dasd_ccw_req *cqr, *orig, *n;
int rc, i;
struct list_head flush_queue;
INIT_LIST_HEAD(&flush_queue);
spin_lock_irq(get_ccwdev_lock(device->cdev));
rc = 0;
restart:
list_for_each_entry_safe(cqr, n, &device->ccw_queue, list) {
/* get original request of erp request-chain */
for (orig = cqr; orig->refers != NULL; orig = orig->refers);
/* Flush all request or only block device requests? */
if (all == 0 && cqr->callback != dasd_end_request_cb &&
orig->callback != dasd_end_request_cb) {
continue;
}
/* Check status and move request to flush_queue */
switch (cqr->status) {
case DASD_CQR_IN_IO:
rc = device->discipline->term_IO(cqr);
if (rc) {
/* unable to terminate requeust */
DEV_MESSAGE(KERN_ERR, device,
"dasd flush ccw_queue is unable "
" to terminate request %p",
cqr);
/* stop flush processing */
goto finished;
}
break;
case DASD_CQR_QUEUED:
case DASD_CQR_ERROR:
/* set request to FAILED */
cqr->stopclk = get_clock();
cqr->status = DASD_CQR_FAILED;
break;
default: /* do not touch the others */
break;
}
/* Rechain request (including erp chain) */
for (i = 0; cqr != NULL; cqr = cqr->refers, i++) {
cqr->endclk = get_clock();
list_move_tail(&cqr->list, &flush_queue);
}
if (i > 1)
/* moved more than one request - need to restart */
goto restart;
}
finished:
spin_unlock_irq(get_ccwdev_lock(device->cdev));
/* Now call the callback function of flushed requests */
restart_cb:
list_for_each_entry_safe(cqr, n, &flush_queue, list) {
if (cqr->status == DASD_CQR_CLEAR) {
/* wait for clear interrupt! */
wait_event(dasd_flush_wq, _wait_for_clear(cqr));
cqr->status = DASD_CQR_FAILED;
}
/* Process finished ERP request. */
if (cqr->refers) {
__dasd_process_erp(device, cqr);
/* restart list_for_xx loop since dasd_process_erp
* might remove multiple elements */
goto restart_cb;
}
/* call the callback function */
cqr->endclk = get_clock();
if (cqr->callback != NULL)
(cqr->callback)(cqr, cqr->callback_data);
}
return rc;
}
/*
* Acquire the device lock and process queues for the device.
*/
static void
dasd_tasklet(struct dasd_device * device)
{
struct list_head final_queue;
struct list_head *l, *n;
struct dasd_ccw_req *cqr;
atomic_set (&device->tasklet_scheduled, 0);
INIT_LIST_HEAD(&final_queue);
spin_lock_irq(get_ccwdev_lock(device->cdev));
/* Check expire time of first request on the ccw queue. */
__dasd_check_expire(device);
/* Finish off requests on ccw queue */
__dasd_process_ccw_queue(device, &final_queue);
spin_unlock_irq(get_ccwdev_lock(device->cdev));
/* Now call the callback function of requests with final status */
list_for_each_safe(l, n, &final_queue) {
cqr = list_entry(l, struct dasd_ccw_req, list);
list_del_init(&cqr->list);
if (cqr->callback != NULL)
(cqr->callback)(cqr, cqr->callback_data);
}
spin_lock_irq(&device->request_queue_lock);
spin_lock(get_ccwdev_lock(device->cdev));
/* Get new request from the block device request queue */
__dasd_process_blk_queue(device);
/* Now check if the head of the ccw queue needs to be started. */
__dasd_start_head(device);
spin_unlock(get_ccwdev_lock(device->cdev));
spin_unlock_irq(&device->request_queue_lock);
dasd_put_device(device);
}
/*
* Schedules a call to dasd_tasklet over the device tasklet.
*/
void
dasd_schedule_bh(struct dasd_device * device)
{
/* Protect against rescheduling. */
if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0)
return;
dasd_get_device(device);
tasklet_hi_schedule(&device->tasklet);
}
/*
* Queue a request to the head of the ccw_queue. Start the I/O if
* possible.
*/
void
dasd_add_request_head(struct dasd_ccw_req *req)
{
struct dasd_device *device;
unsigned long flags;
device = req->device;
spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
req->status = DASD_CQR_QUEUED;
req->device = device;
list_add(&req->list, &device->ccw_queue);
/* let the bh start the request to keep them in order */
dasd_schedule_bh(device);
spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
}
/*
* Queue a request to the tail of the ccw_queue. Start the I/O if
* possible.
*/
void
dasd_add_request_tail(struct dasd_ccw_req *req)
{
struct dasd_device *device;
unsigned long flags;
device = req->device;
spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
req->status = DASD_CQR_QUEUED;
req->device = device;
list_add_tail(&req->list, &device->ccw_queue);
/* let the bh start the request to keep them in order */
dasd_schedule_bh(device);
spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
}
/*
* Wakeup callback.
*/
static void
dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data)
{
wake_up((wait_queue_head_t *) data);
}
static inline int
_wait_for_wakeup(struct dasd_ccw_req *cqr)
{
struct dasd_device *device;
int rc;
device = cqr->device;
spin_lock_irq(get_ccwdev_lock(device->cdev));
rc = ((cqr->status == DASD_CQR_DONE ||
cqr->status == DASD_CQR_FAILED) &&
list_empty(&cqr->list));
spin_unlock_irq(get_ccwdev_lock(device->cdev));
return rc;
}
/*
* Attempts to start a special ccw queue and waits for its completion.
*/
int
dasd_sleep_on(struct dasd_ccw_req * cqr)
{
wait_queue_head_t wait_q;
struct dasd_device *device;
int rc;
device = cqr->device;
spin_lock_irq(get_ccwdev_lock(device->cdev));
init_waitqueue_head (&wait_q);
cqr->callback = dasd_wakeup_cb;
cqr->callback_data = (void *) &wait_q;
cqr->status = DASD_CQR_QUEUED;
list_add_tail(&cqr->list, &device->ccw_queue);
/* let the bh start the request to keep them in order */
dasd_schedule_bh(device);
spin_unlock_irq(get_ccwdev_lock(device->cdev));
wait_event(wait_q, _wait_for_wakeup(cqr));
/* Request status is either done or failed. */
rc = (cqr->status == DASD_CQR_FAILED) ? -EIO : 0;
return rc;
}
/*
* Attempts to start a special ccw queue and wait interruptible
* for its completion.
*/
int
dasd_sleep_on_interruptible(struct dasd_ccw_req * cqr)
{
wait_queue_head_t wait_q;
struct dasd_device *device;
int rc, finished;
device = cqr->device;
spin_lock_irq(get_ccwdev_lock(device->cdev));
init_waitqueue_head (&wait_q);
cqr->callback = dasd_wakeup_cb;
cqr->callback_data = (void *) &wait_q;
cqr->status = DASD_CQR_QUEUED;
list_add_tail(&cqr->list, &device->ccw_queue);
/* let the bh start the request to keep them in order */
dasd_schedule_bh(device);
spin_unlock_irq(get_ccwdev_lock(device->cdev));
finished = 0;
while (!finished) {
rc = wait_event_interruptible(wait_q, _wait_for_wakeup(cqr));
if (rc != -ERESTARTSYS) {
/* Request is final (done or failed) */
rc = (cqr->status == DASD_CQR_DONE) ? 0 : -EIO;
break;
}
spin_lock_irq(get_ccwdev_lock(device->cdev));
switch (cqr->status) {
case DASD_CQR_IN_IO:
/* terminate runnig cqr */
if (device->discipline->term_IO) {
cqr->retries = -1;
device->discipline->term_IO(cqr);
/* wait (non-interruptible) for final status
* because signal ist still pending */
spin_unlock_irq(get_ccwdev_lock(device->cdev));
wait_event(wait_q, _wait_for_wakeup(cqr));
spin_lock_irq(get_ccwdev_lock(device->cdev));
rc = (cqr->status == DASD_CQR_DONE) ? 0 : -EIO;
finished = 1;
}
break;
case DASD_CQR_QUEUED:
/* request */
list_del_init(&cqr->list);
rc = -EIO;
finished = 1;
break;
default:
/* cqr with 'non-interruptable' status - just wait */
break;
}
spin_unlock_irq(get_ccwdev_lock(device->cdev));
}
return rc;
}
/*
* Whoa nelly now it gets really hairy. For some functions (e.g. steal lock
* for eckd devices) the currently running request has to be terminated
* and be put back to status queued, before the special request is added
* to the head of the queue. Then the special request is waited on normally.
*/
static inline int
_dasd_term_running_cqr(struct dasd_device *device)
{
struct dasd_ccw_req *cqr;
if (list_empty(&device->ccw_queue))
return 0;
cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, list);
return device->discipline->term_IO(cqr);
}
int
dasd_sleep_on_immediatly(struct dasd_ccw_req * cqr)
{
wait_queue_head_t wait_q;
struct dasd_device *device;
int rc;
device = cqr->device;
spin_lock_irq(get_ccwdev_lock(device->cdev));
rc = _dasd_term_running_cqr(device);
if (rc) {
spin_unlock_irq(get_ccwdev_lock(device->cdev));
return rc;
}
init_waitqueue_head (&wait_q);
cqr->callback = dasd_wakeup_cb;
cqr->callback_data = (void *) &wait_q;
cqr->status = DASD_CQR_QUEUED;
list_add(&cqr->list, &device->ccw_queue);
/* let the bh start the request to keep them in order */
dasd_schedule_bh(device);
spin_unlock_irq(get_ccwdev_lock(device->cdev));
wait_event(wait_q, _wait_for_wakeup(cqr));
/* Request status is either done or failed. */
rc = (cqr->status == DASD_CQR_FAILED) ? -EIO : 0;
return rc;
}
/*
* Cancels a request that was started with dasd_sleep_on_req.
* This is useful to timeout requests. The request will be
* terminated if it is currently in i/o.
* Returns 1 if the request has been terminated.
*/
int
dasd_cancel_req(struct dasd_ccw_req *cqr)
{
struct dasd_device *device = cqr->device;
unsigned long flags;
int rc;
rc = 0;
spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
switch (cqr->status) {
case DASD_CQR_QUEUED:
/* request was not started - just set to failed */
cqr->status = DASD_CQR_FAILED;
break;
case DASD_CQR_IN_IO:
/* request in IO - terminate IO and release again */
if (device->discipline->term_IO(cqr) != 0)
/* what to do if unable to terminate ??????
e.g. not _IN_IO */
cqr->status = DASD_CQR_FAILED;
cqr->stopclk = get_clock();
rc = 1;
break;
case DASD_CQR_DONE:
case DASD_CQR_FAILED:
/* already finished - do nothing */
break;
default:
DEV_MESSAGE(KERN_ALERT, device,
"invalid status %02x in request",
cqr->status);
BUG();
}
spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
dasd_schedule_bh(device);
return rc;
}
/*
* SECTION: Block device operations (request queue, partitions, open, release).
*/
/*
* Dasd request queue function. Called from ll_rw_blk.c
*/
static void
do_dasd_request(request_queue_t * queue)
{
struct dasd_device *device;
device = (struct dasd_device *) queue->queuedata;
spin_lock(get_ccwdev_lock(device->cdev));
/* Get new request from the block device request queue */
__dasd_process_blk_queue(device);
/* Now check if the head of the ccw queue needs to be started. */
__dasd_start_head(device);
spin_unlock(get_ccwdev_lock(device->cdev));
}
/*
* Allocate and initialize request queue and default I/O scheduler.
*/
static int
dasd_alloc_queue(struct dasd_device * device)
{
int rc;
device->request_queue = blk_init_queue(do_dasd_request,
&device->request_queue_lock);
if (device->request_queue == NULL)
return -ENOMEM;
device->request_queue->queuedata = device;
elevator_exit(device->request_queue->elevator);
rc = elevator_init(device->request_queue, "deadline");
if (rc) {
blk_cleanup_queue(device->request_queue);
return rc;
}
return 0;
}
/*
* Allocate and initialize request queue.
*/
static void
dasd_setup_queue(struct dasd_device * device)
{
int max;
blk_queue_hardsect_size(device->request_queue, device->bp_block);
max = device->discipline->max_blocks << device->s2b_shift;
blk_queue_max_sectors(device->request_queue, max);
blk_queue_max_phys_segments(device->request_queue, -1L);
blk_queue_max_hw_segments(device->request_queue, -1L);
blk_queue_max_segment_size(device->request_queue, -1L);
blk_queue_segment_boundary(device->request_queue, -1L);
blk_queue_ordered(device->request_queue, QUEUE_ORDERED_TAG, NULL);
}
/*
* Deactivate and free request queue.
*/
static void
dasd_free_queue(struct dasd_device * device)
{
if (device->request_queue) {
blk_cleanup_queue(device->request_queue);
device->request_queue = NULL;
}
}
/*
* Flush request on the request queue.
*/
static void
dasd_flush_request_queue(struct dasd_device * device)
{
struct request *req;
if (!device->request_queue)
return;
spin_lock_irq(&device->request_queue_lock);
while ((req = elv_next_request(device->request_queue))) {
blkdev_dequeue_request(req);
dasd_end_request(req, 0);
}
spin_unlock_irq(&device->request_queue_lock);
}
static int
dasd_open(struct inode *inp, struct file *filp)
{
struct gendisk *disk = inp->i_bdev->bd_disk;
struct dasd_device *device = disk->private_data;
int rc;
atomic_inc(&device->open_count);
if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) {
rc = -ENODEV;
goto unlock;
}
if (!try_module_get(device->discipline->owner)) {
rc = -EINVAL;
goto unlock;
}
if (dasd_probeonly) {
DEV_MESSAGE(KERN_INFO, device, "%s",
"No access to device due to probeonly mode");
rc = -EPERM;
goto out;
}
if (device->state <= DASD_STATE_BASIC) {
DBF_DEV_EVENT(DBF_ERR, device, " %s",
" Cannot open unrecognized device");
rc = -ENODEV;
goto out;
}
return 0;
out:
module_put(device->discipline->owner);
unlock:
atomic_dec(&device->open_count);
return rc;
}
static int
dasd_release(struct inode *inp, struct file *filp)
{
struct gendisk *disk = inp->i_bdev->bd_disk;
struct dasd_device *device = disk->private_data;
atomic_dec(&device->open_count);
module_put(device->discipline->owner);
return 0;
}
/*
* Return disk geometry.
*/
static int
dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct dasd_device *device;
device = bdev->bd_disk->private_data;
if (!device)
return -ENODEV;
if (!device->discipline ||
!device->discipline->fill_geometry)
return -EINVAL;
device->discipline->fill_geometry(device, geo);
geo->start = get_start_sect(bdev) >> device->s2b_shift;
return 0;
}
struct block_device_operations
dasd_device_operations = {
.owner = THIS_MODULE,
.open = dasd_open,
.release = dasd_release,
.ioctl = dasd_ioctl,
.compat_ioctl = dasd_compat_ioctl,
.getgeo = dasd_getgeo,
};
static void
dasd_exit(void)
{
#ifdef CONFIG_PROC_FS
dasd_proc_exit();
#endif
dasd_eer_exit();
if (dasd_page_cache != NULL) {
kmem_cache_destroy(dasd_page_cache);
dasd_page_cache = NULL;
}
dasd_gendisk_exit();
dasd_devmap_exit();
if (dasd_debug_area != NULL) {
debug_unregister(dasd_debug_area);
dasd_debug_area = NULL;
}
}
/*
* SECTION: common functions for ccw_driver use
*/
/*
* Initial attempt at a probe function. this can be simplified once
* the other detection code is gone.
*/
int
dasd_generic_probe (struct ccw_device *cdev,
struct dasd_discipline *discipline)
{
int ret;
ret = ccw_device_set_options(cdev, CCWDEV_DO_PATHGROUP);
if (ret) {
printk(KERN_WARNING
"dasd_generic_probe: could not set ccw-device options "
"for %s\n", cdev->dev.bus_id);
return ret;
}
ret = dasd_add_sysfs_files(cdev);
if (ret) {
printk(KERN_WARNING
"dasd_generic_probe: could not add sysfs entries "
"for %s\n", cdev->dev.bus_id);
return ret;
}
cdev->handler = &dasd_int_handler;
/*
* Automatically online either all dasd devices (dasd_autodetect)
* or all devices specified with dasd= parameters during
* initial probe.
*/
if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) ||
(dasd_autodetect && dasd_busid_known(cdev->dev.bus_id) != 0))
ret = ccw_device_set_online(cdev);
if (ret)
printk(KERN_WARNING
"dasd_generic_probe: could not initially online "
"ccw-device %s\n", cdev->dev.bus_id);
return ret;
}
/*
* This will one day be called from a global not_oper handler.
* It is also used by driver_unregister during module unload.
*/
void
dasd_generic_remove (struct ccw_device *cdev)
{
struct dasd_device *device;
cdev->handler = NULL;
dasd_remove_sysfs_files(cdev);
device = dasd_device_from_cdev(cdev);
if (IS_ERR(device))
return;
if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
/* Already doing offline processing */
dasd_put_device(device);
return;
}
/*
* This device is removed unconditionally. Set offline
* flag to prevent dasd_open from opening it while it is
* no quite down yet.
*/
dasd_set_target_state(device, DASD_STATE_NEW);
/* dasd_delete_device destroys the device reference. */
dasd_delete_device(device);
}
/*
* Activate a device. This is called from dasd_{eckd,fba}_probe() when either
* the device is detected for the first time and is supposed to be used
* or the user has started activation through sysfs.
*/
int
dasd_generic_set_online (struct ccw_device *cdev,
struct dasd_discipline *base_discipline)
{
struct dasd_discipline *discipline;
struct dasd_device *device;
int rc;
/* first online clears initial online feature flag */
dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0);
device = dasd_create_device(cdev);
if (IS_ERR(device))
return PTR_ERR(device);
discipline = base_discipline;
if (device->features & DASD_FEATURE_USEDIAG) {
if (!dasd_diag_discipline_pointer) {
printk (KERN_WARNING
"dasd_generic couldn't online device %s "
"- discipline DIAG not available\n",
cdev->dev.bus_id);
dasd_delete_device(device);
return -ENODEV;
}
discipline = dasd_diag_discipline_pointer;
}
if (!try_module_get(base_discipline->owner)) {
dasd_delete_device(device);
return -EINVAL;
}
if (!try_module_get(discipline->owner)) {
module_put(base_discipline->owner);
dasd_delete_device(device);
return -EINVAL;
}
device->base_discipline = base_discipline;
device->discipline = discipline;
rc = discipline->check_device(device);
if (rc) {
printk (KERN_WARNING
"dasd_generic couldn't online device %s "
"with discipline %s rc=%i\n",
cdev->dev.bus_id, discipline->name, rc);
module_put(discipline->owner);
module_put(base_discipline->owner);
dasd_delete_device(device);
return rc;
}
dasd_set_target_state(device, DASD_STATE_ONLINE);
if (device->state <= DASD_STATE_KNOWN) {
printk (KERN_WARNING
"dasd_generic discipline not found for %s\n",
cdev->dev.bus_id);
rc = -ENODEV;
dasd_set_target_state(device, DASD_STATE_NEW);
dasd_delete_device(device);
} else
pr_debug("dasd_generic device %s found\n",
cdev->dev.bus_id);
/* FIXME: we have to wait for the root device but we don't want
* to wait for each single device but for all at once. */
wait_event(dasd_init_waitq, _wait_for_device(device));
dasd_put_device(device);
return rc;
}
int
dasd_generic_set_offline (struct ccw_device *cdev)
{
struct dasd_device *device;
int max_count, open_count;
device = dasd_device_from_cdev(cdev);
if (IS_ERR(device))
return PTR_ERR(device);
if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
/* Already doing offline processing */
dasd_put_device(device);
return 0;
}
/*
* We must make sure that this device is currently not in use.
* The open_count is increased for every opener, that includes
* the blkdev_get in dasd_scan_partitions. We are only interested
* in the other openers.
*/
max_count = device->bdev ? 0 : -1;
open_count = (int) atomic_read(&device->open_count);
if (open_count > max_count) {
if (open_count > 0)
printk (KERN_WARNING "Can't offline dasd device with "
"open count = %i.\n",
open_count);
else
printk (KERN_WARNING "%s",
"Can't offline dasd device due to internal "
"use\n");
clear_bit(DASD_FLAG_OFFLINE, &device->flags);
dasd_put_device(device);
return -EBUSY;
}
dasd_set_target_state(device, DASD_STATE_NEW);
/* dasd_delete_device destroys the device reference. */
dasd_delete_device(device);
return 0;
}
int
dasd_generic_notify(struct ccw_device *cdev, int event)
{
struct dasd_device *device;
struct dasd_ccw_req *cqr;
unsigned long flags;
int ret;
device = dasd_device_from_cdev(cdev);
if (IS_ERR(device))
return 0;
spin_lock_irqsave(get_ccwdev_lock(cdev), flags);
ret = 0;
switch (event) {
case CIO_GONE:
case CIO_NO_PATH:
/* First of all call extended error reporting. */
dasd_eer_write(device, NULL, DASD_EER_NOPATH);
if (device->state < DASD_STATE_BASIC)
break;
/* Device is active. We want to keep it. */
if (test_bit(DASD_FLAG_DSC_ERROR, &device->flags)) {
list_for_each_entry(cqr, &device->ccw_queue, list)
if (cqr->status == DASD_CQR_IN_IO)
cqr->status = DASD_CQR_FAILED;
device->stopped |= DASD_STOPPED_DC_EIO;
} else {
list_for_each_entry(cqr, &device->ccw_queue, list)
if (cqr->status == DASD_CQR_IN_IO) {
cqr->status = DASD_CQR_QUEUED;
cqr->retries++;
}
device->stopped |= DASD_STOPPED_DC_WAIT;
dasd_set_timer(device, 0);
}
dasd_schedule_bh(device);
ret = 1;
break;
case CIO_OPER:
/* FIXME: add a sanity check. */
device->stopped &= ~(DASD_STOPPED_DC_WAIT|DASD_STOPPED_DC_EIO);
dasd_schedule_bh(device);
ret = 1;
break;
}
spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags);
dasd_put_device(device);
return ret;
}
static int __init
dasd_init(void)
{
int rc;
init_waitqueue_head(&dasd_init_waitq);
init_waitqueue_head(&dasd_flush_wq);
/* register 'common' DASD debug area, used for all DBF_XXX calls */
dasd_debug_area = debug_register("dasd", 1, 2, 8 * sizeof (long));
if (dasd_debug_area == NULL) {
rc = -ENOMEM;
goto failed;
}
debug_register_view(dasd_debug_area, &debug_sprintf_view);
debug_set_level(dasd_debug_area, DBF_WARNING);
DBF_EVENT(DBF_EMERG, "%s", "debug area created");
dasd_diag_discipline_pointer = NULL;
rc = dasd_devmap_init();
if (rc)
goto failed;
rc = dasd_gendisk_init();
if (rc)
goto failed;
rc = dasd_parse();
if (rc)
goto failed;
rc = dasd_eer_init();
if (rc)
goto failed;
#ifdef CONFIG_PROC_FS
rc = dasd_proc_init();
if (rc)
goto failed;
#endif
return 0;
failed:
MESSAGE(KERN_INFO, "%s", "initialization not performed due to errors");
dasd_exit();
return rc;
}
module_init(dasd_init);
module_exit(dasd_exit);
EXPORT_SYMBOL(dasd_debug_area);
EXPORT_SYMBOL(dasd_diag_discipline_pointer);
EXPORT_SYMBOL(dasd_add_request_head);
EXPORT_SYMBOL(dasd_add_request_tail);
EXPORT_SYMBOL(dasd_cancel_req);
EXPORT_SYMBOL(dasd_clear_timer);
EXPORT_SYMBOL(dasd_enable_device);
EXPORT_SYMBOL(dasd_int_handler);
EXPORT_SYMBOL(dasd_kfree_request);
EXPORT_SYMBOL(dasd_kick_device);
EXPORT_SYMBOL(dasd_kmalloc_request);
EXPORT_SYMBOL(dasd_schedule_bh);
EXPORT_SYMBOL(dasd_set_target_state);
EXPORT_SYMBOL(dasd_set_timer);
EXPORT_SYMBOL(dasd_sfree_request);
EXPORT_SYMBOL(dasd_sleep_on);
EXPORT_SYMBOL(dasd_sleep_on_immediatly);
EXPORT_SYMBOL(dasd_sleep_on_interruptible);
EXPORT_SYMBOL(dasd_smalloc_request);
EXPORT_SYMBOL(dasd_start_IO);
EXPORT_SYMBOL(dasd_term_IO);
EXPORT_SYMBOL_GPL(dasd_generic_probe);
EXPORT_SYMBOL_GPL(dasd_generic_remove);
EXPORT_SYMBOL_GPL(dasd_generic_notify);
EXPORT_SYMBOL_GPL(dasd_generic_set_online);
EXPORT_SYMBOL_GPL(dasd_generic_set_offline);