/*
* Standard Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>, <dely.l.sy@intel.com>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include "../pci.h"
#include "shpchp.h"
#ifndef CONFIG_IA64
#include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependant we are... */
#endif
int shpchp_configure_device (struct controller* ctrl, struct pci_func* func)
{
unsigned char bus;
struct pci_bus *child;
int num;
if (func->pci_dev == NULL)
func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
/* Still NULL ? Well then scan for it ! */
if (func->pci_dev == NULL) {
num = pci_scan_slot(ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function));
if (num) {
dbg("%s: subordiante %p number %x\n", __FUNCTION__, ctrl->pci_dev->subordinate,
ctrl->pci_dev->subordinate->number);
pci_bus_add_devices(ctrl->pci_dev->subordinate);
}
func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
if (func->pci_dev == NULL) {
dbg("ERROR: pci_dev still null\n");
return 0;
}
}
if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
child = pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
pci_do_scan_bus(child);
}
return 0;
}
int shpchp_unconfigure_device(struct pci_func* func)
{
int rc = 0;
int j;
dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__, func->bus,
func->device, func->function);
for (j=0; j<8 ; j++) {
struct pci_dev* temp = pci_find_slot(func->bus,
(func->device << 3) | j);
if (temp) {
pci_remove_bus_device(temp);
}
}
return rc;
}
/*
* shpchp_set_irq
*
* @bus_num: bus number of PCI device
* @dev_num: device number of PCI device
* @slot: pointer to u8 where slot number will be returned
*/
int shpchp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
{
#if defined(CONFIG_X86) && !defined(CONFIG_X86_IO_APIC) && !defined(CONFIG_X86_64)
int rc;
u16 temp_word;
struct pci_dev fakedev;
struct pci_bus fakebus;
fakedev.devfn = dev_num << 3;
fakedev.bus = &fakebus;
fakebus.number = bus_num;
dbg("%s: dev %d, bus %d, pin %d, num %d\n",
__FUNCTION__, dev_num, bus_num, int_pin, irq_num);
rc = pcibios_set_irq_routing(&fakedev, int_pin - 0x0a, irq_num);
dbg("%s: rc %d\n", __FUNCTION__, rc);
if (!rc)
return !rc;
/* set the Edge Level Control Register (ELCR) */
temp_word = inb(0x4d0);
temp_word |= inb(0x4d1) << 8;
temp_word |= 0x01 << irq_num;
/* This should only be for x86 as it sets the Edge Level Control Register */
outb((u8) (temp_word & 0xFF), 0x4d0);
outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
#endif
return 0;
}
/* More PCI configuration routines; this time centered around hotplug controller */
/*
* shpchp_save_config
*
* Reads configuration for all slots in a PCI bus and saves info.
*
* Note: For non-hot plug busses, the slot # saved is the device #
*
* returns 0 if success
*/
int shpchp_save_config(struct controller *ctrl, int busnumber, int num_ctlr_slots, int first_device_num)
{
int rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
struct pci_func *new_slot;
int sub_bus;
int FirstSupported;
int LastSupported;
int max_functions;
int function;
u8 DevError;
int device = 0;
int cloop = 0;
int stop_it;
int index;
int is_hot_plug = num_ctlr_slots || first_device_num;
struct pci_bus lpci_bus, *pci_bus;
dbg("%s: num_ctlr_slots = %d, first_device_num = %d\n", __FUNCTION__,
num_ctlr_slots, first_device_num);
memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
pci_bus = &lpci_bus;
dbg("%s: num_ctlr_slots = %d, first_device_num = %d\n", __FUNCTION__,
num_ctlr_slots, first_device_num);
/* Decide which slots are supported */
if (is_hot_plug) {
/*********************************
* is_hot_plug is the slot mask
*********************************/
FirstSupported = first_device_num;
LastSupported = FirstSupported + num_ctlr_slots - 1;
} else {
FirstSupported = 0;
LastSupported = 0x1F;
}
dbg("FirstSupported = %d, LastSupported = %d\n", FirstSupported,
LastSupported);
/* Save PCI configuration space for all devices in supported slots */
pci_bus->number = busnumber;
for (device = FirstSupported; device <= LastSupported; device++) {
ID = 0xFFFFFFFF;
rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0),
PCI_VENDOR_ID, &ID);
if (ID != 0xFFFFFFFF) { /* device in slot */
rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0),
0x0B, &class_code);
if (rc)
return rc;
rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0),
PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
dbg("class_code = %x, header_type = %x\n", class_code, header_type);
/* If multi-function device, set max_functions to 8 */
if (header_type & 0x80)
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
DevError = 0;
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* P-P Bridge */
/* Recurse the subordinate bus
* get the subordinate bus number
*/
rc = pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(device, function),
PCI_SECONDARY_BUS, &secondary_bus);
if (rc) {
return rc;
} else {
sub_bus = (int) secondary_bus;
/* Save secondary bus cfg spc with this recursive call. */
rc = shpchp_save_config(ctrl, sub_bus, 0, 0);
if (rc)
return rc;
}
}
index = 0;
new_slot = shpchp_slot_find(busnumber, device, index++);
dbg("new_slot = %p\n", new_slot);
while (new_slot && (new_slot->function != (u8) function)) {
new_slot = shpchp_slot_find(busnumber, device, index++);
dbg("new_slot = %p\n", new_slot);
}
if (!new_slot) {
/* Setup slot structure. */
new_slot = shpchp_slot_create(busnumber);
dbg("new_slot = %p\n", new_slot);
if (new_slot == NULL)
return(1);
}
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = (u8) function;
new_slot->is_a_board = 1;
new_slot->switch_save = 0x10;
new_slot->pwr_save = 1;
/* In case of unsupported board */
new_slot->status = DevError;
new_slot->pci_dev = pci_find_slot(new_slot->bus,
(new_slot->device << 3) | new_slot->function);
dbg("new_slot->pci_dev = %p\n", new_slot->pci_dev);
for (cloop = 0; cloop < 0x20; cloop++) {
rc = pci_bus_read_config_dword(pci_bus,
PCI_DEVFN(device, function),
cloop << 2,
(u32 *) &(new_slot->config_space [cloop]));
/* dbg("new_slot->config_space[%x] = %x\n",
cloop, new_slot->config_space[cloop]); */
if (rc)
return rc;
}
function++;
stop_it = 0;
/* this loop skips to the next present function
* reading in Class Code and Header type.
*/
while ((function < max_functions)&&(!stop_it)) {
rc = pci_bus_read_config_dword(pci_bus,
PCI_DEVFN(device, function),
PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) { /* nothing there. */
function++;
dbg("Nothing there\n");
} else { /* Something there */
rc = pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(device, function),
0x0B, &class_code);
if (rc)
return rc;
rc = pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(device, function),
PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
dbg("class_code = %x, header_type = %x\n",
class_code, header_type);
stop_it++;
}
}
} while (function < max_functions);
/* End of IF (device in slot?) */
} else if (is_hot_plug) {
/* Setup slot structure with entry for empty slot */
new_slot = shpchp_slot_create(busnumber);
if (new_slot == NULL) {
return(1);
}
dbg("new_slot = %p\n", new_slot);
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = 0;
new_slot->is_a_board = 0;
new_slot->presence_save = 0;
new_slot->switch_save = 0;
}
} /* End of FOR loop */
return(0);
}
/*
* shpchp_save_slot_config
*
* Saves configuration info for all PCI devices in a given slot
* including subordinate busses.
*
* returns 0 if success
*/
int shpchp_save_slot_config(struct controller *ctrl, struct pci_func * new_slot)
{
int rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
int sub_bus;
int max_functions;
int function;
int cloop = 0;
int stop_it;
struct pci_bus lpci_bus, *pci_bus;
memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
pci_bus = &lpci_bus;
pci_bus->number = new_slot->bus;
ID = 0xFFFFFFFF;
pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, 0),
PCI_VENDOR_ID, &ID);
if (ID != 0xFFFFFFFF) { /* device in slot */
pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0),
0x0B, &class_code);
pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0),
PCI_HEADER_TYPE, &header_type);
if (header_type & 0x80) /* Multi-function device */
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
/* Recurse the subordinate bus */
pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(new_slot->device, function),
PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
/* Save the config headers for the secondary bus. */
rc = shpchp_save_config(ctrl, sub_bus, 0, 0);
if (rc)
return rc;
} /* End of IF */
new_slot->status = 0;
for (cloop = 0; cloop < 0x20; cloop++) {
pci_bus_read_config_dword(pci_bus,
PCI_DEVFN(new_slot->device, function),
cloop << 2,
(u32 *) &(new_slot->config_space [cloop]));
}
function++;
stop_it = 0;
/* this loop skips to the next present function
* reading in the Class Code and the Header type.
*/
while ((function < max_functions) && (!stop_it)) {
pci_bus_read_config_dword(pci_bus,
PCI_DEVFN(new_slot->device, function),
PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) { /* nothing there. */
function++;
} else { /* Something there */
pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(new_slot->device, function),
0x0B, &class_code);
pci_bus_read_config_byte(pci_bus,
PCI_DEVFN(new_slot->device, function),
PCI_HEADER_TYPE, &header_type);
stop_it++;
}
}
} while (function < max_functions);
} /* End of IF (device in slot?) */
else {
return 2;
}
return 0;
}
/*
* shpchp_save_used_resources
*
* Stores used resource information for existing boards. this is
* for boards that were in the system when this driver was loaded.
* this function is for hot plug ADD
*
* returns 0 if success
* if disable == 1(DISABLE_CARD),
* it loops for all functions of the slot and disables them.
* else, it just get resources of the function and return.
*/
int shpchp_save_used_resources(struct controller *ctrl, struct pci_func *func, int disable)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 temp_byte;
u16 command;
u16 save_command;
u16 w_base, w_length;
u32 temp_register;
u32 save_base;
u32 base, length;
u64 base64 = 0;
int index = 0;
unsigned int devfn;
struct pci_resource *mem_node = NULL;
struct pci_resource *p_mem_node = NULL;
struct pci_resource *t_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
struct pci_bus lpci_bus, *pci_bus;
memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
pci_bus = &lpci_bus;
if (disable)
func = shpchp_slot_find(func->bus, func->device, index++);
while ((func != NULL) && func->is_a_board) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Save the command register */
pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
if (disable) {
/* disable card */
command = 0x00;
pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
}
/* Check for Bridge */
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
dbg("Save_used_res of PCI bridge b:d=0x%x:%x, sc=0x%x\n",
func->bus, func->device, save_command);
if (disable) {
/* Clear Bridge Control Register */
command = 0x00;
pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
}
pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
bus_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!bus_node)
return -ENOMEM;
bus_node->base = (ulong)secondary_bus;
bus_node->length = (ulong)(temp_byte - secondary_bus + 1);
bus_node->next = func->bus_head;
func->bus_head = bus_node;
/* Save IO base and Limit registers */
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &temp_byte);
base = temp_byte;
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &temp_byte);
length = temp_byte;
if ((base <= length) && (!disable || (save_command & PCI_COMMAND_IO))) {
io_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = (ulong)(base & PCI_IO_RANGE_MASK) << 8;
io_node->length = (ulong)(length - base + 0x10) << 8;
io_node->next = func->io_head;
func->io_head = io_node;
}
/* Save memory base and Limit registers */
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) {
mem_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = (ulong)w_base << 16;
mem_node->length = (ulong)(w_length - w_base + 0x10) << 16;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
/* Save prefetchable memory base and Limit registers */
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) {
p_mem_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = (ulong)w_base << 16;
p_mem_node->length = (ulong)(w_length - w_base + 0x10) << 16;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
}
} else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
dbg("Save_used_res of PCI adapter b:d=0x%x:%x, sc=0x%x\n",
func->bus, func->device, save_command);
/* Figure out IO and memory base lengths */
for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) {
pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
if (!disable)
pci_bus_write_config_dword(pci_bus, devfn, cloop, save_base);
if (!temp_register)
continue;
base = temp_register;
if ((base & PCI_BASE_ADDRESS_SPACE_IO) &&
(!disable || (save_command & PCI_COMMAND_IO))) {
/* IO base */
/* set temp_register = amount of IO space requested */
base = base & 0xFFFFFFFCL;
base = (~base) + 1;
io_node = kmalloc(sizeof (struct pci_resource),
GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = (ulong)save_base & PCI_BASE_ADDRESS_IO_MASK;
io_node->length = (ulong)base;
dbg("sur adapter: IO bar=0x%x(length=0x%x)\n",
io_node->base, io_node->length);
io_node->next = func->io_head;
func->io_head = io_node;
} else { /* map Memory */
int prefetchable = 1;
/* struct pci_resources **res_node; */
char *res_type_str = "PMEM";
u32 temp_register2;
t_mem_node = kmalloc(sizeof (struct pci_resource),
GFP_KERNEL);
if (!t_mem_node)
return -ENOMEM;
if (!(base & PCI_BASE_ADDRESS_MEM_PREFETCH) &&
(!disable || (save_command & PCI_COMMAND_MEMORY))) {
prefetchable = 0;
mem_node = t_mem_node;
res_type_str++;
} else
p_mem_node = t_mem_node;
base = base & 0xFFFFFFF0L;
base = (~base) + 1;
switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
if (prefetchable) {
p_mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK;
p_mem_node->length = (ulong)base;
dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n",
res_type_str,
p_mem_node->base,
p_mem_node->length);
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else {
mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK;
mem_node->length = (ulong)base;
dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n",
res_type_str,
mem_node->base,
mem_node->length);
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2);
base64 = temp_register2;
base64 = (base64 << 32) | save_base;
if (temp_register2) {
dbg("sur adapter: 64 %s high dword of base64(0x%x:%x) masked to 0\n",
res_type_str, temp_register2, (u32)base64);
base64 &= 0x00000000FFFFFFFFL;
}
if (prefetchable) {
p_mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK;
p_mem_node->length = base;
dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n",
res_type_str,
p_mem_node->base,
p_mem_node->length);
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else {
mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK;
mem_node->length = base;
dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n",
res_type_str,
mem_node->base,
mem_node->length);
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
cloop += 4;
break;
default:
dbg("asur: reserved BAR type=0x%x\n",
temp_register);
break;
}
}
} /* End of base register loop */
} else { /* Some other unknown header type */
dbg("Save_used_res of PCI unknown type b:d=0x%x:%x. skip.\n",
func->bus, func->device);
}
/* find the next device in this slot */
if (!disable)
break;
func = shpchp_slot_find(func->bus, func->device, index++);
}
return 0;
}
/**
* kfree_resource_list: release memory of all list members
* @res: resource list to free
*/
static inline void
return_resource_list(struct pci_resource **func, struct pci_resource **res)
{
struct pci_resource *node;
struct pci_resource *t_node;
node = *func;
*func = NULL;
while (node) {
t_node = node->next;
return_resource(res, node);
node = t_node;
}
}
/*
* shpchp_return_board_resources
*
* this routine returns all resources allocated to a board to
* the available pool.
*
* returns 0 if success
*/
int shpchp_return_board_resources(struct pci_func * func,
struct resource_lists * resources)
{
int rc;
dbg("%s\n", __FUNCTION__);
if (!func)
return 1;
return_resource_list(&(func->io_head),&(resources->io_head));
return_resource_list(&(func->mem_head),&(resources->mem_head));
return_resource_list(&(func->p_mem_head),&(resources->p_mem_head));
return_resource_list(&(func->bus_head),&(resources->bus_head));
rc = shpchp_resource_sort_and_combine(&(resources->mem_head));
rc |= shpchp_resource_sort_and_combine(&(resources->p_mem_head));
rc |= shpchp_resource_sort_and_combine(&(resources->io_head));
rc |= shpchp_resource_sort_and_combine(&(resources->bus_head));
return rc;
}
/**
* kfree_resource_list: release memory of all list members
* @res: resource list to free
*/
static inline void
kfree_resource_list(struct pci_resource **r)
{
struct pci_resource *res, *tres;
res = *r;
*r = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
}
/**
* shpchp_destroy_resource_list: put node back in the resource list
* @resources: list to put nodes back
*/
void shpchp_destroy_resource_list(struct resource_lists *resources)
{
kfree_resource_list(&(resources->io_head));
kfree_resource_list(&(resources->mem_head));
kfree_resource_list(&(resources->p_mem_head));
kfree_resource_list(&(resources->bus_head));
}
/**
* shpchp_destroy_board_resources: put node back in the resource list
* @resources: list to put nodes back
*/
void shpchp_destroy_board_resources(struct pci_func * func)
{
kfree_resource_list(&(func->io_head));
kfree_resource_list(&(func->mem_head));
kfree_resource_list(&(func->p_mem_head));
kfree_resource_list(&(func->bus_head));
}