/**
* @file cpu_buffer.c
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author John Levon <levon@movementarian.org>
*
* Each CPU has a local buffer that stores PC value/event
* pairs. We also log context switches when we notice them.
* Eventually each CPU's buffer is processed into the global
* event buffer by sync_buffer().
*
* We use a local buffer for two reasons: an NMI or similar
* interrupt cannot synchronise, and high sampling rates
* would lead to catastrophic global synchronisation if
* a global buffer was used.
*/
#include <linux/sched.h>
#include <linux/oprofile.h>
#include <linux/vmalloc.h>
#include <linux/errno.h>
#include "event_buffer.h"
#include "cpu_buffer.h"
#include "buffer_sync.h"
#include "oprof.h"
struct oprofile_cpu_buffer cpu_buffer[NR_CPUS] __cacheline_aligned;
static void wq_sync_buffer(struct work_struct *work);
#define DEFAULT_TIMER_EXPIRE (HZ / 10)
static int work_enabled;
void free_cpu_buffers(void)
{
int i;
for_each_online_cpu(i)
vfree(cpu_buffer[i].buffer);
}
int alloc_cpu_buffers(void)
{
int i;
unsigned long buffer_size = fs_cpu_buffer_size;
for_each_online_cpu(i) {
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
cpu_to_node(i));
if (!b->buffer)
goto fail;
b->last_task = NULL;
b->last_is_kernel = -1;
b->tracing = 0;
b->buffer_size = buffer_size;
b->tail_pos = 0;
b->head_pos = 0;
b->sample_received = 0;
b->sample_lost_overflow = 0;
b->backtrace_aborted = 0;
b->sample_invalid_eip = 0;
b->cpu = i;
INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
}
return 0;
fail:
free_cpu_buffers();
return -ENOMEM;
}
void start_cpu_work(void)
{
int i;
work_enabled = 1;
for_each_online_cpu(i) {
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
/*
* Spread the work by 1 jiffy per cpu so they dont all
* fire at once.
*/
schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
}
}
void end_cpu_work(void)
{
int i;
work_enabled = 0;
for_each_online_cpu(i) {
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
cancel_delayed_work(&b->work);
}
flush_scheduled_work();
}
/* Resets the cpu buffer to a sane state. */
void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf)
{
/* reset these to invalid values; the next sample
* collected will populate the buffer with proper
* values to initialize the buffer
*/
cpu_buf->last_is_kernel = -1;
cpu_buf->last_task = NULL;
}
/* compute number of available slots in cpu_buffer queue */
static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b)
{
unsigned long head = b->head_pos;
unsigned long tail = b->tail_pos;
if (tail > head)
return (tail - head) - 1;
return tail + (b->buffer_size - head) - 1;
}
static void increment_head(struct oprofile_cpu_buffer * b)
{
unsigned long new_head = b->head_pos + 1;
/* Ensure anything written to the slot before we
* increment is visible */
wmb();
if (new_head < b->buffer_size)
b->head_pos = new_head;
else
b->head_pos = 0;
}
static inline void
add_sample(struct oprofile_cpu_buffer * cpu_buf,
unsigned long pc, unsigned long event)
{
struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos];
entry->eip = pc;
entry->event = event;
increment_head(cpu_buf);
}
static inline void
add_code(struct oprofile_cpu_buffer * buffer, unsigned long value)
{
add_sample(buffer, ESCAPE_CODE, value);
}
/* This must be safe from any context. It's safe writing here
* because of the head/tail separation of the writer and reader
* of the CPU buffer.
*
* is_kernel is needed because on some architectures you cannot
* tell if you are in kernel or user space simply by looking at
* pc. We tag this in the buffer by generating kernel enter/exit
* events whenever is_kernel changes
*/
static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc,
int is_kernel, unsigned long event)
{
struct task_struct * task;
cpu_buf->sample_received++;
if (pc == ESCAPE_CODE) {
cpu_buf->sample_invalid_eip++;
return 0;
}
if (nr_available_slots(cpu_buf) < 3) {
cpu_buf->sample_lost_overflow++;
return 0;
}
is_kernel = !!is_kernel;
task = current;
/* notice a switch from user->kernel or vice versa */
if (cpu_buf->last_is_kernel != is_kernel) {
cpu_buf->last_is_kernel = is_kernel;
add_code(cpu_buf, is_kernel);
}
/* notice a task switch */
if (cpu_buf->last_task != task) {
cpu_buf->last_task = task;
add_code(cpu_buf, (unsigned long)task);
}
add_sample(cpu_buf, pc, event);
return 1;
}
static int oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)
{
if (nr_available_slots(cpu_buf) < 4) {
cpu_buf->sample_lost_overflow++;
return 0;
}
add_code(cpu_buf, CPU_TRACE_BEGIN);
cpu_buf->tracing = 1;
return 1;
}
static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)
{
cpu_buf->tracing = 0;
}
void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
unsigned long event, int is_kernel)
{
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
if (!backtrace_depth) {
log_sample(cpu_buf, pc, is_kernel, event);
return;
}
if (!oprofile_begin_trace(cpu_buf))
return;
/* if log_sample() fail we can't backtrace since we lost the source
* of this event */
if (log_sample(cpu_buf, pc, is_kernel, event))
oprofile_ops.backtrace(regs, backtrace_depth);
oprofile_end_trace(cpu_buf);
}
void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
{
int is_kernel = !user_mode(regs);
unsigned long pc = profile_pc(regs);
oprofile_add_ext_sample(pc, regs, event, is_kernel);
}
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
{
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
log_sample(cpu_buf, pc, is_kernel, event);
}
void oprofile_add_trace(unsigned long pc)
{
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
if (!cpu_buf->tracing)
return;
if (nr_available_slots(cpu_buf) < 1) {
cpu_buf->tracing = 0;
cpu_buf->sample_lost_overflow++;
return;
}
/* broken frame can give an eip with the same value as an escape code,
* abort the trace if we get it */
if (pc == ESCAPE_CODE) {
cpu_buf->tracing = 0;
cpu_buf->backtrace_aborted++;
return;
}
add_sample(cpu_buf, pc, 0);
}
/*
* This serves to avoid cpu buffer overflow, and makes sure
* the task mortuary progresses
*
* By using schedule_delayed_work_on and then schedule_delayed_work
* we guarantee this will stay on the correct cpu
*/
static void wq_sync_buffer(struct work_struct *work)
{
struct oprofile_cpu_buffer * b =
container_of(work, struct oprofile_cpu_buffer, work.work);
if (b->cpu != smp_processor_id()) {
printk("WQ on CPU%d, prefer CPU%d\n",
smp_processor_id(), b->cpu);
}
sync_buffer(b->cpu);
/* don't re-add the work if we're shutting down */
if (work_enabled)
schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
}