/* zd_chip.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* This file implements all the hardware specific functions for the ZD1211
* and ZD1211B chips. Support for the ZD1211B was possible after Timothy
* Legge sent me a ZD1211B device. Thank you Tim. -- Uli
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include "zd_def.h"
#include "zd_chip.h"
#include "zd_ieee80211.h"
#include "zd_mac.h"
#include "zd_rf.h"
#include "zd_util.h"
void zd_chip_init(struct zd_chip *chip,
struct net_device *netdev,
struct usb_interface *intf)
{
memset(chip, 0, sizeof(*chip));
mutex_init(&chip->mutex);
zd_usb_init(&chip->usb, netdev, intf);
zd_rf_init(&chip->rf);
}
void zd_chip_clear(struct zd_chip *chip)
{
ZD_ASSERT(!mutex_is_locked(&chip->mutex));
zd_usb_clear(&chip->usb);
zd_rf_clear(&chip->rf);
mutex_destroy(&chip->mutex);
ZD_MEMCLEAR(chip, sizeof(*chip));
}
static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
{
u8 *addr = zd_usb_to_netdev(&chip->usb)->dev_addr;
return scnprintf(buffer, size, "%02x-%02x-%02x",
addr[0], addr[1], addr[2]);
}
/* Prints an identifier line, which will support debugging. */
static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
{
int i = 0;
i = scnprintf(buffer, size, "zd1211%s chip ",
zd_chip_is_zd1211b(chip) ? "b" : "");
i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
i += scnprintf(buffer+i, size-i, " ");
i += scnprint_mac_oui(chip, buffer+i, size-i);
i += scnprintf(buffer+i, size-i, " ");
i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
chip->patch_cck_gain ? 'g' : '-',
chip->patch_cr157 ? '7' : '-',
chip->patch_6m_band_edge ? '6' : '-',
chip->new_phy_layout ? 'N' : '-',
chip->al2230s_bit ? 'S' : '-');
return i;
}
static void print_id(struct zd_chip *chip)
{
char buffer[80];
scnprint_id(chip, buffer, sizeof(buffer));
buffer[sizeof(buffer)-1] = 0;
dev_info(zd_chip_dev(chip), "%s\n", buffer);
}
static zd_addr_t inc_addr(zd_addr_t addr)
{
u16 a = (u16)addr;
/* Control registers use byte addressing, but everything else uses word
* addressing. */
if ((a & 0xf000) == CR_START)
a += 2;
else
a += 1;
return (zd_addr_t)a;
}
/* Read a variable number of 32-bit values. Parameter count is not allowed to
* exceed USB_MAX_IOREAD32_COUNT.
*/
int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
unsigned int count)
{
int r;
int i;
zd_addr_t *a16 = (zd_addr_t *)NULL;
u16 *v16;
unsigned int count16;
if (count > USB_MAX_IOREAD32_COUNT)
return -EINVAL;
/* Allocate a single memory block for values and addresses. */
count16 = 2*count;
a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
GFP_KERNEL);
if (!a16) {
dev_dbg_f(zd_chip_dev(chip),
"error ENOMEM in allocation of a16\n");
r = -ENOMEM;
goto out;
}
v16 = (u16 *)(a16 + count16);
for (i = 0; i < count; i++) {
int j = 2*i;
/* We read the high word always first. */
a16[j] = inc_addr(addr[i]);
a16[j+1] = addr[i];
}
r = zd_ioread16v_locked(chip, v16, a16, count16);
if (r) {
dev_dbg_f(zd_chip_dev(chip),
"error: zd_ioread16v_locked. Error number %d\n", r);
goto out;
}
for (i = 0; i < count; i++) {
int j = 2*i;
values[i] = (v16[j] << 16) | v16[j+1];
}
out:
kfree((void *)a16);
return r;
}
int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
unsigned int count)
{
int i, j, r;
struct zd_ioreq16 *ioreqs16;
unsigned int count16;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
if (count == 0)
return 0;
if (count > USB_MAX_IOWRITE32_COUNT)
return -EINVAL;
/* Allocate a single memory block for values and addresses. */
count16 = 2*count;
ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL);
if (!ioreqs16) {
r = -ENOMEM;
dev_dbg_f(zd_chip_dev(chip),
"error %d in ioreqs16 allocation\n", r);
goto out;
}
for (i = 0; i < count; i++) {
j = 2*i;
/* We write the high word always first. */
ioreqs16[j].value = ioreqs[i].value >> 16;
ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
ioreqs16[j+1].value = ioreqs[i].value;
ioreqs16[j+1].addr = ioreqs[i].addr;
}
r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
#ifdef DEBUG
if (r) {
dev_dbg_f(zd_chip_dev(chip),
"error %d in zd_usb_write16v\n", r);
}
#endif /* DEBUG */
out:
kfree(ioreqs16);
return r;
}
int zd_iowrite16a_locked(struct zd_chip *chip,
const struct zd_ioreq16 *ioreqs, unsigned int count)
{
int r;
unsigned int i, j, t, max;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
for (i = 0; i < count; i += j + t) {
t = 0;
max = count-i;
if (max > USB_MAX_IOWRITE16_COUNT)
max = USB_MAX_IOWRITE16_COUNT;
for (j = 0; j < max; j++) {
if (!ioreqs[i+j].addr) {
t = 1;
break;
}
}
r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
if (r) {
dev_dbg_f(zd_chip_dev(chip),
"error zd_usb_iowrite16v. Error number %d\n",
r);
return r;
}
}
return 0;
}
/* Writes a variable number of 32 bit registers. The functions will split
* that in several USB requests. A split can be forced by inserting an IO
* request with an zero address field.
*/
int zd_iowrite32a_locked(struct zd_chip *chip,
const struct zd_ioreq32 *ioreqs, unsigned int count)
{
int r;
unsigned int i, j, t, max;
for (i = 0; i < count; i += j + t) {
t = 0;
max = count-i;
if (max > USB_MAX_IOWRITE32_COUNT)
max = USB_MAX_IOWRITE32_COUNT;
for (j = 0; j < max; j++) {
if (!ioreqs[i+j].addr) {
t = 1;
break;
}
}
r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
if (r) {
dev_dbg_f(zd_chip_dev(chip),
"error _zd_iowrite32v_locked."
" Error number %d\n", r);
return r;
}
}
return 0;
}
int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
{
int r;
mutex_lock(&chip->mutex);
r = zd_ioread16_locked(chip, value, addr);
mutex_unlock(&chip->mutex);
return r;
}
int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
{
int r;
mutex_lock(&chip->mutex);
r = zd_ioread32_locked(chip, value, addr);
mutex_unlock(&chip->mutex);
return r;
}
int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
{
int r;
mutex_lock(&chip->mutex);
r = zd_iowrite16_locked(chip, value, addr);
mutex_unlock(&chip->mutex);
return r;
}
int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
{
int r;
mutex_lock(&chip->mutex);
r = zd_iowrite32_locked(chip, value, addr);
mutex_unlock(&chip->mutex);
return r;
}
int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
u32 *values, unsigned int count)
{
int r;
mutex_lock(&chip->mutex);
r = zd_ioread32v_locked(chip, values, addresses, count);
mutex_unlock(&chip->mutex);
return r;
}
int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
unsigned int count)
{
int r;
mutex_lock(&chip->mutex);
r = zd_iowrite32a_locked(chip, ioreqs, count);
mutex_unlock(&chip->mutex);
return r;
}
static int read_pod(struct zd_chip *chip, u8 *rf_type)
{
int r;
u32 value;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread32_locked(chip, &value, E2P_POD);
if (r)
goto error;
dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
/* FIXME: AL2230 handling (Bit 7 in POD) */
*rf_type = value & 0x0f;
chip->pa_type = (value >> 16) & 0x0f;
chip->patch_cck_gain = (value >> 8) & 0x1;
chip->patch_cr157 = (value >> 13) & 0x1;
chip->patch_6m_band_edge = (value >> 21) & 0x1;
chip->new_phy_layout = (value >> 31) & 0x1;
chip->al2230s_bit = (value >> 7) & 0x1;
chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
chip->supports_tx_led = 1;
if (value & (1 << 24)) { /* LED scenario */
if (value & (1 << 29))
chip->supports_tx_led = 0;
}
dev_dbg_f(zd_chip_dev(chip),
"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
"patch 6M %d new PHY %d link LED%d tx led %d\n",
zd_rf_name(*rf_type), *rf_type,
chip->pa_type, chip->patch_cck_gain,
chip->patch_cr157, chip->patch_6m_band_edge,
chip->new_phy_layout,
chip->link_led == LED1 ? 1 : 2,
chip->supports_tx_led);
return 0;
error:
*rf_type = 0;
chip->pa_type = 0;
chip->patch_cck_gain = 0;
chip->patch_cr157 = 0;
chip->patch_6m_band_edge = 0;
chip->new_phy_layout = 0;
return r;
}
/* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
* CR_MAC_ADDR_P2 must be overwritten
*/
int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
{
int r;
struct zd_ioreq32 reqs[2] = {
[0] = { .addr = CR_MAC_ADDR_P1 },
[1] = { .addr = CR_MAC_ADDR_P2 },
};
reqs[0].value = (mac_addr[3] << 24)
| (mac_addr[2] << 16)
| (mac_addr[1] << 8)
| mac_addr[0];
reqs[1].value = (mac_addr[5] << 8)
| mac_addr[4];
dev_dbg_f(zd_chip_dev(chip),
"mac addr " MAC_FMT "\n", MAC_ARG(mac_addr));
mutex_lock(&chip->mutex);
r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
mutex_unlock(&chip->mutex);
return r;
}
int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
{
int r;
u32 value;
mutex_lock(&chip->mutex);
r = zd_ioread32_locked(chip, &value, E2P_SUBID);
mutex_unlock(&chip->mutex);
if (r)
return r;
*regdomain = value >> 16;
dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
return 0;
}
static int read_values(struct zd_chip *chip, u8 *values, size_t count,
zd_addr_t e2p_addr, u32 guard)
{
int r;
int i;
u32 v;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
for (i = 0;;) {
r = zd_ioread32_locked(chip, &v,
(zd_addr_t)((u16)e2p_addr+i/2));
if (r)
return r;
v -= guard;
if (i+4 < count) {
values[i++] = v;
values[i++] = v >> 8;
values[i++] = v >> 16;
values[i++] = v >> 24;
continue;
}
for (;i < count; i++)
values[i] = v >> (8*(i%3));
return 0;
}
}
static int read_pwr_cal_values(struct zd_chip *chip)
{
return read_values(chip, chip->pwr_cal_values,
E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
0);
}
static int read_pwr_int_values(struct zd_chip *chip)
{
return read_values(chip, chip->pwr_int_values,
E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
E2P_PWR_INT_GUARD);
}
static int read_ofdm_cal_values(struct zd_chip *chip)
{
int r;
int i;
static const zd_addr_t addresses[] = {
E2P_36M_CAL_VALUE1,
E2P_48M_CAL_VALUE1,
E2P_54M_CAL_VALUE1,
};
for (i = 0; i < 3; i++) {
r = read_values(chip, chip->ofdm_cal_values[i],
E2P_CHANNEL_COUNT, addresses[i], 0);
if (r)
return r;
}
return 0;
}
static int read_cal_int_tables(struct zd_chip *chip)
{
int r;
r = read_pwr_cal_values(chip);
if (r)
return r;
r = read_pwr_int_values(chip);
if (r)
return r;
r = read_ofdm_cal_values(chip);
if (r)
return r;
return 0;
}
/* phy means physical registers */
int zd_chip_lock_phy_regs(struct zd_chip *chip)
{
int r;
u32 tmp;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread32_locked(chip, &tmp, CR_REG1);
if (r) {
dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
return r;
}
tmp &= ~UNLOCK_PHY_REGS;
r = zd_iowrite32_locked(chip, tmp, CR_REG1);
if (r)
dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
return r;
}
int zd_chip_unlock_phy_regs(struct zd_chip *chip)
{
int r;
u32 tmp;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread32_locked(chip, &tmp, CR_REG1);
if (r) {
dev_err(zd_chip_dev(chip),
"error ioread32(CR_REG1): %d\n", r);
return r;
}
tmp |= UNLOCK_PHY_REGS;
r = zd_iowrite32_locked(chip, tmp, CR_REG1);
if (r)
dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
return r;
}
/* CR157 can be optionally patched by the EEPROM for original ZD1211 */
static int patch_cr157(struct zd_chip *chip)
{
int r;
u16 value;
if (!chip->patch_cr157)
return 0;
r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
if (r)
return r;
dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
return zd_iowrite32_locked(chip, value >> 8, CR157);
}
/*
* 6M band edge can be optionally overwritten for certain RF's
* Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
* bit (for AL2230, AL2230S)
*/
static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
{
ZD_ASSERT(mutex_is_locked(&chip->mutex));
if (!chip->patch_6m_band_edge)
return 0;
return zd_rf_patch_6m_band_edge(&chip->rf, channel);
}
/* Generic implementation of 6M band edge patching, used by most RFs via
* zd_rf_generic_patch_6m() */
int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
{
struct zd_ioreq16 ioreqs[] = {
{ CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
{ CR47, 0x1e },
};
/* FIXME: Channel 11 is not the edge for all regulatory domains. */
if (channel == 1 || channel == 11)
ioreqs[0].value = 0x12;
dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static int zd1211_hw_reset_phy(struct zd_chip *chip)
{
static const struct zd_ioreq16 ioreqs[] = {
{ CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 },
{ CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 },
{ CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f },
{ CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d },
{ CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a },
{ CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c },
{ CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 },
{ CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 },
{ CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b },
{ CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
{ CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
{ CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
{ CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
{ CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff },
{ CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
{ CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
{ CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
{ CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
{ CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
{ CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
{ CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 },
{ CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 },
{ CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 },
{ CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 },
{ CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 },
{ CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff },
{ CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 },
{ CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
{ CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
{ CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
{ CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
{ CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
{ CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
{ },
{ CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 },
{ CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 },
{ CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 },
{ CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 },
{ CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C },
{ CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 },
{ CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 },
{ CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 },
{ CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 },
{ CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
{ CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
{ CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
{ CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
{ CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
{ CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 },
{ CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C },
{ CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 },
{ CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 },
{ CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c },
{ CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 },
{ CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe },
{ CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
{ CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
{ CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
{ CR170, 0xba }, { CR171, 0xba },
/* Note: CR204 must lead the CR203 */
{ CR204, 0x7d },
{ },
{ CR203, 0x30 },
};
int r, t;
dev_dbg_f(zd_chip_dev(chip), "\n");
r = zd_chip_lock_phy_regs(chip);
if (r)
goto out;
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
goto unlock;
r = patch_cr157(chip);
unlock:
t = zd_chip_unlock_phy_regs(chip);
if (t && !r)
r = t;
out:
return r;
}
static int zd1211b_hw_reset_phy(struct zd_chip *chip)
{
static const struct zd_ioreq16 ioreqs[] = {
{ CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 },
{ CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 },
{ CR10, 0x81 },
/* power control { { CR11, 1 << 6 }, */
{ CR11, 0x00 },
{ CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 },
{ CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e },
{ CR18, 0x0a }, { CR19, 0x48 },
{ CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
{ CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 },
{ CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 },
{ CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 },
{ CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
{ CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
{ CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
{ CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
{ CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
{ CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff },
{ CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
{ CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
{ CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
{ CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
{ CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
{ CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
{ CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 },
{ CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 },
{ CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 },
{ CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 },
{ CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 },
{ CR94, 0x01 },
{ CR95, 0x20 }, /* ZD1211B */
{ CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 },
{ CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
{ CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
{ CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
{ CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
{ CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
{ CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
{ CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
{ CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
{ CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
{ CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
{ CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
{ CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
{ CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
{ CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
{ CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
{ CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
{ CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
{ CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
{ CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
{ CR170, 0xba }, { CR171, 0xba },
/* Note: CR204 must lead the CR203 */
{ CR204, 0x7d },
{},
{ CR203, 0x30 },
};
int r, t;
dev_dbg_f(zd_chip_dev(chip), "\n");
r = zd_chip_lock_phy_regs(chip);
if (r)
goto out;
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
t = zd_chip_unlock_phy_regs(chip);
if (t && !r)
r = t;
out:
return r;
}
static int hw_reset_phy(struct zd_chip *chip)
{
return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
zd1211_hw_reset_phy(chip);
}
static int zd1211_hw_init_hmac(struct zd_chip *chip)
{
static const struct zd_ioreq32 ioreqs[] = {
{ CR_ZD1211_RETRY_MAX, 0x2 },
{ CR_RX_THRESHOLD, 0x000c0640 },
};
dev_dbg_f(zd_chip_dev(chip), "\n");
ZD_ASSERT(mutex_is_locked(&chip->mutex));
return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static int zd1211b_hw_init_hmac(struct zd_chip *chip)
{
static const struct zd_ioreq32 ioreqs[] = {
{ CR_ZD1211B_RETRY_MAX, 0x02020202 },
{ CR_ZD1211B_TX_PWR_CTL4, 0x007f003f },
{ CR_ZD1211B_TX_PWR_CTL3, 0x007f003f },
{ CR_ZD1211B_TX_PWR_CTL2, 0x003f001f },
{ CR_ZD1211B_TX_PWR_CTL1, 0x001f000f },
{ CR_ZD1211B_AIFS_CTL1, 0x00280028 },
{ CR_ZD1211B_AIFS_CTL2, 0x008C003C },
{ CR_ZD1211B_TXOP, 0x01800824 },
{ CR_RX_THRESHOLD, 0x000c0eff, },
};
dev_dbg_f(zd_chip_dev(chip), "\n");
ZD_ASSERT(mutex_is_locked(&chip->mutex));
return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static int hw_init_hmac(struct zd_chip *chip)
{
int r;
static const struct zd_ioreq32 ioreqs[] = {
{ CR_ACK_TIMEOUT_EXT, 0x20 },
{ CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
{ CR_SNIFFER_ON, 0 },
{ CR_RX_FILTER, STA_RX_FILTER },
{ CR_GROUP_HASH_P1, 0x00 },
{ CR_GROUP_HASH_P2, 0x80000000 },
{ CR_REG1, 0xa4 },
{ CR_ADDA_PWR_DWN, 0x7f },
{ CR_BCN_PLCP_CFG, 0x00f00401 },
{ CR_PHY_DELAY, 0x00 },
{ CR_ACK_TIMEOUT_EXT, 0x80 },
{ CR_ADDA_PWR_DWN, 0x00 },
{ CR_ACK_TIME_80211, 0x100 },
{ CR_RX_PE_DELAY, 0x70 },
{ CR_PS_CTRL, 0x10000000 },
{ CR_RTS_CTS_RATE, 0x02030203 },
{ CR_AFTER_PNP, 0x1 },
{ CR_WEP_PROTECT, 0x114 },
{ CR_IFS_VALUE, IFS_VALUE_DEFAULT },
};
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
return r;
return zd_chip_is_zd1211b(chip) ?
zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
}
struct aw_pt_bi {
u32 atim_wnd_period;
u32 pre_tbtt;
u32 beacon_interval;
};
static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
{
int r;
static const zd_addr_t aw_pt_bi_addr[] =
{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
u32 values[3];
r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
ARRAY_SIZE(aw_pt_bi_addr));
if (r) {
memset(s, 0, sizeof(*s));
return r;
}
s->atim_wnd_period = values[0];
s->pre_tbtt = values[1];
s->beacon_interval = values[2];
return 0;
}
static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
{
struct zd_ioreq32 reqs[3];
if (s->beacon_interval <= 5)
s->beacon_interval = 5;
if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
s->pre_tbtt = s->beacon_interval - 1;
if (s->atim_wnd_period >= s->pre_tbtt)
s->atim_wnd_period = s->pre_tbtt - 1;
reqs[0].addr = CR_ATIM_WND_PERIOD;
reqs[0].value = s->atim_wnd_period;
reqs[1].addr = CR_PRE_TBTT;
reqs[1].value = s->pre_tbtt;
reqs[2].addr = CR_BCN_INTERVAL;
reqs[2].value = s->beacon_interval;
return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
}
static int set_beacon_interval(struct zd_chip *chip, u32 interval)
{
int r;
struct aw_pt_bi s;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = get_aw_pt_bi(chip, &s);
if (r)
return r;
s.beacon_interval = interval;
return set_aw_pt_bi(chip, &s);
}
int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
{
int r;
mutex_lock(&chip->mutex);
r = set_beacon_interval(chip, interval);
mutex_unlock(&chip->mutex);
return r;
}
static int hw_init(struct zd_chip *chip)
{
int r;
dev_dbg_f(zd_chip_dev(chip), "\n");
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = hw_reset_phy(chip);
if (r)
return r;
r = hw_init_hmac(chip);
if (r)
return r;
return set_beacon_interval(chip, 100);
}
static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
{
return (zd_addr_t)((u16)chip->fw_regs_base + offset);
}
#ifdef DEBUG
static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
const char *addr_string)
{
int r;
u32 value;
r = zd_ioread32_locked(chip, &value, addr);
if (r) {
dev_dbg_f(zd_chip_dev(chip),
"error reading %s. Error number %d\n", addr_string, r);
return r;
}
dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
addr_string, (unsigned int)value);
return 0;
}
static int test_init(struct zd_chip *chip)
{
int r;
r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
if (r)
return r;
r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
if (r)
return r;
return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
}
static void dump_fw_registers(struct zd_chip *chip)
{
const zd_addr_t addr[4] = {
fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
fw_reg_addr(chip, FW_REG_USB_SPEED),
fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
};
int r;
u16 values[4];
r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
ARRAY_SIZE(addr));
if (r) {
dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
r);
return;
}
dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
}
#endif /* DEBUG */
static int print_fw_version(struct zd_chip *chip)
{
int r;
u16 version;
r = zd_ioread16_locked(chip, &version,
fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
if (r)
return r;
dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
return 0;
}
static int set_mandatory_rates(struct zd_chip *chip, enum ieee80211_std std)
{
u32 rates;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
/* This sets the mandatory rates, which only depend from the standard
* that the device is supporting. Until further notice we should try
* to support 802.11g also for full speed USB.
*/
switch (std) {
case IEEE80211B:
rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
break;
case IEEE80211G:
rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
break;
default:
return -EINVAL;
}
return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
}
int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
u8 rts_rate, int preamble)
{
int rts_mod = ZD_RX_CCK;
u32 value = 0;
/* Modulation bit */
if (ZD_MODULATION_TYPE(rts_rate) == ZD_OFDM)
rts_mod = ZD_RX_OFDM;
dev_dbg_f(zd_chip_dev(chip), "rts_rate=%x preamble=%x\n",
rts_rate, preamble);
value |= ZD_PURE_RATE(rts_rate) << RTSCTS_SH_RTS_RATE;
value |= rts_mod << RTSCTS_SH_RTS_MOD_TYPE;
value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
/* We always send 11M self-CTS messages, like the vendor driver. */
value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
}
int zd_chip_enable_hwint(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
mutex_unlock(&chip->mutex);
return r;
}
static int disable_hwint(struct zd_chip *chip)
{
return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
}
int zd_chip_disable_hwint(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = disable_hwint(chip);
mutex_unlock(&chip->mutex);
return r;
}
static int read_fw_regs_offset(struct zd_chip *chip)
{
int r;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
FWRAW_REGS_ADDR);
if (r)
return r;
dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
(u16)chip->fw_regs_base);
return 0;
}
/* Read mac address using pre-firmware interface */
int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
{
dev_dbg_f(zd_chip_dev(chip), "\n");
return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
ETH_ALEN);
}
int zd_chip_init_hw(struct zd_chip *chip)
{
int r;
u8 rf_type;
dev_dbg_f(zd_chip_dev(chip), "\n");
mutex_lock(&chip->mutex);
#ifdef DEBUG
r = test_init(chip);
if (r)
goto out;
#endif
r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
if (r)
goto out;
r = read_fw_regs_offset(chip);
if (r)
goto out;
/* GPI is always disabled, also in the other driver.
*/
r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
if (r)
goto out;
r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
if (r)
goto out;
/* Currently we support IEEE 802.11g for full and high speed USB.
* It might be discussed, whether we should suppport pure b mode for
* full speed USB.
*/
r = set_mandatory_rates(chip, IEEE80211G);
if (r)
goto out;
/* Disabling interrupts is certainly a smart thing here.
*/
r = disable_hwint(chip);
if (r)
goto out;
r = read_pod(chip, &rf_type);
if (r)
goto out;
r = hw_init(chip);
if (r)
goto out;
r = zd_rf_init_hw(&chip->rf, rf_type);
if (r)
goto out;
r = print_fw_version(chip);
if (r)
goto out;
#ifdef DEBUG
dump_fw_registers(chip);
r = test_init(chip);
if (r)
goto out;
#endif /* DEBUG */
r = read_cal_int_tables(chip);
if (r)
goto out;
print_id(chip);
out:
mutex_unlock(&chip->mutex);
return r;
}
static int update_pwr_int(struct zd_chip *chip, u8 channel)
{
u8 value = chip->pwr_int_values[channel - 1];
return zd_iowrite16_locked(chip, value, CR31);
}
static int update_pwr_cal(struct zd_chip *chip, u8 channel)
{
u8 value = chip->pwr_cal_values[channel-1];
return zd_iowrite16_locked(chip, value, CR68);
}
static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
{
struct zd_ioreq16 ioreqs[3];
ioreqs[0].addr = CR67;
ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
ioreqs[1].addr = CR66;
ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
ioreqs[2].addr = CR65;
ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static int update_channel_integration_and_calibration(struct zd_chip *chip,
u8 channel)
{
int r;
if (!zd_rf_should_update_pwr_int(&chip->rf))
return 0;
r = update_pwr_int(chip, channel);
if (r)
return r;
if (zd_chip_is_zd1211b(chip)) {
static const struct zd_ioreq16 ioreqs[] = {
{ CR69, 0x28 },
{},
{ CR69, 0x2a },
};
r = update_ofdm_cal(chip, channel);
if (r)
return r;
r = update_pwr_cal(chip, channel);
if (r)
return r;
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
return r;
}
return 0;
}
/* The CCK baseband gain can be optionally patched by the EEPROM */
static int patch_cck_gain(struct zd_chip *chip)
{
int r;
u32 value;
if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
return 0;
ZD_ASSERT(mutex_is_locked(&chip->mutex));
r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
if (r)
return r;
dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
return zd_iowrite16_locked(chip, value & 0xff, CR47);
}
int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
{
int r, t;
mutex_lock(&chip->mutex);
r = zd_chip_lock_phy_regs(chip);
if (r)
goto out;
r = zd_rf_set_channel(&chip->rf, channel);
if (r)
goto unlock;
r = update_channel_integration_and_calibration(chip, channel);
if (r)
goto unlock;
r = patch_cck_gain(chip);
if (r)
goto unlock;
r = patch_6m_band_edge(chip, channel);
if (r)
goto unlock;
r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
unlock:
t = zd_chip_unlock_phy_regs(chip);
if (t && !r)
r = t;
out:
mutex_unlock(&chip->mutex);
return r;
}
u8 zd_chip_get_channel(struct zd_chip *chip)
{
u8 channel;
mutex_lock(&chip->mutex);
channel = chip->rf.channel;
mutex_unlock(&chip->mutex);
return channel;
}
int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
{
const zd_addr_t a[] = {
fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
CR_LED,
};
int r;
u16 v[ARRAY_SIZE(a)];
struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
[1] = { CR_LED },
};
u16 other_led;
mutex_lock(&chip->mutex);
r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
if (r)
goto out;
other_led = chip->link_led == LED1 ? LED2 : LED1;
switch (status) {
case LED_OFF:
ioreqs[0].value = FW_LINK_OFF;
ioreqs[1].value = v[1] & ~(LED1|LED2);
break;
case LED_SCANNING:
ioreqs[0].value = FW_LINK_OFF;
ioreqs[1].value = v[1] & ~other_led;
if (get_seconds() % 3 == 0) {
ioreqs[1].value &= ~chip->link_led;
} else {
ioreqs[1].value |= chip->link_led;
}
break;
case LED_ASSOCIATED:
ioreqs[0].value = FW_LINK_TX;
ioreqs[1].value = v[1] & ~other_led;
ioreqs[1].value |= chip->link_led;
break;
default:
r = -EINVAL;
goto out;
}
if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
goto out;
}
r = 0;
out:
mutex_unlock(&chip->mutex);
return r;
}
int zd_chip_set_basic_rates_locked(struct zd_chip *chip, u16 cr_rates)
{
ZD_ASSERT((cr_rates & ~(CR_RATES_80211B | CR_RATES_80211G)) == 0);
dev_dbg_f(zd_chip_dev(chip), "%x\n", cr_rates);
return zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
}
static int ofdm_qual_db(u8 status_quality, u8 zd_rate, unsigned int size)
{
static const u16 constants[] = {
715, 655, 585, 540, 470, 410, 360, 315,
270, 235, 205, 175, 150, 125, 105, 85,
65, 50, 40, 25, 15
};
int i;
u32 x;
/* It seems that their quality parameter is somehow per signal
* and is now transferred per bit.
*/
switch (zd_rate) {
case ZD_OFDM_RATE_6M:
case ZD_OFDM_RATE_12M:
case ZD_OFDM_RATE_24M:
size *= 2;
break;
case ZD_OFDM_RATE_9M:
case ZD_OFDM_RATE_18M:
case ZD_OFDM_RATE_36M:
case ZD_OFDM_RATE_54M:
size *= 4;
size /= 3;
break;
case ZD_OFDM_RATE_48M:
size *= 3;
size /= 2;
break;
default:
return -EINVAL;
}
x = (10000 * status_quality)/size;
for (i = 0; i < ARRAY_SIZE(constants); i++) {
if (x > constants[i])
break;
}
switch (zd_rate) {
case ZD_OFDM_RATE_6M:
case ZD_OFDM_RATE_9M:
i += 3;
break;
case ZD_OFDM_RATE_12M:
case ZD_OFDM_RATE_18M:
i += 5;
break;
case ZD_OFDM_RATE_24M:
case ZD_OFDM_RATE_36M:
i += 9;
break;
case ZD_OFDM_RATE_48M:
case ZD_OFDM_RATE_54M:
i += 15;
break;
default:
return -EINVAL;
}
return i;
}
static int ofdm_qual_percent(u8 status_quality, u8 zd_rate, unsigned int size)
{
int r;
r = ofdm_qual_db(status_quality, zd_rate, size);
ZD_ASSERT(r >= 0);
if (r < 0)
r = 0;
r = (r * 100)/29;
return r <= 100 ? r : 100;
}
static unsigned int log10times100(unsigned int x)
{
static const u8 log10[] = {
0,
0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
223, 223, 223, 224, 224, 224, 224,
};
return x < ARRAY_SIZE(log10) ? log10[x] : 225;
}
enum {
MAX_CCK_EVM_DB = 45,
};
static int cck_evm_db(u8 status_quality)
{
return (20 * log10times100(status_quality)) / 100;
}
static int cck_snr_db(u8 status_quality)
{
int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
ZD_ASSERT(r >= 0);
return r;
}
static int cck_qual_percent(u8 status_quality)
{
int r;
r = cck_snr_db(status_quality);
r = (100*r)/17;
return r <= 100 ? r : 100;
}
static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
{
return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
}
u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
const struct rx_status *status)
{
return (status->frame_status&ZD_RX_OFDM) ?
ofdm_qual_percent(status->signal_quality_ofdm,
zd_rate_from_ofdm_plcp_header(rx_frame),
size) :
cck_qual_percent(status->signal_quality_cck);
}
u8 zd_rx_strength_percent(u8 rssi)
{
int r = (rssi*100) / 41;
if (r > 100)
r = 100;
return (u8) r;
}
u16 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
{
static const u16 ofdm_rates[] = {
[ZD_OFDM_PLCP_RATE_6M] = 60,
[ZD_OFDM_PLCP_RATE_9M] = 90,
[ZD_OFDM_PLCP_RATE_12M] = 120,
[ZD_OFDM_PLCP_RATE_18M] = 180,
[ZD_OFDM_PLCP_RATE_24M] = 240,
[ZD_OFDM_PLCP_RATE_36M] = 360,
[ZD_OFDM_PLCP_RATE_48M] = 480,
[ZD_OFDM_PLCP_RATE_54M] = 540,
};
u16 rate;
if (status->frame_status & ZD_RX_OFDM) {
/* Deals with PLCP OFDM rate (not zd_rates) */
u8 ofdm_rate = zd_ofdm_plcp_header_rate(rx_frame);
rate = ofdm_rates[ofdm_rate & 0xf];
} else {
switch (zd_cck_plcp_header_signal(rx_frame)) {
case ZD_CCK_PLCP_SIGNAL_1M:
rate = 10;
break;
case ZD_CCK_PLCP_SIGNAL_2M:
rate = 20;
break;
case ZD_CCK_PLCP_SIGNAL_5M5:
rate = 55;
break;
case ZD_CCK_PLCP_SIGNAL_11M:
rate = 110;
break;
default:
rate = 0;
}
}
return rate;
}
int zd_chip_switch_radio_on(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = zd_switch_radio_on(&chip->rf);
mutex_unlock(&chip->mutex);
return r;
}
int zd_chip_switch_radio_off(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = zd_switch_radio_off(&chip->rf);
mutex_unlock(&chip->mutex);
return r;
}
int zd_chip_enable_int(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = zd_usb_enable_int(&chip->usb);
mutex_unlock(&chip->mutex);
return r;
}
void zd_chip_disable_int(struct zd_chip *chip)
{
mutex_lock(&chip->mutex);
zd_usb_disable_int(&chip->usb);
mutex_unlock(&chip->mutex);
}
int zd_chip_enable_rx(struct zd_chip *chip)
{
int r;
mutex_lock(&chip->mutex);
r = zd_usb_enable_rx(&chip->usb);
mutex_unlock(&chip->mutex);
return r;
}
void zd_chip_disable_rx(struct zd_chip *chip)
{
mutex_lock(&chip->mutex);
zd_usb_disable_rx(&chip->usb);
mutex_unlock(&chip->mutex);
}
int zd_rfwritev_locked(struct zd_chip *chip,
const u32* values, unsigned int count, u8 bits)
{
int r;
unsigned int i;
for (i = 0; i < count; i++) {
r = zd_rfwrite_locked(chip, values[i], bits);
if (r)
return r;
}
return 0;
}
/*
* We can optionally program the RF directly through CR regs, if supported by
* the hardware. This is much faster than the older method.
*/
int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
{
struct zd_ioreq16 ioreqs[] = {
{ CR244, (value >> 16) & 0xff },
{ CR243, (value >> 8) & 0xff },
{ CR242, value & 0xff },
};
ZD_ASSERT(mutex_is_locked(&chip->mutex));
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
int zd_rfwritev_cr_locked(struct zd_chip *chip,
const u32 *values, unsigned int count)
{
int r;
unsigned int i;
for (i = 0; i < count; i++) {
r = zd_rfwrite_cr_locked(chip, values[i]);
if (r)
return r;
}
return 0;
}
int zd_chip_set_multicast_hash(struct zd_chip *chip,
struct zd_mc_hash *hash)
{
struct zd_ioreq32 ioreqs[] = {
{ CR_GROUP_HASH_P1, hash->low },
{ CR_GROUP_HASH_P2, hash->high },
};
return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
}