aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/net/wireless/wavelan.c
blob: 33ed9fe95f3db61661d535bc0a37f8afe30f142c (plain) (tree)
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179





























                                                                       
                                                  












                                                                      
                                                       


























































                                                                          
                                                           










































































































































                                                                                   
                                             


































































                                                                                                                  
                                                      














                                                                      
                                                                












                                                                      
                                             
























































































                                                                                  


















































































                                                                                      









































































                                                                          
                                                                       












































                                                                      
          
















































































































































































































                                                                                                         
                                                      






























































































































                                                                               


                                                           


















































































































































































































































































































                                                                                      
                                                 




















































































































































































































                                                                                           






                                                                      
                                                                                  













































































































































































                                                                                                           
                                                                                  
















                                                                                         
                                                                 
                                                                         






























































































































































































































































































































































































































































































































































































































































































































                                                                               


                                                              
































































                                                                                  




















                                                                       
           





















                                                                                      




                                                                  

                                                              


































                                                                                                               
                                                                           




























                                                                      
                                               





















































































































































































                                                                                                   
                                                                            





































































































































                                                                            
                            

































                                                                          
                                          
                                                               


                                                        
         
                                                          

                                               
 

















                                                                        
                                               










































































































































































                                                                                                    
                                               


























































































                                                                                
                                               



































































































                                                                                
                                                  






















































































































































































































































































































                                                                                      
                                                  



























































































































                                                                                   
                                                           
























































































































































































































































































































































































































                                                                                                    










                                                              


                                                      











































































                                                                                                                             
                                                          









                                                                  
                                            


























                                                                      
                            

















                                                                                               
                                                        





                                                  
                                                        












































































































                                                                               
/*
 *	WaveLAN ISA driver
 *
 *		Jean II - HPLB '96
 *
 * Reorganisation and extension of the driver.
 * Original copyright follows (also see the end of this file).
 * See wavelan.p.h for details.
 *
 *
 *
 * AT&T GIS (nee NCR) WaveLAN card:
 *	An Ethernet-like radio transceiver
 *	controlled by an Intel 82586 coprocessor.
 */

#include "wavelan.p.h"		/* Private header */

/************************* MISC SUBROUTINES **************************/
/*
 * Subroutines which won't fit in one of the following category
 * (WaveLAN modem or i82586)
 */

/*------------------------------------------------------------------*/
/*
 * Translate irq number to PSA irq parameter
 */
static u8 wv_irq_to_psa(int irq)
{
	if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
		return 0;

	return irqvals[irq];
}

/*------------------------------------------------------------------*/
/*
 * Translate PSA irq parameter to irq number 
 */
static int __init wv_psa_to_irq(u8 irqval)
{
	int irq;

	for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
		if (irqvals[irq] == irqval)
			return irq;

	return -1;
}

#ifdef STRUCT_CHECK
/*------------------------------------------------------------------*/
/*
 * Sanity routine to verify the sizes of the various WaveLAN interface
 * structures.
 */
static char *wv_struct_check(void)
{
#define	SC(t,s,n)	if (sizeof(t) != s) return(n);

	SC(psa_t, PSA_SIZE, "psa_t");
	SC(mmw_t, MMW_SIZE, "mmw_t");
	SC(mmr_t, MMR_SIZE, "mmr_t");
	SC(ha_t, HA_SIZE, "ha_t");

#undef	SC

	return ((char *) NULL);
}				/* wv_struct_check */
#endif				/* STRUCT_CHECK */

/********************* HOST ADAPTER SUBROUTINES *********************/
/*
 * Useful subroutines to manage the WaveLAN ISA interface
 *
 * One major difference with the PCMCIA hardware (except the port mapping)
 * is that we have to keep the state of the Host Control Register
 * because of the interrupt enable & bus size flags.
 */

/*------------------------------------------------------------------*/
/*
 * Read from card's Host Adaptor Status Register.
 */
static inline u16 hasr_read(unsigned long ioaddr)
{
	return (inw(HASR(ioaddr)));
}				/* hasr_read */

/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register.
 */
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
{
	outw(hacr, HACR(ioaddr));
}				/* hacr_write */

/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register. Include a delay for
 * those times when it is needed.
 */
static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
{
	hacr_write(ioaddr, hacr);
	/* delay might only be needed sometimes */
	mdelay(1);
}				/* hacr_write_slow */

/*------------------------------------------------------------------*/
/*
 * Set the channel attention bit.
 */
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
{
	hacr_write(ioaddr, hacr | HACR_CA);
}				/* set_chan_attn */

/*------------------------------------------------------------------*/
/*
 * Reset, and then set host adaptor into default mode.
 */
static inline void wv_hacr_reset(unsigned long ioaddr)
{
	hacr_write_slow(ioaddr, HACR_RESET);
	hacr_write(ioaddr, HACR_DEFAULT);
}				/* wv_hacr_reset */

/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
{
	hacr &= ~HACR_16BITS;
	hacr_write(ioaddr, hacr);
}				/* wv_16_off */

/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
{
	hacr |= HACR_16BITS;
	hacr_write(ioaddr, hacr);
}				/* wv_16_on */

/*------------------------------------------------------------------*/
/*
 * Disable interrupts on the WaveLAN hardware.
 * (called by wv_82586_stop())
 */
static inline void wv_ints_off(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	
	lp->hacr &= ~HACR_INTRON;
	hacr_write(ioaddr, lp->hacr);
}				/* wv_ints_off */

/*------------------------------------------------------------------*/
/*
 * Enable interrupts on the WaveLAN hardware.
 * (called by wv_hw_reset())
 */
static inline void wv_ints_on(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;

	lp->hacr |= HACR_INTRON;
	hacr_write(ioaddr, lp->hacr);
}				/* wv_ints_on */

/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
 * Useful subroutines to manage the modem of the WaveLAN
 */

/*------------------------------------------------------------------*/
/*
 * Read the Parameter Storage Area from the WaveLAN card's memory
 */
/*
 * Read bytes from the PSA.
 */
static void psa_read(unsigned long ioaddr, u16 hacr, int o,	/* offset in PSA */
		     u8 * b,	/* buffer to fill */
		     int n)
{				/* size to read */
	wv_16_off(ioaddr, hacr);

	while (n-- > 0) {
		outw(o, PIOR2(ioaddr));
		o++;
		*b++ = inb(PIOP2(ioaddr));
	}

	wv_16_on(ioaddr, hacr);
}				/* psa_read */

/*------------------------------------------------------------------*/
/*
 * Write the Parameter Storage Area to the WaveLAN card's memory.
 */
static void psa_write(unsigned long ioaddr, u16 hacr, int o,	/* Offset in PSA */
		      u8 * b,	/* Buffer in memory */
		      int n)
{				/* Length of buffer */
	int count = 0;

	wv_16_off(ioaddr, hacr);

	while (n-- > 0) {
		outw(o, PIOR2(ioaddr));
		o++;

		outb(*b, PIOP2(ioaddr));
		b++;

		/* Wait for the memory to finish its write cycle */
		count = 0;
		while ((count++ < 100) &&
		       (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
	}

	wv_16_on(ioaddr, hacr);
}				/* psa_write */

#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
 * Calculate the PSA CRC
 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
 * NOTE: By specifying a length including the CRC position the
 * returned value should be zero. (i.e. a correct checksum in the PSA)
 *
 * The Windows drivers don't use the CRC, but the AP and the PtP tool
 * depend on it.
 */
static u16 psa_crc(u8 * psa,	/* The PSA */
			      int size)
{				/* Number of short for CRC */
	int byte_cnt;		/* Loop on the PSA */
	u16 crc_bytes = 0;	/* Data in the PSA */
	int bit_cnt;		/* Loop on the bits of the short */

	for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
		crc_bytes ^= psa[byte_cnt];	/* Its an xor */

		for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
			if (crc_bytes & 0x0001)
				crc_bytes = (crc_bytes >> 1) ^ 0xA001;
			else
				crc_bytes >>= 1;
		}
	}

	return crc_bytes;
}				/* psa_crc */
#endif				/* SET_PSA_CRC */

/*------------------------------------------------------------------*/
/*
 * update the checksum field in the Wavelan's PSA
 */
static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
{
#ifdef SET_PSA_CRC
	psa_t psa;
	u16 crc;

	/* read the parameter storage area */
	psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));

	/* update the checksum */
	crc = psa_crc((unsigned char *) &psa,
		      sizeof(psa) - sizeof(psa.psa_crc[0]) -
		      sizeof(psa.psa_crc[1])
		      - sizeof(psa.psa_crc_status));

	psa.psa_crc[0] = crc & 0xFF;
	psa.psa_crc[1] = (crc & 0xFF00) >> 8;

	/* Write it ! */
	psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
		  (unsigned char *) &psa.psa_crc, 2);

#ifdef DEBUG_IOCTL_INFO
	printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
	       dev->name, psa.psa_crc[0], psa.psa_crc[1]);

	/* Check again (luxury !) */
	crc = psa_crc((unsigned char *) &psa,
		      sizeof(psa) - sizeof(psa.psa_crc_status));

	if (crc != 0)
		printk(KERN_WARNING
		       "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
		       dev->name);
#endif				/* DEBUG_IOCTL_INFO */
#endif				/* SET_PSA_CRC */
}				/* update_psa_checksum */

/*------------------------------------------------------------------*/
/*
 * Write 1 byte to the MMC.
 */
static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
{
	int count = 0;

	/* Wait for MMC to go idle */
	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
		udelay(10);

	outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
}

/*------------------------------------------------------------------*/
/*
 * Routine to write bytes to the Modem Management Controller.
 * We start at the end because it is the way it should be!
 */
static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
{
	o += n;
	b += n;

	while (n-- > 0)
		mmc_out(ioaddr, --o, *(--b));
}				/* mmc_write */

/*------------------------------------------------------------------*/
/*
 * Read a byte from the MMC.
 * Optimised version for 1 byte, avoid using memory.
 */
static u8 mmc_in(unsigned long ioaddr, u16 o)
{
	int count = 0;

	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
		udelay(10);
	outw(o << 1, MMCR(ioaddr));

	while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
		udelay(10);
	return (u8) (inw(MMCR(ioaddr)) >> 8);
}

/*------------------------------------------------------------------*/
/*
 * Routine to read bytes from the Modem Management Controller.
 * The implementation is complicated by a lack of address lines,
 * which prevents decoding of the low-order bit.
 * (code has just been moved in the above function)
 * We start at the end because it is the way it should be!
 */
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
{
	o += n;
	b += n;

	while (n-- > 0)
		*(--b) = mmc_in(ioaddr, --o);
}				/* mmc_read */

/*------------------------------------------------------------------*/
/*
 * Get the type of encryption available.
 */
static inline int mmc_encr(unsigned long ioaddr)
{				/* I/O port of the card */
	int temp;

	temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
	if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
		return 0;
	else
		return temp;
}

/*------------------------------------------------------------------*/
/*
 * Wait for the frequency EEPROM to complete a command.
 * I hope this one will be optimally inlined.
 */
static inline void fee_wait(unsigned long ioaddr,	/* I/O port of the card */
			    int delay,	/* Base delay to wait for */
			    int number)
{				/* Number of time to wait */
	int count = 0;		/* Wait only a limited time */

	while ((count++ < number) &&
	       (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
		MMR_FEE_STATUS_BUSY)) udelay(delay);
}

/*------------------------------------------------------------------*/
/*
 * Read bytes from the Frequency EEPROM (frequency select cards).
 */
static void fee_read(unsigned long ioaddr,	/* I/O port of the card */
		     u16 o,	/* destination offset */
		     u16 * b,	/* data buffer */
		     int n)
{				/* number of registers */
	b += n;			/* Position at the end of the area */

	/* Write the address */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);

	/* Loop on all buffer */
	while (n-- > 0) {
		/* Write the read command */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ);

		/* Wait until EEPROM is ready (should be quick). */
		fee_wait(ioaddr, 10, 100);

		/* Read the value. */
		*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
			mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
	}
}


/*------------------------------------------------------------------*/
/*
 * Write bytes from the Frequency EEPROM (frequency select cards).
 * This is a bit complicated, because the frequency EEPROM has to
 * be unprotected and the write enabled.
 * Jean II
 */
static void fee_write(unsigned long ioaddr,	/* I/O port of the card */
		      u16 o,	/* destination offset */
		      u16 * b,	/* data buffer */
		      int n)
{				/* number of registers */
	b += n;			/* Position at the end of the area. */

#ifdef EEPROM_IS_PROTECTED	/* disabled */
#ifdef DOESNT_SEEM_TO_WORK	/* disabled */
	/* Ask to read the protected register */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);

	fee_wait(ioaddr, 10, 100);

	/* Read the protected register. */
	printk("Protected 2:  %02X-%02X\n",
	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
#endif				/* DOESNT_SEEM_TO_WORK */

	/* Enable protected register. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);

	fee_wait(ioaddr, 10, 100);

	/* Unprotect area. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK	/* disabled */
	/* or use: */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif				/* DOESNT_SEEM_TO_WORK */

	fee_wait(ioaddr, 10, 100);
#endif				/* EEPROM_IS_PROTECTED */

	/* Write enable. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);

	fee_wait(ioaddr, 10, 100);

	/* Write the EEPROM address. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);

	/* Loop on all buffer */
	while (n-- > 0) {
		/* Write the value. */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);

		/* Write the write command. */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_WRITE);

		/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
		mdelay(10);
		fee_wait(ioaddr, 10, 100);
	}

	/* Write disable. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);

	fee_wait(ioaddr, 10, 100);

#ifdef EEPROM_IS_PROTECTED	/* disabled */
	/* Reprotect EEPROM. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);

	fee_wait(ioaddr, 10, 100);
#endif				/* EEPROM_IS_PROTECTED */
}

/************************ I82586 SUBROUTINES *************************/
/*
 * Useful subroutines to manage the Ethernet controller
 */

/*------------------------------------------------------------------*/
/*
 * Read bytes from the on-board RAM.
 * Why does inlining this function make it fail?
 */
static /*inline */ void obram_read(unsigned long ioaddr,
				   u16 o, u8 * b, int n)
{
	outw(o, PIOR1(ioaddr));
	insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}

/*------------------------------------------------------------------*/
/*
 * Write bytes to the on-board RAM.
 */
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
{
	outw(o, PIOR1(ioaddr));
	outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}

/*------------------------------------------------------------------*/
/*
 * Acknowledge the reading of the status issued by the i82586.
 */
static void wv_ack(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cs;
	int i;

	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &scb_cs, sizeof(scb_cs));
	scb_cs &= SCB_ST_INT;

	if (scb_cs == 0)
		return;

	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));

	set_chan_attn(ioaddr, lp->hacr);

	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;

		udelay(10);
	}
	udelay(100);

#ifdef DEBUG_CONFIG_ERROR
	if (i <= 0)
		printk(KERN_INFO
		       "%s: wv_ack(): board not accepting command.\n",
		       dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Set channel attention bit and busy wait until command has
 * completed, then acknowledge completion of the command.
 */
static int wv_synchronous_cmd(struct net_device * dev, const char *str)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cmd;
	ach_t cb;
	int i;

	scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));

	set_chan_attn(ioaddr, lp->hacr);

	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
			   sizeof(cb));
		if (cb.ac_status & AC_SFLD_C)
			break;

		udelay(10);
	}
	udelay(100);

	if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
		       dev->name, str, cb.ac_status);
#endif
#ifdef DEBUG_I82586_SHOW
		wv_scb_show(ioaddr);
#endif
		return -1;
	}

	/* Ack the status */
	wv_ack(dev);

	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Configuration commands completion interrupt.
 * Check if done, and if OK.
 */
static int
wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
	unsigned short mcs_addr;
	unsigned short status;
	int ret;

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
#endif

	mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
	    + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);

	/* Read the status of the last command (set mc list). */
	obram_read(ioaddr, acoff(mcs_addr, ac_status),
		   (unsigned char *) &status, sizeof(status));

	/* If not completed -> exit */
	if ((status & AC_SFLD_C) == 0)
		ret = 0;	/* Not ready to be scrapped */
	else {
#ifdef DEBUG_CONFIG_ERROR
		unsigned short cfg_addr;
		unsigned short ias_addr;

		/* Check mc_config command */
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
			       dev->name, status);

		/* check ia-config command */
		ias_addr = mcs_addr - sizeof(ac_ias_t);
		obram_read(ioaddr, acoff(ias_addr, ac_status),
			   (unsigned char *) &status, sizeof(status));
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
			       dev->name, status);

		/* Check config command. */
		cfg_addr = ias_addr - sizeof(ac_cfg_t);
		obram_read(ioaddr, acoff(cfg_addr, ac_status),
			   (unsigned char *) &status, sizeof(status));
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): configure failed; status = 0x%x\n",
			       dev->name, status);
#endif	/* DEBUG_CONFIG_ERROR */

		ret = 1;	/* Ready to be scrapped */
	}

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
	       ret);
#endif
	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Command completion interrupt.
 * Reclaim as many freed tx buffers as we can.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
	int nreaped = 0;

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
#endif

	/* Loop on all the transmit buffers */
	while (lp->tx_first_in_use != I82586NULL) {
		unsigned short tx_status;

		/* Read the first transmit buffer */
		obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
			   (unsigned char *) &tx_status,
			   sizeof(tx_status));

		/* If not completed -> exit */
		if ((tx_status & AC_SFLD_C) == 0)
			break;

		/* Hack for reconfiguration */
		if (tx_status == 0xFFFF)
			if (!wv_config_complete(dev, ioaddr, lp))
				break;	/* Not completed */

		/* We now remove this buffer */
		nreaped++;
		--lp->tx_n_in_use;

/*
if (lp->tx_n_in_use > 0)
	printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
*/

		/* Was it the last one? */
		if (lp->tx_n_in_use <= 0)
			lp->tx_first_in_use = I82586NULL;
		else {
			/* Next one in the chain */
			lp->tx_first_in_use += TXBLOCKZ;
			if (lp->tx_first_in_use >=
			    OFFSET_CU +
			    NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
				    NTXBLOCKS * TXBLOCKZ;
		}

		/* Hack for reconfiguration */
		if (tx_status == 0xFFFF)
			continue;

		/* Now, check status of the finished command */
		if (tx_status & AC_SFLD_OK) {
			int ncollisions;

			lp->stats.tx_packets++;
			ncollisions = tx_status & AC_SFLD_MAXCOL;
			lp->stats.collisions += ncollisions;
#ifdef DEBUG_TX_INFO
			if (ncollisions > 0)
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx completed after %d collisions.\n",
				       dev->name, ncollisions);
#endif
		} else {
			lp->stats.tx_errors++;
			if (tx_status & AC_SFLD_S10) {
				lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: no CS.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S9) {
				lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: lost CTS.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S8) {
				lp->stats.tx_fifo_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: slow DMA.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S6) {
				lp->stats.tx_heartbeat_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: heart beat.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S5) {
				lp->stats.tx_aborted_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: too many collisions.\n",
				       dev->name);
#endif
			}
		}

#ifdef DEBUG_TX_INFO
		printk(KERN_DEBUG
		       "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
		       dev->name, tx_status);
#endif
	}

#ifdef DEBUG_INTERRUPT_INFO
	if (nreaped > 1)
		printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
		       dev->name, nreaped);
#endif

	/*
	 * Inform upper layers.
	 */
	if (lp->tx_n_in_use < NTXBLOCKS - 1) {
		netif_wake_queue(dev);
	}
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
#endif
	return nreaped;
}

/*------------------------------------------------------------------*/
/*
 * Reconfigure the i82586, or at least ask for it.
 * Because wv_82586_config uses a transmission buffer, we must do it
 * when we are sure that there is one left, so we do it now
 * or in wavelan_packet_xmit() (I can't find any better place,
 * wavelan_interrupt is not an option), so you may experience
 * delays sometimes.
 */
static void wv_82586_reconfig(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;

	/* Arm the flag, will be cleard in wv_82586_config() */
	lp->reconfig_82586 = 1;

	/* Check if we can do it now ! */
	if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
		spin_lock_irqsave(&lp->spinlock, flags);
		/* May fail */
		wv_82586_config(dev);
		spin_unlock_irqrestore(&lp->spinlock, flags);
	}
	else {
#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
			       dev->name, dev->state);
#endif
	}
}

/********************* DEBUG & INFO SUBROUTINES *********************/
/*
 * This routine is used in the code to show information for debugging.
 * Most of the time, it dumps the contents of hardware structures.
 */

#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted contents of the Parameter Storage Area.
 */
static void wv_psa_show(psa_t * p)
{
	printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
	printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
	       p->psa_io_base_addr_1,
	       p->psa_io_base_addr_2,
	       p->psa_io_base_addr_3, p->psa_io_base_addr_4);
	printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
	       p->psa_rem_boot_addr_1,
	       p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
	printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
	printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG
	       "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	       p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
	       p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
	       p->psa_unused0[6]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG
	       "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
	       p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
	       p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
	       p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
	printk(KERN_DEBUG
	       "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
	       p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
	       p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
	       p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
	printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
	       p->psa_univ_local_sel);
	printk("psa_comp_number: %d, ", p->psa_comp_number);
	printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
	printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
	       p->psa_feature_select);
	printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
	printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
	printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
	printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
	       p->psa_nwid[1]);
	printk("psa_nwid_select: %d\n", p->psa_nwid_select);
	printk(KERN_DEBUG "psa_encryption_select: %d, ",
	       p->psa_encryption_select);
	printk
	    ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
	     p->psa_encryption_key[0], p->psa_encryption_key[1],
	     p->psa_encryption_key[2], p->psa_encryption_key[3],
	     p->psa_encryption_key[4], p->psa_encryption_key[5],
	     p->psa_encryption_key[6], p->psa_encryption_key[7]);
	printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
	printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
	       p->psa_call_code[0]);
	printk
	    ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	     p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
	     p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
	     p->psa_call_code[6], p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
	       p->psa_reserved[0],
	       p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
	printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
	printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
}				/* wv_psa_show */
#endif				/* DEBUG_PSA_SHOW */

#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the Modem Management Controller.
 * This function needs to be completed.
 */
static void wv_mmc_show(struct net_device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	mmr_t m;

	/* Basic check */
	if (hasr_read(ioaddr) & HASR_NO_CLK) {
		printk(KERN_WARNING
		       "%s: wv_mmc_show: modem not connected\n",
		       dev->name);
		return;
	}

	/* Read the mmc */
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
	mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

	/* Don't forget to update statistics */
	lp->wstats.discard.nwid +=
	    (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;

	printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG
	       "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	       m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
	       m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
	       m.mmr_unused0[6], m.mmr_unused0[7]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
	       m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
	       m.mmr_unused1[0],
	       m.mmr_unused1[1],
	       m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
	       m.mmr_dce_status,
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
	       "energy detected," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
	       "loop test indicated," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
	       "transmitter on," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
	       "jabber timer expired," : "");
	printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
	       m.mmr_unused2[0], m.mmr_unused2[1]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
	       (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
	       (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
	printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
	       m.mmr_thr_pre_set & MMR_THR_PRE_SET,
	       (m.
		mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
	       "below");
	printk(KERN_DEBUG "signal_lvl: %d [%s], ",
	       m.mmr_signal_lvl & MMR_SIGNAL_LVL,
	       (m.
		mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
	       "no new msg");
	printk("silence_lvl: %d [%s], ",
	       m.mmr_silence_lvl & MMR_SILENCE_LVL,
	       (m.
		mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
	       "no new update");
	printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
	       (m.
		mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
	       "Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif				/* DEBUG_SHOW_UNUSED */
}				/* wv_mmc_show */
#endif				/* DEBUG_MMC_SHOW */

#ifdef DEBUG_I82586_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the last block of the i82586 memory.
 */
static void wv_scb_show(unsigned long ioaddr)
{
	scb_t scb;

	obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
		   sizeof(scb));

	printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");

	printk(KERN_DEBUG "status: ");
	printk("stat 0x%x[%s%s%s%s] ",
	       (scb.
		scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
			      SCB_ST_RNR)) >> 12,
	       (scb.
		scb_status & SCB_ST_CX) ? "command completion interrupt," :
	       "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
	       (scb.
		scb_status & SCB_ST_CNA) ? "command unit not active," : "",
	       (scb.
		scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
	       "");
	printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_IDLE) ? "idle" : "",
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_SUSP) ? "suspended" : "",
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_ACTV) ? "active" : "");
	printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_IDLE) ? "idle" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_SUSP) ? "suspended" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_NRES) ? "no resources" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_RDY) ? "ready" : "");

	printk(KERN_DEBUG "command: ");
	printk("ack 0x%x[%s%s%s%s] ",
	       (scb.
		scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
			       SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
	       (scb.
		scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
	printk("cuc 0x%x[%s%s%s%s%s] ",
	       (scb.scb_command & SCB_CMD_CUC) >> 8,
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_NOP) ? "nop" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_RES) ? "resume execution" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_SUS) ? "suspend execution" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_ABT) ? "abort execution" : "");
	printk("ruc 0x%x[%s%s%s%s%s]\n",
	       (scb.scb_command & SCB_CMD_RUC) >> 4,
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_NOP) ? "nop" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_RES) ? "resume reception" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_SUS) ? "suspend reception" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_ABT) ? "abort reception" : "");

	printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
	printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);

	printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
	printk("alnerrs %d ", scb.scb_alnerrs);
	printk("rscerrs %d ", scb.scb_rscerrs);
	printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
}

/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the i82586's receive unit.
 */
static void wv_ru_show(struct net_device * dev)
{
	/* net_local *lp = (net_local *) dev->priv; */

	printk(KERN_DEBUG
	       "##### WaveLAN i82586 receiver unit status: #####\n");
	printk(KERN_DEBUG "ru:");
	/*
	 * Not implemented yet
	 */
	printk("\n");
}				/* wv_ru_show */

/*------------------------------------------------------------------*/
/*
 * Display info about one control block of the i82586 memory.
 */
static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
{
	unsigned long ioaddr;
	ac_tx_t actx;

	ioaddr = dev->base_addr;

	printk("%d: 0x%x:", i, p);

	obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
	printk(" status=0x%x,", actx.tx_h.ac_status);
	printk(" command=0x%x,", actx.tx_h.ac_command);

	/*
	   {
	   tbd_t      tbd;

	   obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
	   printk(" tbd_status=0x%x,", tbd.tbd_status);
	   }
	 */

	printk("|");
}

/*------------------------------------------------------------------*/
/*
 * Print status of the command unit of the i82586.
 */
static void wv_cu_show(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned int i;
	u16 p;

	printk(KERN_DEBUG
	       "##### WaveLAN i82586 command unit status: #####\n");

	printk(KERN_DEBUG);
	for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
		wv_cu_show_one(dev, lp, i, p);

		p += TXBLOCKZ;
		if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
			p -= NTXBLOCKS * TXBLOCKZ;
	}
	printk("\n");
}
#endif				/* DEBUG_I82586_SHOW */

#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver.
 */
static void wv_dev_show(struct net_device * dev)
{
	printk(KERN_DEBUG "dev:");
	printk(" state=%lX,", dev->state);
	printk(" trans_start=%ld,", dev->trans_start);
	printk(" flags=0x%x,", dev->flags);
	printk("\n");
}				/* wv_dev_show */

/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver's
 * private information.
 */
static void wv_local_show(struct net_device * dev)
{
	net_local *lp;

	lp = (net_local *) dev->priv;

	printk(KERN_DEBUG "local:");
	printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
	printk(" hacr=0x%x,", lp->hacr);
	printk(" rx_head=0x%x,", lp->rx_head);
	printk(" rx_last=0x%x,", lp->rx_last);
	printk(" tx_first_free=0x%x,", lp->tx_first_free);
	printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
	printk("\n");
}				/* wv_local_show */
#endif				/* DEBUG_DEVICE_SHOW */

#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
 * Dump packet header (and content if necessary) on the screen
 */
static inline void wv_packet_info(u8 * p,	/* Packet to dump */
				  int length,	/* Length of the packet */
				  char *msg1,	/* Name of the device */
				  char *msg2)
{				/* Name of the function */
	int i;
	int maxi;

	printk(KERN_DEBUG
	       "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
	       msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
	printk(KERN_DEBUG
	       "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
	       msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
	       p[13]);

#ifdef DEBUG_PACKET_DUMP

	printk(KERN_DEBUG "data=\"");

	if ((maxi = length) > DEBUG_PACKET_DUMP)
		maxi = DEBUG_PACKET_DUMP;
	for (i = 14; i < maxi; i++)
		if (p[i] >= ' ' && p[i] <= '~')
			printk(" %c", p[i]);
		else
			printk("%02X", p[i]);
	if (maxi < length)
		printk("..");
	printk("\"\n");
	printk(KERN_DEBUG "\n");
#endif				/* DEBUG_PACKET_DUMP */
}
#endif				/* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */

/*------------------------------------------------------------------*/
/*
 * This is the information which is displayed by the driver at startup.
 * There are lots of flags for configuring it to your liking.
 */
static void wv_init_info(struct net_device * dev)
{
	short ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	psa_t psa;
	int i;

	/* Read the parameter storage area */
	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));

#ifdef DEBUG_PSA_SHOW
	wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
	wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
	wv_cu_show(dev);
#endif

#ifdef DEBUG_BASIC_SHOW
	/* Now, let's go for the basic stuff. */
	printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
	for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
		printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
	printk(", IRQ %d", dev->irq);

	/* Print current network ID. */
	if (psa.psa_nwid_select)
		printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
		       psa.psa_nwid[1]);
	else
		printk(", nwid off");

	/* If 2.00 card */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		unsigned short freq;

		/* Ask the EEPROM to read the frequency from the first area. */
		fee_read(ioaddr, 0x00, &freq, 1);

		/* Print frequency */
		printk(", 2.00, %ld", (freq >> 6) + 2400L);

		/* Hack! */
		if (freq & 0x20)
			printk(".5");
	} else {
		printk(", PC");
		switch (psa.psa_comp_number) {
		case PSA_COMP_PC_AT_915:
		case PSA_COMP_PC_AT_2400:
			printk("-AT");
			break;
		case PSA_COMP_PC_MC_915:
		case PSA_COMP_PC_MC_2400:
			printk("-MC");
			break;
		case PSA_COMP_PCMCIA_915:
			printk("MCIA");
			break;
		default:
			printk("?");
		}
		printk(", ");
		switch (psa.psa_subband) {
		case PSA_SUBBAND_915:
			printk("915");
			break;
		case PSA_SUBBAND_2425:
			printk("2425");
			break;
		case PSA_SUBBAND_2460:
			printk("2460");
			break;
		case PSA_SUBBAND_2484:
			printk("2484");
			break;
		case PSA_SUBBAND_2430_5:
			printk("2430.5");
			break;
		default:
			printk("?");
		}
	}

	printk(" MHz\n");
#endif				/* DEBUG_BASIC_SHOW */

#ifdef DEBUG_VERSION_SHOW
	/* Print version information */
	printk(KERN_NOTICE "%s", version);
#endif
}				/* wv_init_info */

/********************* IOCTL, STATS & RECONFIG *********************/
/*
 * We found here routines that are called by Linux on different
 * occasions after the configuration and not for transmitting data
 * These may be called when the user use ifconfig, /proc/net/dev
 * or wireless extensions
 */

/*------------------------------------------------------------------*/
/*
 * Get the current Ethernet statistics. This may be called with the
 * card open or closed.
 * Used when the user read /proc/net/dev
 */
static en_stats *wavelan_get_stats(struct net_device * dev)
{
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
#endif

	return (&((net_local *) dev->priv)->stats);
}

/*------------------------------------------------------------------*/
/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1	Promiscuous mode, receive all packets
 * num_addrs == 0	Normal mode, clear multicast list
 * num_addrs > 0	Multicast mode, receive normal and MC packets,
 *			and do best-effort filtering.
 */
static void wavelan_set_multicast_list(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;

#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
	       dev->name);
#endif

#ifdef DEBUG_IOCTL_INFO
	printk(KERN_DEBUG
	       "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
	       dev->name, dev->flags, dev->mc_count);
#endif

	/* Are we asking for promiscuous mode,
	 * or all multicast addresses (we don't have that!)
	 * or too many multicast addresses for the hardware filter? */
	if ((dev->flags & IFF_PROMISC) ||
	    (dev->flags & IFF_ALLMULTI) ||
	    (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
		/*
		 * Enable promiscuous mode: receive all packets.
		 */
		if (!lp->promiscuous) {
			lp->promiscuous = 1;
			lp->mc_count = 0;

			wv_82586_reconfig(dev);

			/* Tell the kernel that we are doing a really bad job. */
			dev->flags |= IFF_PROMISC;
		}
	} else
		/* Are there multicast addresses to send? */
	if (dev->mc_list != (struct dev_mc_list *) NULL) {
		/*
		 * Disable promiscuous mode, but receive all packets
		 * in multicast list
		 */
#ifdef MULTICAST_AVOID
		if (lp->promiscuous || (dev->mc_count != lp->mc_count))
#endif
		{
			lp->promiscuous = 0;
			lp->mc_count = dev->mc_count;

			wv_82586_reconfig(dev);
		}
	} else {
		/*
		 * Switch to normal mode: disable promiscuous mode and 
		 * clear the multicast list.
		 */
		if (lp->promiscuous || lp->mc_count == 0) {
			lp->promiscuous = 0;
			lp->mc_count = 0;

			wv_82586_reconfig(dev);
		}
	}
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
	       dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * This function doesn't exist.
 * (Note : it was a nice way to test the reconfigure stuff...)
 */
#ifdef SET_MAC_ADDRESS
static int wavelan_set_mac_address(struct net_device * dev, void *addr)
{
	struct sockaddr *mac = addr;

	/* Copy the address. */
	memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);

	/* Reconfigure the beast. */
	wv_82586_reconfig(dev);

	return 0;
}
#endif				/* SET_MAC_ADDRESS */


/*------------------------------------------------------------------*/
/*
 * Frequency setting (for hardware capable of it)
 * It's a bit complicated and you don't really want to look into it.
 * (called in wavelan_ioctl)
 */
static int wv_set_frequency(unsigned long ioaddr,	/* I/O port of the card */
				   iw_freq * frequency)
{
	const int BAND_NUM = 10;	/* Number of bands */
	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
	int i;
#endif

	/* Setting by frequency */
	/* Theoretically, you may set any frequency between
	 * the two limits with a 0.5 MHz precision. In practice,
	 * I don't want you to have trouble with local regulations.
	 */
	if ((frequency->e == 1) &&
	    (frequency->m >= (int) 2.412e8)
	    && (frequency->m <= (int) 2.487e8)) {
		freq = ((frequency->m / 10000) - 24000L) / 5;
	}

	/* Setting by channel (same as wfreqsel) */
	/* Warning: each channel is 22 MHz wide, so some of the channels
	 * will interfere. */
	if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
		/* Get frequency offset. */
		freq = channel_bands[frequency->m] >> 1;
	}

	/* Verify that the frequency is allowed. */
	if (freq != 0L) {
		u16 table[10];	/* Authorized frequency table */

		/* Read the frequency table. */
		fee_read(ioaddr, 0x71, table, 10);

#ifdef DEBUG_IOCTL_INFO
		printk(KERN_DEBUG "Frequency table: ");
		for (i = 0; i < 10; i++) {
			printk(" %04X", table[i]);
		}
		printk("\n");
#endif

		/* Look in the table to see whether the frequency is allowed. */
		if (!(table[9 - ((freq - 24) / 16)] &
		      (1 << ((freq - 24) % 16)))) return -EINVAL;	/* not allowed */
	} else
		return -EINVAL;

	/* if we get a usable frequency */
	if (freq != 0L) {
		unsigned short area[16];
		unsigned short dac[2];
		unsigned short area_verify[16];
		unsigned short dac_verify[2];
		/* Corresponding gain (in the power adjust value table)
		 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
		 * and WCIN062D.DOC, page 6.2.9. */
		unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
		int power_band = 0;	/* Selected band */
		unsigned short power_adjust;	/* Correct value */

		/* Search for the gain. */
		power_band = 0;
		while ((freq > power_limit[power_band]) &&
		       (power_limit[++power_band] != 0));

		/* Read the first area. */
		fee_read(ioaddr, 0x00, area, 16);

		/* Read the DAC. */
		fee_read(ioaddr, 0x60, dac, 2);

		/* Read the new power adjust value. */
		fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
			 1);
		if (power_band & 0x1)
			power_adjust >>= 8;
		else
			power_adjust &= 0xFF;

#ifdef DEBUG_IOCTL_INFO
		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
		for (i = 0; i < 16; i++) {
			printk(" %04X", area[i]);
		}
		printk("\n");

		printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
		       dac[0], dac[1]);
#endif

		/* Frequency offset (for info only) */
		area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);

		/* Receiver Principle main divider coefficient */
		area[3] = (freq >> 1) + 2400L - 352L;
		area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);

		/* Transmitter Main divider coefficient */
		area[13] = (freq >> 1) + 2400L;
		area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);

		/* Other parts of the area are flags, bit streams or unused. */

		/* Set the value in the DAC. */
		dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
		dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);

		/* Write the first area. */
		fee_write(ioaddr, 0x00, area, 16);

		/* Write the DAC. */
		fee_write(ioaddr, 0x60, dac, 2);

		/* We now should verify here that the writing of the EEPROM went OK. */

		/* Reread the first area. */
		fee_read(ioaddr, 0x00, area_verify, 16);

		/* Reread the DAC. */
		fee_read(ioaddr, 0x60, dac_verify, 2);

		/* Compare. */
		if (memcmp(area, area_verify, 16 * 2) ||
		    memcmp(dac, dac_verify, 2 * 2)) {
#ifdef DEBUG_IOCTL_ERROR
			printk(KERN_INFO
			       "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
#endif
			return -EOPNOTSUPP;
		}

		/* We must download the frequency parameters to the
		 * synthesizers (from the EEPROM - area 1)
		 * Note: as the EEPROM is automatically decremented, we set the end
		 * if the area... */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);

		/* Wait until the download is finished. */
		fee_wait(ioaddr, 100, 100);

		/* We must now download the power adjust value (gain) to
		 * the synthesizers (from the EEPROM - area 7 - DAC). */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);

		/* Wait for the download to finish. */
		fee_wait(ioaddr, 100, 100);

#ifdef DEBUG_IOCTL_INFO
		/* Verification of what we have done */

		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
		for (i = 0; i < 16; i++) {
			printk(" %04X", area_verify[i]);
		}
		printk("\n");

		printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
		       dac_verify[0], dac_verify[1]);
#endif

		return 0;
	} else
		return -EINVAL;	/* Bah, never get there... */
}

/*------------------------------------------------------------------*/
/*
 * Give the list of available frequencies.
 */
static int wv_frequency_list(unsigned long ioaddr,	/* I/O port of the card */
				    iw_freq * list,	/* List of frequencies to fill */
				    int max)
{				/* Maximum number of frequencies */
	u16 table[10];	/* Authorized frequency table */
	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz + 12 MHz */
	int i;			/* index in the table */
	int c = 0;		/* Channel number */

	/* Read the frequency table. */
	fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);

	/* Check all frequencies. */
	i = 0;
	for (freq = 0; freq < 150; freq++)
		/* Look in the table if the frequency is allowed */
		if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
			/* Compute approximate channel number */
			while ((c < ARRAY_SIZE(channel_bands)) &&
				(((channel_bands[c] >> 1) - 24) < freq)) 
				c++;
			list[i].i = c;	/* Set the list index */

			/* put in the list */
			list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
			list[i++].e = 1;

			/* Check number. */
			if (i >= max)
				return (i);
		}

	return (i);
}

#ifdef IW_WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
 * Gather wireless spy statistics:  for each packet, compare the source
 * address with our list, and if they match, get the statistics.
 * Sorry, but this function really needs the wireless extensions.
 */
static inline void wl_spy_gather(struct net_device * dev,
				 u8 *	mac,	/* MAC address */
				 u8 *	stats)	/* Statistics to gather */
{
	struct iw_quality wstats;

	wstats.qual = stats[2] & MMR_SGNL_QUAL;
	wstats.level = stats[0] & MMR_SIGNAL_LVL;
	wstats.noise = stats[1] & MMR_SILENCE_LVL;
	wstats.updated = 0x7;

	/* Update spy records */
	wireless_spy_update(dev, mac, &wstats);
}
#endif /* IW_WIRELESS_SPY */

#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
 * This function calculates a histogram of the signal level.
 * As the noise is quite constant, it's like doing it on the SNR.
 * We have defined a set of interval (lp->his_range), and each time
 * the level goes in that interval, we increment the count (lp->his_sum).
 * With this histogram you may detect if one WaveLAN is really weak,
 * or you may also calculate the mean and standard deviation of the level.
 */
static inline void wl_his_gather(struct net_device * dev, u8 * stats)
{				/* Statistics to gather */
	net_local *lp = (net_local *) dev->priv;
	u8 level = stats[0] & MMR_SIGNAL_LVL;
	int i;

	/* Find the correct interval. */
	i = 0;
	while ((i < (lp->his_number - 1))
	       && (level >= lp->his_range[i++]));

	/* Increment interval counter. */
	(lp->his_sum[i])++;
}
#endif /* HISTOGRAM */

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get protocol name
 */
static int wavelan_get_name(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	strcpy(wrqu->name, "WaveLAN");
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set NWID
 */
static int wavelan_set_nwid(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	mm_t m;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Set NWID in WaveLAN. */
	if (!wrqu->nwid.disabled) {
		/* Set NWID in psa */
		psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
		psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
		psa.psa_nwid_select = 0x01;
		psa_write(ioaddr, lp->hacr,
			  (char *) psa.psa_nwid - (char *) &psa,
			  (unsigned char *) psa.psa_nwid, 3);

		/* Set NWID in mmc. */
		m.w.mmw_netw_id_l = psa.psa_nwid[1];
		m.w.mmw_netw_id_h = psa.psa_nwid[0];
		mmc_write(ioaddr,
			  (char *) &m.w.mmw_netw_id_l -
			  (char *) &m,
			  (unsigned char *) &m.w.mmw_netw_id_l, 2);
		mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
	} else {
		/* Disable NWID in the psa. */
		psa.psa_nwid_select = 0x00;
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_nwid_select -
			  (char *) &psa,
			  (unsigned char *) &psa.psa_nwid_select,
			  1);

		/* Disable NWID in the mmc (no filtering). */
		mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
			MMW_LOOPT_SEL_DIS_NWID);
	}
	/* update the Wavelan checksum */
	update_psa_checksum(dev, ioaddr, lp->hacr);

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get NWID 
 */
static int wavelan_get_nwid(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Read the NWID. */
	psa_read(ioaddr, lp->hacr,
		 (char *) psa.psa_nwid - (char *) &psa,
		 (unsigned char *) psa.psa_nwid, 3);
	wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
	wrqu->nwid.disabled = !(psa.psa_nwid_select);
	wrqu->nwid.fixed = 1;	/* Superfluous */

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set frequency
 */
static int wavelan_set_freq(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	unsigned long flags;
	int ret;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
		ret = wv_set_frequency(ioaddr, &(wrqu->freq));
	else
		ret = -EOPNOTSUPP;

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get frequency
 */
static int wavelan_get_freq(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
	 * Does it work for everybody, especially old cards? */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		unsigned short freq;

		/* Ask the EEPROM to read the frequency from the first area. */
		fee_read(ioaddr, 0x00, &freq, 1);
		wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
		wrqu->freq.e = 1;
	} else {
		psa_read(ioaddr, lp->hacr,
			 (char *) &psa.psa_subband - (char *) &psa,
			 (unsigned char *) &psa.psa_subband, 1);

		if (psa.psa_subband <= 4) {
			wrqu->freq.m = fixed_bands[psa.psa_subband];
			wrqu->freq.e = (psa.psa_subband != 0);
		} else
			ret = -EOPNOTSUPP;
	}

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set level threshold
 */
static int wavelan_set_sens(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Set the level threshold. */
	/* We should complain loudly if wrqu->sens.fixed = 0, because we
	 * can't set auto mode... */
	psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
	psa_write(ioaddr, lp->hacr,
		  (char *) &psa.psa_thr_pre_set - (char *) &psa,
		  (unsigned char *) &psa.psa_thr_pre_set, 1);
	/* update the Wavelan checksum */
	update_psa_checksum(dev, ioaddr, lp->hacr);
	mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
		psa.psa_thr_pre_set);

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get level threshold
 */
static int wavelan_get_sens(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Read the level threshold. */
	psa_read(ioaddr, lp->hacr,
		 (char *) &psa.psa_thr_pre_set - (char *) &psa,
		 (unsigned char *) &psa.psa_thr_pre_set, 1);
	wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
	wrqu->sens.fixed = 1;

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : set encryption key
 */
static int wavelan_set_encode(struct net_device *dev,
			      struct iw_request_info *info,
			      union iwreq_data *wrqu,
			      char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	unsigned long flags;
	psa_t psa;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);

	/* Check if capable of encryption */
	if (!mmc_encr(ioaddr)) {
		ret = -EOPNOTSUPP;
	}

	/* Check the size of the key */
	if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
		ret = -EINVAL;
	}

	if(!ret) {
		/* Basic checking... */
		if (wrqu->encoding.length == 8) {
			/* Copy the key in the driver */
			memcpy(psa.psa_encryption_key, extra,
			       wrqu->encoding.length);
			psa.psa_encryption_select = 1;

			psa_write(ioaddr, lp->hacr,
				  (char *) &psa.psa_encryption_select -
				  (char *) &psa,
				  (unsigned char *) &psa.
				  psa_encryption_select, 8 + 1);

			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
				MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
			mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
				  (unsigned char *) &psa.
				  psa_encryption_key, 8);
		}

		/* disable encryption */
		if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
			psa.psa_encryption_select = 0;
			psa_write(ioaddr, lp->hacr,
				  (char *) &psa.psa_encryption_select -
				  (char *) &psa,
				  (unsigned char *) &psa.
				  psa_encryption_select, 1);

			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
		}
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
	}

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get encryption key
 */
static int wavelan_get_encode(struct net_device *dev,
			      struct iw_request_info *info,
			      union iwreq_data *wrqu,
			      char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;
	int ret = 0;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Check if encryption is available */
	if (!mmc_encr(ioaddr)) {
		ret = -EOPNOTSUPP;
	} else {
		/* Read the encryption key */
		psa_read(ioaddr, lp->hacr,
			 (char *) &psa.psa_encryption_select -
			 (char *) &psa,
			 (unsigned char *) &psa.
			 psa_encryption_select, 1 + 8);

		/* encryption is enabled ? */
		if (psa.psa_encryption_select)
			wrqu->encoding.flags = IW_ENCODE_ENABLED;
		else
			wrqu->encoding.flags = IW_ENCODE_DISABLED;
		wrqu->encoding.flags |= mmc_encr(ioaddr);

		/* Copy the key to the user buffer */
		wrqu->encoding.length = 8;
		memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
	}

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Handler : get range info
 */
static int wavelan_get_range(struct net_device *dev,
			     struct iw_request_info *info,
			     union iwreq_data *wrqu,
			     char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	struct iw_range *range = (struct iw_range *) extra;
	unsigned long flags;
	int ret = 0;

	/* Set the length (very important for backward compatibility) */
	wrqu->data.length = sizeof(struct iw_range);

	/* Set all the info we don't care or don't know about to zero */
	memset(range, 0, sizeof(struct iw_range));

	/* Set the Wireless Extension versions */
	range->we_version_compiled = WIRELESS_EXT;
	range->we_version_source = 9;

	/* Set information in the range struct.  */
	range->throughput = 1.6 * 1000 * 1000;	/* don't argue on this ! */
	range->min_nwid = 0x0000;
	range->max_nwid = 0xFFFF;

	range->sensitivity = 0x3F;
	range->max_qual.qual = MMR_SGNL_QUAL;
	range->max_qual.level = MMR_SIGNAL_LVL;
	range->max_qual.noise = MMR_SILENCE_LVL;
	range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
	/* Need to get better values for those two */
	range->avg_qual.level = 30;
	range->avg_qual.noise = 8;

	range->num_bitrates = 1;
	range->bitrate[0] = 2000000;	/* 2 Mb/s */

	/* Event capability (kernel + driver) */
	range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
				IW_EVENT_CAPA_MASK(0x8B04));
	range->event_capa[1] = IW_EVENT_CAPA_K_1;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		range->num_channels = 10;
		range->num_frequency = wv_frequency_list(ioaddr, range->freq,
							IW_MAX_FREQUENCIES);
	} else
		range->num_channels = range->num_frequency = 0;

	/* Encryption supported ? */
	if (mmc_encr(ioaddr)) {
		range->encoding_size[0] = 8;	/* DES = 64 bits key */
		range->num_encoding_sizes = 1;
		range->max_encoding_tokens = 1;	/* Only one key possible */
	} else {
		range->num_encoding_sizes = 0;
		range->max_encoding_tokens = 0;
	}

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : set quality threshold
 */
static int wavelan_set_qthr(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	psa.psa_quality_thr = *(extra) & 0x0F;
	psa_write(ioaddr, lp->hacr,
		  (char *) &psa.psa_quality_thr - (char *) &psa,
		  (unsigned char *) &psa.psa_quality_thr, 1);
	/* update the Wavelan checksum */
	update_psa_checksum(dev, ioaddr, lp->hacr);
	mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
		psa.psa_quality_thr);

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : get quality threshold
 */
static int wavelan_get_qthr(struct net_device *dev,
			    struct iw_request_info *info,
			    union iwreq_data *wrqu,
			    char *extra)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	psa_t psa;
	unsigned long flags;

	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	psa_read(ioaddr, lp->hacr,
		 (char *) &psa.psa_quality_thr - (char *) &psa,
		 (unsigned char *) &psa.psa_quality_thr, 1);
	*(extra) = psa.psa_quality_thr & 0x0F;

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

	return 0;
}

#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : set histogram
 */
static int wavelan_set_histo(struct net_device *dev,
			     struct iw_request_info *info,
			     union iwreq_data *wrqu,
			     char *extra)
{
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */

	/* Check the number of intervals. */
	if (wrqu->data.length > 16) {
		return(-E2BIG);
	}

	/* Disable histo while we copy the addresses.
	 * As we don't disable interrupts, we need to do this */
	lp->his_number = 0;

	/* Are there ranges to copy? */
	if (wrqu->data.length > 0) {
		/* Copy interval ranges to the driver */
		memcpy(lp->his_range, extra, wrqu->data.length);

		{
		  int i;
		  printk(KERN_DEBUG "Histo :");
		  for(i = 0; i < wrqu->data.length; i++)
		    printk(" %d", lp->his_range[i]);
		  printk("\n");
		}

		/* Reset result structure. */
		memset(lp->his_sum, 0x00, sizeof(long) * 16);
	}

	/* Now we can set the number of ranges */
	lp->his_number = wrqu->data.length;

	return(0);
}

/*------------------------------------------------------------------*/
/*
 * Wireless Private Handler : get histogram
 */
static int wavelan_get_histo(struct net_device *dev,
			     struct iw_request_info *info,
			     union iwreq_data *wrqu,
			     char *extra)
{
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */

	/* Set the number of intervals. */
	wrqu->data.length = lp->his_number;

	/* Give back the distribution statistics */
	if(lp->his_number > 0)
		memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);

	return(0);
}
#endif			/* HISTOGRAM */

/*------------------------------------------------------------------*/
/*
 * Structures to export the Wireless Handlers
 */

static const iw_handler		wavelan_handler[] =
{
	NULL,				/* SIOCSIWNAME */
	wavelan_get_name,		/* SIOCGIWNAME */
	wavelan_set_nwid,		/* SIOCSIWNWID */
	wavelan_get_nwid,		/* SIOCGIWNWID */
	wavelan_set_freq,		/* SIOCSIWFREQ */
	wavelan_get_freq,		/* SIOCGIWFREQ */
	NULL,				/* SIOCSIWMODE */
	NULL,				/* SIOCGIWMODE */
	wavelan_set_sens,		/* SIOCSIWSENS */
	wavelan_get_sens,		/* SIOCGIWSENS */
	NULL,				/* SIOCSIWRANGE */
	wavelan_get_range,		/* SIOCGIWRANGE */
	NULL,				/* SIOCSIWPRIV */
	NULL,				/* SIOCGIWPRIV */
	NULL,				/* SIOCSIWSTATS */
	NULL,				/* SIOCGIWSTATS */
	iw_handler_set_spy,		/* SIOCSIWSPY */
	iw_handler_get_spy,		/* SIOCGIWSPY */
	iw_handler_set_thrspy,		/* SIOCSIWTHRSPY */
	iw_handler_get_thrspy,		/* SIOCGIWTHRSPY */
	NULL,				/* SIOCSIWAP */
	NULL,				/* SIOCGIWAP */
	NULL,				/* -- hole -- */
	NULL,				/* SIOCGIWAPLIST */
	NULL,				/* -- hole -- */
	NULL,				/* -- hole -- */
	NULL,				/* SIOCSIWESSID */
	NULL,				/* SIOCGIWESSID */
	NULL,				/* SIOCSIWNICKN */
	NULL,				/* SIOCGIWNICKN */
	NULL,				/* -- hole -- */
	NULL,				/* -- hole -- */
	NULL,				/* SIOCSIWRATE */
	NULL,				/* SIOCGIWRATE */
	NULL,				/* SIOCSIWRTS */
	NULL,				/* SIOCGIWRTS */
	NULL,				/* SIOCSIWFRAG */
	NULL,				/* SIOCGIWFRAG */
	NULL,				/* SIOCSIWTXPOW */
	NULL,				/* SIOCGIWTXPOW */
	NULL,				/* SIOCSIWRETRY */
	NULL,				/* SIOCGIWRETRY */
	/* Bummer ! Why those are only at the end ??? */
	wavelan_set_encode,		/* SIOCSIWENCODE */
	wavelan_get_encode,		/* SIOCGIWENCODE */
};

static const iw_handler		wavelan_private_handler[] =
{
	wavelan_set_qthr,		/* SIOCIWFIRSTPRIV */
	wavelan_get_qthr,		/* SIOCIWFIRSTPRIV + 1 */
#ifdef HISTOGRAM
	wavelan_set_histo,		/* SIOCIWFIRSTPRIV + 2 */
	wavelan_get_histo,		/* SIOCIWFIRSTPRIV + 3 */
#endif	/* HISTOGRAM */
};

static const struct iw_priv_args wavelan_private_args[] = {
/*{ cmd,         set_args,                            get_args, name } */
  { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
  { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
  { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
  { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
};

static const struct iw_handler_def	wavelan_handler_def =
{
	.num_standard	= ARRAY_SIZE(wavelan_handler),
	.num_private	= ARRAY_SIZE(wavelan_private_handler),
	.num_private_args = ARRAY_SIZE(wavelan_private_args),
	.standard	= wavelan_handler,
	.private	= wavelan_private_handler,
	.private_args	= wavelan_private_args,
	.get_wireless_stats = wavelan_get_wireless_stats,
};

/*------------------------------------------------------------------*/
/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 */
static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	mmr_t m;
	iw_stats *wstats;
	unsigned long flags;

#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
	       dev->name);
#endif

	/* Check */
	if (lp == (net_local *) NULL)
		return (iw_stats *) NULL;
	
	/* Disable interrupts and save flags. */
	spin_lock_irqsave(&lp->spinlock, flags);
	
	wstats = &lp->wstats;

	/* Get data from the mmc. */
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);

	mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
	mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
		 2);
	mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
		 4);

	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

	/* Copy data to wireless stuff. */
	wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
	wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
	wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
	wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
	wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
			| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
			| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
	wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
	wstats->discard.code = 0L;
	wstats->discard.misc = 0L;

	/* Enable interrupts and restore flags. */
	spin_unlock_irqrestore(&lp->spinlock, flags);

#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
	       dev->name);
#endif
	return &lp->wstats;
}

/************************* PACKET RECEPTION *************************/
/*
 * This part deals with receiving the packets.
 * The interrupt handler gets an interrupt when a packet has been
 * successfully received and calls this part.
 */

/*------------------------------------------------------------------*/
/*
 * This routine does the actual copying of data (including the Ethernet
 * header structure) from the WaveLAN card to an sk_buff chain that
 * will be passed up to the network interface layer. NOTE: we
 * currently don't handle trailer protocols (neither does the rest of
 * the network interface), so if that is needed, it will (at least in
 * part) be added here.  The contents of the receive ring buffer are
 * copied to a message chain that is then passed to the kernel.
 *
 * Note: if any errors occur, the packet is "dropped on the floor".
 * (called by wv_packet_rcv())
 */
static void
wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	struct sk_buff *skb;

#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
	       dev->name, buf_off, sksize);
#endif

	/* Allocate buffer for the data */
	if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
#ifdef DEBUG_RX_ERROR
		printk(KERN_INFO
		       "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
		       dev->name, sksize);
#endif
		lp->stats.rx_dropped++;
		return;
	}

	/* Copy the packet to the buffer. */
	obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
	skb->protocol = eth_type_trans(skb, dev);

#ifdef DEBUG_RX_INFO
	wv_packet_info(skb_mac_header(skb), sksize, dev->name,
		       "wv_packet_read");
#endif				/* DEBUG_RX_INFO */

	/* Statistics-gathering and associated stuff.
	 * It seem a bit messy with all the define, but it's really
	 * simple... */
	if (
#ifdef IW_WIRELESS_SPY		/* defined in iw_handler.h */
		   (lp->spy_data.spy_number > 0) ||
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
		   (lp->his_number > 0) ||
#endif /* HISTOGRAM */
		   0) {
		u8 stats[3];	/* signal level, noise level, signal quality */

		/* Read signal level, silence level and signal quality bytes */
		/* Note: in the PCMCIA hardware, these are part of the frame.
		 * It seems that for the ISA hardware, it's nowhere to be
		 * found in the frame, so I'm obliged to do this (it has a
		 * side effect on /proc/net/wireless).
		 * Any ideas?
		 */
		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
		mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);

#ifdef DEBUG_RX_INFO
		printk(KERN_DEBUG
		       "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
		       dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
		       stats[2] & 0x0F);
#endif

		/* Spying stuff */
#ifdef IW_WIRELESS_SPY
		wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
			      stats);
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
		wl_his_gather(dev, stats);
#endif /* HISTOGRAM */
	}

	/*
	 * Hand the packet to the network module.
	 */
	netif_rx(skb);

	/* Keep statistics up to date */
	dev->last_rx = jiffies;
	lp->stats.rx_packets++;
	lp->stats.rx_bytes += sksize;

#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Transfer as many packets as we can
 * from the device RAM.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static void wv_receive(struct net_device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	fd_t fd;
	rbd_t rbd;
	int nreaped = 0;

#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
#endif

	/* Loop on each received packet. */
	for (;;) {
		obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
			   sizeof(fd));

		/* Note about the status :
		 * It start up to be 0 (the value we set). Then, when the RU
		 * grab the buffer to prepare for reception, it sets the
		 * FD_STATUS_B flag. When the RU has finished receiving the
		 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
		 * completion and set the other flags to indicate the eventual
		 * errors. FD_STATUS_OK indicates that the reception was OK.
		 */

		/* If the current frame is not complete, we have reached the end. */
		if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
			break;	/* This is how we exit the loop. */

		nreaped++;

		/* Check whether frame was correctly received. */
		if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
			/* Does the frame contain a pointer to the data?  Let's check. */
			if (fd.fd_rbd_offset != I82586NULL) {
				/* Read the receive buffer descriptor */
				obram_read(ioaddr, fd.fd_rbd_offset,
					   (unsigned char *) &rbd,
					   sizeof(rbd));

#ifdef DEBUG_RX_ERROR
				if ((rbd.rbd_status & RBD_STATUS_EOF) !=
				    RBD_STATUS_EOF) printk(KERN_INFO
							   "%s: wv_receive(): missing EOF flag.\n",
							   dev->name);

				if ((rbd.rbd_status & RBD_STATUS_F) !=
				    RBD_STATUS_F) printk(KERN_INFO
							 "%s: wv_receive(): missing F flag.\n",
							 dev->name);
#endif				/* DEBUG_RX_ERROR */

				/* Read the packet and transmit to Linux */
				wv_packet_read(dev, rbd.rbd_bufl,
					       rbd.
					       rbd_status &
					       RBD_STATUS_ACNT);
			}
#ifdef DEBUG_RX_ERROR
			else	/* if frame has no data */
				printk(KERN_INFO
				       "%s: wv_receive(): frame has no data.\n",
				       dev->name);
#endif
		} else {	/* If reception was no successful */

			lp->stats.rx_errors++;

#ifdef DEBUG_RX_INFO
			printk(KERN_DEBUG
			       "%s: wv_receive(): frame not received successfully (%X).\n",
			       dev->name, fd.fd_status);
#endif

#ifdef DEBUG_RX_ERROR
			if ((fd.fd_status & FD_STATUS_S6) != 0)
				printk(KERN_INFO
				       "%s: wv_receive(): no EOF flag.\n",
				       dev->name);
#endif

			if ((fd.fd_status & FD_STATUS_S7) != 0) {
				lp->stats.rx_length_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): frame too short.\n",
				       dev->name);
#endif
			}

			if ((fd.fd_status & FD_STATUS_S8) != 0) {
				lp->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): rx DMA overrun.\n",
				       dev->name);
#endif
			}

			if ((fd.fd_status & FD_STATUS_S9) != 0) {
				lp->stats.rx_fifo_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): ran out of resources.\n",
				       dev->name);
#endif
			}

			if ((fd.fd_status & FD_STATUS_S10) != 0) {
				lp->stats.rx_frame_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): alignment error.\n",
				       dev->name);
#endif
			}

			if ((fd.fd_status & FD_STATUS_S11) != 0) {
				lp->stats.rx_crc_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): CRC error.\n",
				       dev->name);
#endif
			}
		}

		fd.fd_status = 0;
		obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
			    (unsigned char *) &fd.fd_status,
			    sizeof(fd.fd_status));

		fd.fd_command = FD_COMMAND_EL;
		obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
			    (unsigned char *) &fd.fd_command,
			    sizeof(fd.fd_command));

		fd.fd_command = 0;
		obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
			    (unsigned char *) &fd.fd_command,
			    sizeof(fd.fd_command));

		lp->rx_last = lp->rx_head;
		lp->rx_head = fd.fd_link_offset;
	}			/* for(;;) -> loop on all frames */

#ifdef DEBUG_RX_INFO
	if (nreaped > 1)
		printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
		       dev->name, nreaped);
#endif
#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
#endif
}

/*********************** PACKET TRANSMISSION ***********************/
/*
 * This part deals with sending packets through the WaveLAN.
 *
 */

/*------------------------------------------------------------------*/
/*
 * This routine fills in the appropriate registers and memory
 * locations on the WaveLAN card and starts the card off on
 * the transmit.
 *
 * The principle:
 * Each block contains a transmit command, a NOP command,
 * a transmit block descriptor and a buffer.
 * The CU read the transmit block which point to the tbd,
 * read the tbd and the content of the buffer.
 * When it has finish with it, it goes to the next command
 * which in our case is the NOP. The NOP points on itself,
 * so the CU stop here.
 * When we add the next block, we modify the previous nop
 * to make it point on the new tx command.
 * Simple, isn't it ?
 *
 * (called in wavelan_packet_xmit())
 */
static int wv_packet_write(struct net_device * dev, void *buf, short length)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	unsigned short txblock;
	unsigned short txpred;
	unsigned short tx_addr;
	unsigned short nop_addr;
	unsigned short tbd_addr;
	unsigned short buf_addr;
	ac_tx_t tx;
	ac_nop_t nop;
	tbd_t tbd;
	int clen = length;
	unsigned long flags;

#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
	       length);
#endif

	spin_lock_irqsave(&lp->spinlock, flags);

	/* Check nothing bad has happened */
	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_TX_ERROR
		printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
		       dev->name);
#endif
		spin_unlock_irqrestore(&lp->spinlock, flags);
		return 1;
	}

	/* Calculate addresses of next block and previous block. */
	txblock = lp->tx_first_free;
	txpred = txblock - TXBLOCKZ;
	if (txpred < OFFSET_CU)
		txpred += NTXBLOCKS * TXBLOCKZ;
	lp->tx_first_free += TXBLOCKZ;
	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;

	lp->tx_n_in_use++;

	/* Calculate addresses of the different parts of the block. */
	tx_addr = txblock;
	nop_addr = tx_addr + sizeof(tx);
	tbd_addr = nop_addr + sizeof(nop);
	buf_addr = tbd_addr + sizeof(tbd);

	/*
	 * Transmit command
	 */
	tx.tx_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
		    (unsigned char *) &tx.tx_h.ac_status,
		    sizeof(tx.tx_h.ac_status));

	/*
	 * NOP command
	 */
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = nop_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));

	/*
	 * Transmit buffer descriptor
	 */
	tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
	tbd.tbd_next_bd_offset = I82586NULL;
	tbd.tbd_bufl = buf_addr;
	tbd.tbd_bufh = 0;
	obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));

	/*
	 * Data
	 */
	obram_write(ioaddr, buf_addr, buf, length);

	/*
	 * Overwrite the predecessor NOP link
	 * so that it points to this txblock.
	 */
	nop_addr = txpred + sizeof(tx);
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = txblock;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));

	/* Make sure the watchdog will keep quiet for a while */
	dev->trans_start = jiffies;

	/* Keep stats up to date. */
	lp->stats.tx_bytes += length;

	if (lp->tx_first_in_use == I82586NULL)
		lp->tx_first_in_use = txblock;

	if (lp->tx_n_in_use < NTXBLOCKS - 1)
		netif_wake_queue(dev);

	spin_unlock_irqrestore(&lp->spinlock, flags);
	
#ifdef DEBUG_TX_INFO
	wv_packet_info((u8 *) buf, length, dev->name,
		       "wv_packet_write");
#endif				/* DEBUG_TX_INFO */

#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif

	return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine is called when we want to send a packet (NET3 callback)
 * In this routine, we check if the harware is ready to accept
 * the packet.  We also prevent reentrance.  Then we call the function
 * to send the packet.
 */
static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;
	char data[ETH_ZLEN];

#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
	       (unsigned) skb);
#endif

	/*
	 * Block a timer-based transmit from overlapping.
	 * In other words, prevent reentering this routine.
	 */
	netif_stop_queue(dev);

	/* If somebody has asked to reconfigure the controller, 
	 * we can do it now.
	 */
	if (lp->reconfig_82586) {
		spin_lock_irqsave(&lp->spinlock, flags);
		wv_82586_config(dev);
		spin_unlock_irqrestore(&lp->spinlock, flags);
		/* Check that we can continue */
		if (lp->tx_n_in_use == (NTXBLOCKS - 1))
			return 1;
	}
#ifdef DEBUG_TX_ERROR
	if (skb->next)
		printk(KERN_INFO "skb has next\n");
#endif

	/* Do we need some padding? */
	/* Note : on wireless the propagation time is in the order of 1us,
	 * and we don't have the Ethernet specific requirement of beeing
	 * able to detect collisions, therefore in theory we don't really
	 * need to pad. Jean II */
	if (skb->len < ETH_ZLEN) {
		memset(data, 0, ETH_ZLEN);
		skb_copy_from_linear_data(skb, data, skb->len);
		/* Write packet on the card */
		if(wv_packet_write(dev, data, ETH_ZLEN))
			return 1;	/* We failed */
	}
	else if(wv_packet_write(dev, skb->data, skb->len))
		return 1;	/* We failed */


	dev_kfree_skb(skb);

#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
	return 0;
}

/*********************** HARDWARE CONFIGURATION ***********************/
/*
 * This part does the real job of starting and configuring the hardware.
 */

/*--------------------------------------------------------------------*/
/*
 * Routine to initialize the Modem Management Controller.
 * (called by wv_hw_reset())
 */
static int wv_mmc_init(struct net_device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	psa_t psa;
	mmw_t m;
	int configured;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif

	/* Read the parameter storage area. */
	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));

#ifdef USE_PSA_CONFIG
	configured = psa.psa_conf_status & 1;
#else
	configured = 0;
#endif

	/* Is the PSA is not configured */
	if (!configured) {
		/* User will be able to configure NWID later (with iwconfig). */
		psa.psa_nwid[0] = 0;
		psa.psa_nwid[1] = 0;

		/* no NWID checking since NWID is not set */
		psa.psa_nwid_select = 0;

		/* Disable encryption */
		psa.psa_encryption_select = 0;

		/* Set to standard values:
		 * 0x04 for AT,
		 * 0x01 for MCA,
		 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
		 */
		if (psa.psa_comp_number & 1)
			psa.psa_thr_pre_set = 0x01;
		else
			psa.psa_thr_pre_set = 0x04;
		psa.psa_quality_thr = 0x03;

		/* It is configured */
		psa.psa_conf_status |= 1;

#ifdef USE_PSA_CONFIG
		/* Write the psa. */
		psa_write(ioaddr, lp->hacr,
			  (char *) psa.psa_nwid - (char *) &psa,
			  (unsigned char *) psa.psa_nwid, 4);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_thr_pre_set - (char *) &psa,
			  (unsigned char *) &psa.psa_thr_pre_set, 1);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_quality_thr - (char *) &psa,
			  (unsigned char *) &psa.psa_quality_thr, 1);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_conf_status - (char *) &psa,
			  (unsigned char *) &psa.psa_conf_status, 1);
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
#endif
	}

	/* Zero the mmc structure. */
	memset(&m, 0x00, sizeof(m));

	/* Copy PSA info to the mmc. */
	m.mmw_netw_id_l = psa.psa_nwid[1];
	m.mmw_netw_id_h = psa.psa_nwid[0];

	if (psa.psa_nwid_select & 1)
		m.mmw_loopt_sel = 0x00;
	else
		m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;

	memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
	       sizeof(m.mmw_encr_key));

	if (psa.psa_encryption_select)
		m.mmw_encr_enable =
		    MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
	else
		m.mmw_encr_enable = 0;

	m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
	m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;

	/*
	 * Set default modem control parameters.
	 * See NCR document 407-0024326 Rev. A.
	 */
	m.mmw_jabber_enable = 0x01;
	m.mmw_freeze = 0;
	m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
	m.mmw_ifs = 0x20;
	m.mmw_mod_delay = 0x04;
	m.mmw_jam_time = 0x38;

	m.mmw_des_io_invert = 0;
	m.mmw_decay_prm = 0;
	m.mmw_decay_updat_prm = 0;

	/* Write all info to MMC. */
	mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));

	/* The following code starts the modem of the 2.00 frequency
	 * selectable cards at power on.  It's not strictly needed for the
	 * following boots.
	 * The original patch was by Joe Finney for the PCMCIA driver, but
	 * I've cleaned it up a bit and added documentation.
	 * Thanks to Loeke Brederveld from Lucent for the info.
	 */

	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
	 * Does it work for everybody, especially old cards? */
	/* Note: WFREQSEL verifies that it is able to read a sensible
	 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
	 * is 0xA (Xilinx version) or 0xB (Ariadne version).
	 * My test is more crude but does work. */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		/* We must download the frequency parameters to the
		 * synthesizers (from the EEPROM - area 1)
		 * Note: as the EEPROM is automatically decremented, we set the end
		 * if the area... */
		m.mmw_fee_addr = 0x0F;
		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
			  (unsigned char *) &m.mmw_fee_ctrl, 2);

		/* Wait until the download is finished. */
		fee_wait(ioaddr, 100, 100);

#ifdef DEBUG_CONFIG_INFO
		/* The frequency was in the last word downloaded. */
		mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
			 (unsigned char *) &m.mmw_fee_data_l, 2);

		/* Print some info for the user. */
		printk(KERN_DEBUG
		       "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
		       dev->name,
		       ((m.
			 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
		       5 / 2 + 24000L);
#endif

		/* We must now download the power adjust value (gain) to
		 * the synthesizers (from the EEPROM - area 7 - DAC). */
		m.mmw_fee_addr = 0x61;
		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
			  (unsigned char *) &m.mmw_fee_ctrl, 2);

		/* Wait until the download is finished. */
	}
	/* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Construct the fd and rbd structures.
 * Start the receive unit.
 * (called by wv_hw_reset())
 */
static int wv_ru_start(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cs;
	fd_t fd;
	rbd_t rbd;
	u16 rx;
	u16 rx_next;
	int i;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif

	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &scb_cs, sizeof(scb_cs));
	if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
		return 0;

	lp->rx_head = OFFSET_RU;

	for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
		rx_next =
		    (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;

		fd.fd_status = 0;
		fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
		fd.fd_link_offset = rx_next;
		fd.fd_rbd_offset = rx + sizeof(fd);
		obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));

		rbd.rbd_status = 0;
		rbd.rbd_next_rbd_offset = I82586NULL;
		rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
		rbd.rbd_bufh = 0;
		rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
		obram_write(ioaddr, rx + sizeof(fd),
			    (unsigned char *) &rbd, sizeof(rbd));

		lp->rx_last = rx;
	}

	obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
		    (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));

	scb_cs = SCB_CMD_RUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));

	set_chan_attn(ioaddr, lp->hacr);

	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;

		udelay(10);
	}

	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_ru_start(): board not accepting command.\n",
		       dev->name);
#endif
		return -1;
	}
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Initialise the transmit blocks.
 * Start the command unit executing the NOP
 * self-loop of the first transmit block.
 *
 * Here we create the list of send buffers used to transmit packets
 * between the PC and the command unit. For each buffer, we create a
 * buffer descriptor (pointing on the buffer), a transmit command
 * (pointing to the buffer descriptor) and a NOP command.
 * The transmit command is linked to the NOP, and the NOP to itself.
 * When we will have finished executing the transmit command, we will
 * then loop on the NOP. By releasing the NOP link to a new command,
 * we may send another buffer.
 *
 * (called by wv_hw_reset())
 */
static int wv_cu_start(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	int i;
	u16 txblock;
	u16 first_nop;
	u16 scb_cs;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
#endif

	lp->tx_first_free = OFFSET_CU;
	lp->tx_first_in_use = I82586NULL;

	for (i = 0, txblock = OFFSET_CU;
	     i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
		ac_tx_t tx;
		ac_nop_t nop;
		tbd_t tbd;
		unsigned short tx_addr;
		unsigned short nop_addr;
		unsigned short tbd_addr;
		unsigned short buf_addr;

		tx_addr = txblock;
		nop_addr = tx_addr + sizeof(tx);
		tbd_addr = nop_addr + sizeof(nop);
		buf_addr = tbd_addr + sizeof(tbd);

		tx.tx_h.ac_status = 0;
		tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
		tx.tx_h.ac_link = nop_addr;
		tx.tx_tbd_offset = tbd_addr;
		obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
			    sizeof(tx));

		nop.nop_h.ac_status = 0;
		nop.nop_h.ac_command = acmd_nop;
		nop.nop_h.ac_link = nop_addr;
		obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
			    sizeof(nop));

		tbd.tbd_status = TBD_STATUS_EOF;
		tbd.tbd_next_bd_offset = I82586NULL;
		tbd.tbd_bufl = buf_addr;
		tbd.tbd_bufh = 0;
		obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
			    sizeof(tbd));
	}

	first_nop =
	    OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
		    (unsigned char *) &first_nop, sizeof(first_nop));

	scb_cs = SCB_CMD_CUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));

	set_chan_attn(ioaddr, lp->hacr);

	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;

		udelay(10);
	}

	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_cu_start(): board not accepting command.\n",
		       dev->name);
#endif
		return -1;
	}

	lp->tx_n_in_use = 0;
	netif_start_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN 
 * controller (i82586).
 *
 * It initialises the scp, iscp and scb structure
 * The first two are just pointers to the next.
 * The last one is used for basic configuration and for basic
 * communication (interrupt status).
 *
 * (called by wv_hw_reset())
 */
static int wv_82586_start(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	scp_t scp;		/* system configuration pointer */
	iscp_t iscp;		/* intermediate scp */
	scb_t scb;		/* system control block */
	ach_t cb;		/* Action command header */
	u8 zeroes[512];
	int i;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
#endif

	/*
	 * Clear the onboard RAM.
	 */
	memset(&zeroes[0], 0x00, sizeof(zeroes));
	for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
		obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));

	/*
	 * Construct the command unit structures:
	 * scp, iscp, scb, cb.
	 */
	memset(&scp, 0x00, sizeof(scp));
	scp.scp_sysbus = SCP_SY_16BBUS;
	scp.scp_iscpl = OFFSET_ISCP;
	obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
		    sizeof(scp));

	memset(&iscp, 0x00, sizeof(iscp));
	iscp.iscp_busy = 1;
	iscp.iscp_offset = OFFSET_SCB;
	obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
		    sizeof(iscp));

	/* Our first command is to reset the i82586. */
	memset(&scb, 0x00, sizeof(scb));
	scb.scb_command = SCB_CMD_RESET;
	scb.scb_cbl_offset = OFFSET_CU;
	scb.scb_rfa_offset = OFFSET_RU;
	obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
		    sizeof(scb));

	set_chan_attn(ioaddr, lp->hacr);

	/* Wait for command to finish. */
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
			   sizeof(iscp));

		if (iscp.iscp_busy == (unsigned short) 0)
			break;

		udelay(10);
	}

	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): iscp_busy timeout.\n",
		       dev->name);
#endif
		return -1;
	}

	/* Check command completion. */
	for (i = 15; i > 0; i--) {
		obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
			   sizeof(scb));

		if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
			break;

		udelay(10);
	}

	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
		       dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
#endif
		return -1;
	}

	wv_ack(dev);

	/* Set the action command header. */
	memset(&cb, 0x00, sizeof(cb));
	cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
	cb.ac_link = OFFSET_CU;
	obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));

	if (wv_synchronous_cmd(dev, "diag()") == -1)
		return -1;

	obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
	if (cb.ac_status & AC_SFLD_FAIL) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): i82586 Self Test failed.\n",
		       dev->name);
#endif
		return -1;
	}
#ifdef DEBUG_I82586_SHOW
	wv_scb_show(ioaddr);
#endif

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN
 * controller (i82586).
 *
 * This routine is a violent hack. We use the first free transmit block
 * to make our configuration. In the buffer area, we create the three
 * configuration commands (linked). We make the previous NOP point to
 * the beginning of the buffer instead of the tx command. After, we go
 * as usual to the NOP command.
 * Note that only the last command (mc_set) will generate an interrupt.
 *
 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
 */
static void wv_82586_config(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	unsigned short txblock;
	unsigned short txpred;
	unsigned short tx_addr;
	unsigned short nop_addr;
	unsigned short tbd_addr;
	unsigned short cfg_addr;
	unsigned short ias_addr;
	unsigned short mcs_addr;
	ac_tx_t tx;
	ac_nop_t nop;
	ac_cfg_t cfg;		/* Configure action */
	ac_ias_t ias;		/* IA-setup action */
	ac_mcs_t mcs;		/* Multicast setup */
	struct dev_mc_list *dmi;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
#endif

	/* Check nothing bad has happened */
	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
		       dev->name);
#endif
		return;
	}

	/* Calculate addresses of next block and previous block. */
	txblock = lp->tx_first_free;
	txpred = txblock - TXBLOCKZ;
	if (txpred < OFFSET_CU)
		txpred += NTXBLOCKS * TXBLOCKZ;
	lp->tx_first_free += TXBLOCKZ;
	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;

	lp->tx_n_in_use++;

	/* Calculate addresses of the different parts of the block. */
	tx_addr = txblock;
	nop_addr = tx_addr + sizeof(tx);
	tbd_addr = nop_addr + sizeof(nop);
	cfg_addr = tbd_addr + sizeof(tbd_t);	/* beginning of the buffer */
	ias_addr = cfg_addr + sizeof(cfg);
	mcs_addr = ias_addr + sizeof(ias);

	/*
	 * Transmit command
	 */
	tx.tx_h.ac_status = 0xFFFF;	/* Fake completion value */
	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
		    (unsigned char *) &tx.tx_h.ac_status,
		    sizeof(tx.tx_h.ac_status));

	/*
	 * NOP command
	 */
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = nop_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));

	/* Create a configure action. */
	memset(&cfg, 0x00, sizeof(cfg));

	/*
	 * For Linux we invert AC_CFG_ALOC() so as to conform
	 * to the way that net packets reach us from above.
	 * (See also ac_tx_t.)
	 *
	 * Updated from Wavelan Manual WCIN085B
	 */
	cfg.cfg_byte_cnt =
	    AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
	cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
	cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
	cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
	    AC_CFG_ILPBCK(0) |
	    AC_CFG_PRELEN(AC_CFG_PLEN_2) |
	    AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
	cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
	    AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
	cfg.cfg_ifs = 0x20;
	cfg.cfg_slotl = 0x0C;
	cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
	cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
	    AC_CFG_BTSTF(0) |
	    AC_CFG_CRC16(0) |
	    AC_CFG_NCRC(0) |
	    AC_CFG_TNCRS(1) |
	    AC_CFG_MANCH(0) |
	    AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
	cfg.cfg_byte15 = AC_CFG_ICDS(0) |
	    AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
/*
  cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
*/
	cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);

	cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
	cfg.cfg_h.ac_link = ias_addr;
	obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));

	/* Set up the MAC address */
	memset(&ias, 0x00, sizeof(ias));
	ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
	ias.ias_h.ac_link = mcs_addr;
	memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
	       sizeof(ias.ias_addr));
	obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));

	/* Initialize adapter's Ethernet multicast addresses */
	memset(&mcs, 0x00, sizeof(mcs));
	mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
	mcs.mcs_h.ac_link = nop_addr;
	mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
	obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));

	/* Any address to set? */
	if (lp->mc_count) {
		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
			outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
			      WAVELAN_ADDR_SIZE >> 1);

#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: wv_82586_config(): set %d multicast addresses:\n",
		       dev->name, lp->mc_count);
		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
			printk(KERN_DEBUG
			       " %02x:%02x:%02x:%02x:%02x:%02x\n",
			       dmi->dmi_addr[0], dmi->dmi_addr[1],
			       dmi->dmi_addr[2], dmi->dmi_addr[3],
			       dmi->dmi_addr[4], dmi->dmi_addr[5]);
#endif
	}

	/*
	 * Overwrite the predecessor NOP link
	 * so that it points to the configure action.
	 */
	nop_addr = txpred + sizeof(tx);
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = cfg_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));

	/* Job done, clear the flag */
	lp->reconfig_82586 = 0;

	if (lp->tx_first_in_use == I82586NULL)
		lp->tx_first_in_use = txblock;

	if (lp->tx_n_in_use == (NTXBLOCKS - 1))
		netif_stop_queue(dev);

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * This routine, called by wavelan_close(), gracefully stops the 
 * WaveLAN controller (i82586).
 * (called by wavelan_close())
 */
static void wv_82586_stop(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cmd;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
#endif

	/* Suspend both command unit and receive unit. */
	scb_cmd =
	    (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
					       SCB_CMD_RUC_SUS);
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));
	set_chan_attn(ioaddr, lp->hacr);

	/* No more interrupts */
	wv_ints_off(dev);

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
#endif
}

/*------------------------------------------------------------------*/
/*
 * Totally reset the WaveLAN and restart it.
 * Performs the following actions:
 *	1. A power reset (reset DMA)
 *	2. Initialize the radio modem (using wv_mmc_init)
 *	3. Reset & Configure LAN controller (using wv_82586_start)
 *	4. Start the LAN controller's command unit
 *	5. Start the LAN controller's receive unit
 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
 */
static int wv_hw_reset(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif

	/* Increase the number of resets done. */
	lp->nresets++;

	wv_hacr_reset(ioaddr);
	lp->hacr = HACR_DEFAULT;

	if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
		return -1;

	/* Enable the card to send interrupts. */
	wv_ints_on(dev);

	/* Start card functions */
	if (wv_cu_start(dev) < 0)
		return -1;

	/* Setup the controller and parameters */
	wv_82586_config(dev);

	/* Finish configuration with the receive unit */
	if (wv_ru_start(dev) < 0)
		return -1;

#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Check if there is a WaveLAN at the specific base address.
 * As a side effect, this reads the MAC address.
 * (called in wavelan_probe() and init_module())
 */
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
{
	int i;			/* Loop counter */

	/* Check if the base address if available. */
	if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
		return -EBUSY;		/* ioaddr already used */

	/* Reset host interface */
	wv_hacr_reset(ioaddr);

	/* Read the MAC address from the parameter storage area. */
	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
		 mac, 6);

	release_region(ioaddr, sizeof(ha_t));

	/*
	 * Check the first three octets of the address for the manufacturer's code.
	 * Note: if this can't find your WaveLAN card, you've got a
	 * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
	 * how to configure your card.
	 */
	for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
		if ((mac[0] == MAC_ADDRESSES[i][0]) &&
		    (mac[1] == MAC_ADDRESSES[i][1]) &&
		    (mac[2] == MAC_ADDRESSES[i][2]))
			return 0;

#ifdef DEBUG_CONFIG_INFO
	printk(KERN_WARNING
	       "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
	       ioaddr, mac[0], mac[1], mac[2]);
#endif
	return -ENODEV;
}

/************************ INTERRUPT HANDLING ************************/

/*
 * This function is the interrupt handler for the WaveLAN card. This
 * routine will be called whenever: 
 */
static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
{
	struct net_device *dev;
	unsigned long ioaddr;
	net_local *lp;
	u16 hasr;
	u16 status;
	u16 ack_cmd;

	dev = dev_id;

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif

	lp = (net_local *) dev->priv;
	ioaddr = dev->base_addr;

#ifdef DEBUG_INTERRUPT_INFO
	/* Check state of our spinlock */
	if(spin_is_locked(&lp->spinlock))
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
		       dev->name);
#endif

	/* Prevent reentrancy. We need to do that because we may have
	 * multiple interrupt handler running concurrently.
	 * It is safe because interrupts are disabled before acquiring
	 * the spinlock. */
	spin_lock(&lp->spinlock);

	/* We always had spurious interrupts at startup, but lately I
	 * saw them comming *between* the request_irq() and the
	 * spin_lock_irqsave() in wavelan_open(), so the spinlock
	 * protection is no enough.
	 * So, we also check lp->hacr that will tell us is we enabled
	 * irqs or not (see wv_ints_on()).
	 * We can't use netif_running(dev) because we depend on the
	 * proper processing of the irq generated during the config. */

	/* Which interrupt it is ? */
	hasr = hasr_read(ioaddr);

#ifdef DEBUG_INTERRUPT_INFO
	printk(KERN_INFO
	       "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
	       dev->name, hasr, lp->hacr);
#endif

	/* Check modem interrupt */
	if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
		u8 dce_status;

		/*
		 * Interrupt from the modem management controller.
		 * This will clear it -- ignored for now.
		 */
		mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
			 sizeof(dce_status));

#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
		       dev->name, dce_status);
#endif
	}

	/* Check if not controller interrupt */
	if (((hasr & HASR_82586_INTR) == 0) ||
	    ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
		       dev->name, hasr);
#endif
		spin_unlock (&lp->spinlock);
		return IRQ_NONE;
	}

	/* Read interrupt data. */
	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &status, sizeof(status));

	/*
	 * Acknowledge the interrupt(s).
	 */
	ack_cmd = status & SCB_ST_INT;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &ack_cmd, sizeof(ack_cmd));
	set_chan_attn(ioaddr, lp->hacr);

#ifdef DEBUG_INTERRUPT_INFO
	printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
	       dev->name, status);
#endif

	/* Command completed. */
	if ((status & SCB_ST_CX) == SCB_ST_CX) {
#ifdef DEBUG_INTERRUPT_INFO
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): command completed.\n",
		       dev->name);
#endif
		wv_complete(dev, ioaddr, lp);
	}

	/* Frame received. */
	if ((status & SCB_ST_FR) == SCB_ST_FR) {
#ifdef DEBUG_INTERRUPT_INFO
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): received packet.\n",
		       dev->name);
#endif
		wv_receive(dev);
	}

	/* Check the state of the command unit. */
	if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
	    (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
	     (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): CU inactive -- restarting\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}

	/* Check the state of the command unit. */
	if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
	    (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
	     (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): RU not ready -- restarting\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}

	/* Release spinlock */
	spin_unlock (&lp->spinlock);

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
	return IRQ_HANDLED;
}

/*------------------------------------------------------------------*/
/*
 * Watchdog: when we start a transmission, a timer is set for us in the
 * kernel.  If the transmission completes, this timer is disabled. If
 * the timer expires, we are called and we try to unlock the hardware.
 */
static void wavelan_watchdog(struct net_device *	dev)
{
	net_local *	lp = (net_local *)dev->priv;
	u_long		ioaddr = dev->base_addr;
	unsigned long	flags;
	unsigned int	nreaped;

#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif

#ifdef DEBUG_INTERRUPT_ERROR
	printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
	       dev->name);
#endif

	/* Check that we came here for something */
	if (lp->tx_n_in_use <= 0) {
		return;
	}

	spin_lock_irqsave(&lp->spinlock, flags);

	/* Try to see if some buffers are not free (in case we missed
	 * an interrupt */
	nreaped = wv_complete(dev, ioaddr, lp);

#ifdef DEBUG_INTERRUPT_INFO
	printk(KERN_DEBUG
	       "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
	       dev->name, nreaped, lp->tx_n_in_use);
#endif

#ifdef DEBUG_PSA_SHOW
	{
		psa_t psa;
		psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
		wv_psa_show(&psa);
	}
#endif
#ifdef DEBUG_MMC_SHOW
	wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
	wv_cu_show(dev);
#endif

	/* If no buffer has been freed */
	if (nreaped == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}

	/* At this point, we should have some free Tx buffer ;-) */
	if (lp->tx_n_in_use < NTXBLOCKS - 1)
		netif_wake_queue(dev);

	spin_unlock_irqrestore(&lp->spinlock, flags);
	
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}

/********************* CONFIGURATION CALLBACKS *********************/
/*
 * Here are the functions called by the Linux networking code (NET3)
 * for initialization, configuration and deinstallations of the 
 * WaveLAN ISA hardware.
 */

/*------------------------------------------------------------------*/
/*
 * Configure and start up the WaveLAN PCMCIA adaptor.
 * Called by NET3 when it "opens" the device.
 */
static int wavelan_open(struct net_device * dev)
{
	net_local *	lp = (net_local *)dev->priv;
	unsigned long	flags;

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif

	/* Check irq */
	if (dev->irq == 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
		       dev->name);
#endif
		return -ENXIO;
	}

	if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
	{
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
		       dev->name);
#endif
		return -EAGAIN;
	}

	spin_lock_irqsave(&lp->spinlock, flags);
	
	if (wv_hw_reset(dev) != -1) {
		netif_start_queue(dev);
	} else {
		free_irq(dev->irq, dev);
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_open(): impossible to start the card\n",
		       dev->name);
#endif
		spin_unlock_irqrestore(&lp->spinlock, flags);
		return -EAGAIN;
	}
	spin_unlock_irqrestore(&lp->spinlock, flags);
	
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Shut down the WaveLAN ISA card.
 * Called by NET3 when it "closes" the device.
 */
static int wavelan_close(struct net_device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif

	netif_stop_queue(dev);

	/*
	 * Flush the Tx and disable Rx.
	 */
	spin_lock_irqsave(&lp->spinlock, flags);
	wv_82586_stop(dev);
	spin_unlock_irqrestore(&lp->spinlock, flags);

	free_irq(dev->irq, dev);

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
	return 0;
}

/*------------------------------------------------------------------*/
/*
 * Probe an I/O address, and if the WaveLAN is there configure the
 * device structure
 * (called by wavelan_probe() and via init_module()).
 */
static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
{
	u8 irq_mask;
	int irq;
	net_local *lp;
	mac_addr mac;
	int err;

	if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
		return -EADDRINUSE;

	err = wv_check_ioaddr(ioaddr, mac);
	if (err)
		goto out;

	memcpy(dev->dev_addr, mac, 6);

	dev->base_addr = ioaddr;

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
	       dev->name, (unsigned int) dev, ioaddr);
#endif

	/* Check IRQ argument on command line. */
	if (dev->irq != 0) {
		irq_mask = wv_irq_to_psa(dev->irq);

		if (irq_mask == 0) {
#ifdef DEBUG_CONFIG_ERROR
			printk(KERN_WARNING
			       "%s: wavelan_config(): invalid IRQ %d ignored.\n",
			       dev->name, dev->irq);
#endif
			dev->irq = 0;
		} else {
#ifdef DEBUG_CONFIG_INFO
			printk(KERN_DEBUG
			       "%s: wavelan_config(): changing IRQ to %d\n",
			       dev->name, dev->irq);
#endif
			psa_write(ioaddr, HACR_DEFAULT,
				  psaoff(0, psa_int_req_no), &irq_mask, 1);
			/* update the Wavelan checksum */
			update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
			wv_hacr_reset(ioaddr);
		}
	}

	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
		 &irq_mask, 1);
	if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
		       dev->name, irq_mask);
#endif
		err = -EAGAIN;
		goto out;
	}

	dev->irq = irq;

	dev->mem_start = 0x0000;
	dev->mem_end = 0x0000;
	dev->if_port = 0;

	/* Initialize device structures */
	memset(dev->priv, 0, sizeof(net_local));
	lp = (net_local *) dev->priv;

	/* Back link to the device structure. */
	lp->dev = dev;
	/* Add the device at the beginning of the linked list. */
	lp->next = wavelan_list;
	wavelan_list = lp;

	lp->hacr = HACR_DEFAULT;

	/* Multicast stuff */
	lp->promiscuous = 0;
	lp->mc_count = 0;

	/* Init spinlock */
	spin_lock_init(&lp->spinlock);

	dev->open = wavelan_open;
	dev->stop = wavelan_close;
	dev->hard_start_xmit = wavelan_packet_xmit;
	dev->get_stats = wavelan_get_stats;
	dev->set_multicast_list = &wavelan_set_multicast_list;
        dev->tx_timeout		= &wavelan_watchdog;
        dev->watchdog_timeo	= WATCHDOG_JIFFIES;
#ifdef SET_MAC_ADDRESS
	dev->set_mac_address = &wavelan_set_mac_address;
#endif				/* SET_MAC_ADDRESS */

	dev->wireless_handlers = &wavelan_handler_def;
	lp->wireless_data.spy_data = &lp->spy_data;
	dev->wireless_data = &lp->wireless_data;

	dev->mtu = WAVELAN_MTU;

	/* Display nice information. */
	wv_init_info(dev);

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
#endif
	return 0;
out:
	release_region(ioaddr, sizeof(ha_t));
	return err;
}

/*------------------------------------------------------------------*/
/*
 * Check for a network adaptor of this type.  Return '0' iff one 
 * exists.  There seem to be different interpretations of
 * the initial value of dev->base_addr.
 * We follow the example in drivers/net/ne.c.
 * (called in "Space.c")
 */
struct net_device * __init wavelan_probe(int unit)
{
	struct net_device *dev;
	short base_addr;
	int def_irq;
	int i;
	int r = 0;

#ifdef	STRUCT_CHECK
	if (wv_struct_check() != (char *) NULL) {
		printk(KERN_WARNING
		       "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
		       dev->name, wv_struct_check());
		return -ENODEV;
	}
#endif				/* STRUCT_CHECK */

	dev = alloc_etherdev(sizeof(net_local));
	if (!dev)
		return ERR_PTR(-ENOMEM);

	sprintf(dev->name, "eth%d", unit);
	netdev_boot_setup_check(dev);
	base_addr = dev->base_addr;
	def_irq = dev->irq;

#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG
	       "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
	       dev->name, dev, (unsigned int) dev->base_addr);
#endif

	/* Don't probe at all. */
	if (base_addr < 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING
		       "%s: wavelan_probe(): invalid base address\n",
		       dev->name);
#endif
		r = -ENXIO;
	} else if (base_addr > 0x100) { /* Check a single specified location. */
		r = wavelan_config(dev, base_addr);
#ifdef DEBUG_CONFIG_INFO
		if (r != 0)
			printk(KERN_DEBUG
			       "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
			       dev->name, base_addr);
#endif

#ifdef DEBUG_CALLBACK_TRACE
		printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
#endif
	} else { /* Scan all possible addresses of the WaveLAN hardware. */
		for (i = 0; i < ARRAY_SIZE(iobase); i++) {
			dev->irq = def_irq;
			if (wavelan_config(dev, iobase[i]) == 0) {
#ifdef DEBUG_CALLBACK_TRACE
				printk(KERN_DEBUG
				       "%s: <-wavelan_probe()\n",
				       dev->name);
#endif
				break;
			}
		}
		if (i == ARRAY_SIZE(iobase))
			r = -ENODEV;
	}
	if (r) 
		goto out;
	r = register_netdev(dev);
	if (r)
		goto out1;
	return dev;
out1:
	release_region(dev->base_addr, sizeof(ha_t));
	wavelan_list = wavelan_list->next;
out:
	free_netdev(dev);
	return ERR_PTR(r);
}

/****************************** MODULE ******************************/
/*
 * Module entry point: insertion and removal
 */

#ifdef	MODULE
/*------------------------------------------------------------------*/
/*
 * Insertion of the module
 * I'm now quite proud of the multi-device support.
 */
int __init init_module(void)
{
	int ret = -EIO;		/* Return error if no cards found */
	int i;

#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "-> init_module()\n");
#endif

	/* If probing is asked */
	if (io[0] == 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING
		       "WaveLAN init_module(): doing device probing (bad !)\n");
		printk(KERN_WARNING
		       "Specify base addresses while loading module to correct the problem\n");
#endif

		/* Copy the basic set of address to be probed. */
		for (i = 0; i < ARRAY_SIZE(iobase); i++)
			io[i] = iobase[i];
	}


	/* Loop on all possible base addresses. */
	i = -1;
	while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
		struct net_device *dev = alloc_etherdev(sizeof(net_local));
		if (!dev)
			break;
		if (name[i])
			strcpy(dev->name, name[i]);	/* Copy name */
		dev->base_addr = io[i];
		dev->irq = irq[i];

		/* Check if there is something at this base address. */
		if (wavelan_config(dev, io[i]) == 0) {
			if (register_netdev(dev) != 0) {
				release_region(dev->base_addr, sizeof(ha_t));
				wavelan_list = wavelan_list->next;
			} else {
				ret = 0;
				continue;
			}
		}
		free_netdev(dev);
	}

#ifdef DEBUG_CONFIG_ERROR
	if (!wavelan_list)
		printk(KERN_WARNING
		       "WaveLAN init_module(): no device found\n");
#endif

#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "<- init_module()\n");
#endif
	return ret;
}

/*------------------------------------------------------------------*/
/*
 * Removal of the module
 */
void cleanup_module(void)
{
#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "-> cleanup_module()\n");
#endif

	/* Loop on all devices and release them. */
	while (wavelan_list) {
		struct net_device *dev = wavelan_list->dev;

#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: cleanup_module(): removing device at 0x%x\n",
		       dev->name, (unsigned int) dev);
#endif
		unregister_netdev(dev);

		release_region(dev->base_addr, sizeof(ha_t));
		wavelan_list = wavelan_list->next;

		free_netdev(dev);
	}

#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "<- cleanup_module()\n");
#endif
}
#endif				/* MODULE */
MODULE_LICENSE("GPL");

/*
 * This software may only be used and distributed
 * according to the terms of the GNU General Public License.
 *
 * This software was developed as a component of the
 * Linux operating system.
 * It is based on other device drivers and information
 * either written or supplied by:
 *	Ajay Bakre (bakre@paul.rutgers.edu),
 *	Donald Becker (becker@scyld.com),
 *	Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
 *	Anders Klemets (klemets@it.kth.se),
 *	Vladimir V. Kolpakov (w@stier.koenig.ru),
 *	Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
 *	Pauline Middelink (middelin@polyware.iaf.nl),
 *	Robert Morris (rtm@das.harvard.edu),
 *	Jean Tourrilhes (jt@hplb.hpl.hp.com),
 *	Girish Welling (welling@paul.rutgers.edu),
 *
 * Thanks go also to:
 *	James Ashton (jaa101@syseng.anu.edu.au),
 *	Alan Cox (alan@redhat.com),
 *	Allan Creighton (allanc@cs.usyd.edu.au),
 *	Matthew Geier (matthew@cs.usyd.edu.au),
 *	Remo di Giovanni (remo@cs.usyd.edu.au),
 *	Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
 *	Vipul Gupta (vgupta@cs.binghamton.edu),
 *	Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
 *	Tim Nicholson (tim@cs.usyd.edu.au),
 *	Ian Parkin (ian@cs.usyd.edu.au),
 *	John Rosenberg (johnr@cs.usyd.edu.au),
 *	George Rossi (george@phm.gov.au),
 *	Arthur Scott (arthur@cs.usyd.edu.au),
 *	Peter Storey,
 * for their assistance and advice.
 *
 * Please send bug reports, updates, comments to:
 *
 * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
 * Basser Department of Computer Science           Phone:  +61-2-9351-3423
 * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
 */