/*
* Intel Wireless Multicomm 3200 WiFi driver
*
* Copyright (C) 2009 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Intel Corporation <ilw@linux.intel.com>
* Samuel Ortiz <samuel.ortiz@intel.com>
* Zhu Yi <yi.zhu@intel.com>
*
*/
#include <linux/kernel.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <linux/ieee80211.h>
#include <linux/sched.h>
#include "iwm.h"
#include "bus.h"
#include "hal.h"
#include "umac.h"
#include "commands.h"
#include "debug.h"
static int iwm_send_lmac_ptrough_cmd(struct iwm_priv *iwm,
u8 lmac_cmd_id,
const void *lmac_payload,
u16 lmac_payload_size,
u8 resp)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_LMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_lmac_cmd lmac_cmd;
lmac_cmd.id = lmac_cmd_id;
umac_cmd.id = UMAC_CMD_OPCODE_WIFI_PASS_THROUGH;
umac_cmd.resp = resp;
return iwm_hal_send_host_cmd(iwm, &udma_cmd, &umac_cmd, &lmac_cmd,
lmac_payload, lmac_payload_size);
}
int iwm_send_wifi_if_cmd(struct iwm_priv *iwm, void *payload, u16 payload_size,
bool resp)
{
struct iwm_umac_wifi_if *hdr = (struct iwm_umac_wifi_if *)payload;
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
int ret;
u8 oid = hdr->oid;
if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
IWM_ERR(iwm, "Interface is not ready yet");
return -EAGAIN;
}
umac_cmd.id = UMAC_CMD_OPCODE_WIFI_IF_WRAPPER;
umac_cmd.resp = resp;
ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd,
payload, payload_size);
if (resp) {
ret = wait_event_interruptible_timeout(iwm->wifi_ntfy_queue,
test_and_clear_bit(oid, &iwm->wifi_ntfy[0]),
3 * HZ);
return ret ? 0 : -EBUSY;
}
return ret;
}
static int modparam_wiwi = COEX_MODE_CM;
module_param_named(wiwi, modparam_wiwi, int, 0644);
MODULE_PARM_DESC(wiwi, "Wifi-WiMAX coexistence: 1=SA, 2=XOR, 3=CM (default)");
static struct coex_event iwm_sta_xor_prio_tbl[COEX_EVENTS_NUM] =
{
{4, 3, 0, COEX_UNASSOC_IDLE_FLAGS},
{4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS},
{4, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS},
{4, 3, 0, COEX_CALIBRATION_FLAGS},
{4, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS},
{4, 3, 0, COEX_CONNECTION_ESTAB_FLAGS},
{4, 3, 0, COEX_ASSOCIATED_IDLE_FLAGS},
{4, 3, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS},
{4, 3, 0, COEX_ASSOC_AUTO_SCAN_FLAGS},
{4, 3, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS},
{6, 3, 0, COEX_XOR_RF_ON_FLAGS},
{4, 3, 0, COEX_RF_OFF_FLAGS},
{6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS},
{4, 3, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS},
{4, 3, 0, COEX_RSRVD1_FLAGS},
{4, 3, 0, COEX_RSRVD2_FLAGS}
};
static struct coex_event iwm_sta_cm_prio_tbl[COEX_EVENTS_NUM] =
{
{1, 1, 0, COEX_UNASSOC_IDLE_FLAGS},
{4, 4, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS},
{3, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS},
{6, 6, 0, COEX_CALIBRATION_FLAGS},
{3, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS},
{6, 5, 0, COEX_CONNECTION_ESTAB_FLAGS},
{4, 4, 0, COEX_ASSOCIATED_IDLE_FLAGS},
{4, 4, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS},
{4, 4, 0, COEX_ASSOC_AUTO_SCAN_FLAGS},
{4, 4, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS},
{1, 1, 0, COEX_RF_ON_FLAGS},
{1, 1, 0, COEX_RF_OFF_FLAGS},
{7, 7, 0, COEX_STAND_ALONE_DEBUG_FLAGS},
{5, 4, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS},
{1, 1, 0, COEX_RSRVD1_FLAGS},
{1, 1, 0, COEX_RSRVD2_FLAGS}
};
int iwm_send_prio_table(struct iwm_priv *iwm)
{
struct iwm_coex_prio_table_cmd coex_table_cmd;
u32 coex_enabled, mode_enabled;
memset(&coex_table_cmd, 0, sizeof(struct iwm_coex_prio_table_cmd));
coex_table_cmd.flags = COEX_FLAGS_STA_TABLE_VALID_MSK;
switch (modparam_wiwi) {
case COEX_MODE_XOR:
case COEX_MODE_CM:
coex_enabled = 1;
break;
default:
coex_enabled = 0;
break;
}
switch (iwm->conf.mode) {
case UMAC_MODE_BSS:
case UMAC_MODE_IBSS:
mode_enabled = 1;
break;
default:
mode_enabled = 0;
break;
}
if (coex_enabled && mode_enabled) {
coex_table_cmd.flags |= COEX_FLAGS_COEX_ENABLE_MSK |
COEX_FLAGS_ASSOC_WAKEUP_UMASK_MSK |
COEX_FLAGS_UNASSOC_WAKEUP_UMASK_MSK;
switch (modparam_wiwi) {
case COEX_MODE_XOR:
memcpy(coex_table_cmd.sta_prio, iwm_sta_xor_prio_tbl,
sizeof(iwm_sta_xor_prio_tbl));
break;
case COEX_MODE_CM:
memcpy(coex_table_cmd.sta_prio, iwm_sta_cm_prio_tbl,
sizeof(iwm_sta_cm_prio_tbl));
break;
default:
IWM_ERR(iwm, "Invalid coex_mode 0x%x\n",
modparam_wiwi);
break;
}
} else
IWM_WARN(iwm, "coexistense disabled\n");
return iwm_send_lmac_ptrough_cmd(iwm, COEX_PRIORITY_TABLE_CMD,
&coex_table_cmd,
sizeof(struct iwm_coex_prio_table_cmd), 0);
}
int iwm_send_init_calib_cfg(struct iwm_priv *iwm, u8 calib_requested)
{
struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd;
memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd));
cal_cfg_cmd.ucode_cfg.init.enable = cpu_to_le32(calib_requested);
cal_cfg_cmd.ucode_cfg.init.start = cpu_to_le32(calib_requested);
cal_cfg_cmd.ucode_cfg.init.send_res = cpu_to_le32(calib_requested);
cal_cfg_cmd.ucode_cfg.flags =
cpu_to_le32(CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_AFTER_MSK);
return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd,
sizeof(struct iwm_lmac_cal_cfg_cmd), 1);
}
int iwm_send_periodic_calib_cfg(struct iwm_priv *iwm, u8 calib_requested)
{
struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd;
memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd));
cal_cfg_cmd.ucode_cfg.periodic.enable = cpu_to_le32(calib_requested);
cal_cfg_cmd.ucode_cfg.periodic.start = cpu_to_le32(calib_requested);
return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd,
sizeof(struct iwm_lmac_cal_cfg_cmd), 0);
}
int iwm_store_rxiq_calib_result(struct iwm_priv *iwm)
{
struct iwm_calib_rxiq *rxiq;
u8 *eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ);
int grplen = sizeof(struct iwm_calib_rxiq_group);
rxiq = kzalloc(sizeof(struct iwm_calib_rxiq), GFP_KERNEL);
if (!rxiq) {
IWM_ERR(iwm, "Couldn't alloc memory for RX IQ\n");
return -ENOMEM;
}
eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ);
if (IS_ERR(eeprom_rxiq)) {
IWM_ERR(iwm, "Couldn't access EEPROM RX IQ entry\n");
kfree(rxiq);
return PTR_ERR(eeprom_rxiq);
}
iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].buf = (u8 *)rxiq;
iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].size = sizeof(*rxiq);
rxiq->hdr.opcode = SHILOH_PHY_CALIBRATE_RX_IQ_CMD;
rxiq->hdr.first_grp = 0;
rxiq->hdr.grp_num = 1;
rxiq->hdr.all_data_valid = 1;
memcpy(&rxiq->group[0], eeprom_rxiq, 4 * grplen);
memcpy(&rxiq->group[4], eeprom_rxiq + 6 * grplen, grplen);
return 0;
}
int iwm_send_calib_results(struct iwm_priv *iwm)
{
int i, ret = 0;
for (i = PHY_CALIBRATE_OPCODES_NUM; i < CALIBRATION_CMD_NUM; i++) {
if (test_bit(i - PHY_CALIBRATE_OPCODES_NUM,
&iwm->calib_done_map)) {
IWM_DBG_CMD(iwm, DBG,
"Send calibration %d result\n", i);
ret |= iwm_send_lmac_ptrough_cmd(iwm,
REPLY_PHY_CALIBRATION_CMD,
iwm->calib_res[i].buf,
iwm->calib_res[i].size, 0);
kfree(iwm->calib_res[i].buf);
iwm->calib_res[i].buf = NULL;
iwm->calib_res[i].size = 0;
}
}
return ret;
}
int iwm_send_ct_kill_cfg(struct iwm_priv *iwm, u8 entry, u8 exit)
{
struct iwm_ct_kill_cfg_cmd cmd;
cmd.entry_threshold = entry;
cmd.exit_threshold = exit;
return iwm_send_lmac_ptrough_cmd(iwm, REPLY_CT_KILL_CONFIG_CMD, &cmd,
sizeof(struct iwm_ct_kill_cfg_cmd), 0);
}
int iwm_send_umac_reset(struct iwm_priv *iwm, __le32 reset_flags, bool resp)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_reset reset;
reset.flags = reset_flags;
umac_cmd.id = UMAC_CMD_OPCODE_RESET;
umac_cmd.resp = resp;
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &reset,
sizeof(struct iwm_umac_cmd_reset));
}
int iwm_umac_set_config_fix(struct iwm_priv *iwm, u16 tbl, u16 key, u32 value)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_set_param_fix param;
if ((tbl != UMAC_PARAM_TBL_CFG_FIX) &&
(tbl != UMAC_PARAM_TBL_FA_CFG_FIX))
return -EINVAL;
umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_FIX;
umac_cmd.resp = 0;
param.tbl = cpu_to_le16(tbl);
param.key = cpu_to_le16(key);
param.value = cpu_to_le32(value);
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ¶m,
sizeof(struct iwm_umac_cmd_set_param_fix));
}
int iwm_umac_set_config_var(struct iwm_priv *iwm, u16 key,
void *payload, u16 payload_size)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_set_param_var *param_hdr;
u8 *param;
int ret;
param = kzalloc(payload_size +
sizeof(struct iwm_umac_cmd_set_param_var), GFP_KERNEL);
if (!param) {
IWM_ERR(iwm, "Couldn't allocate param\n");
return -ENOMEM;
}
param_hdr = (struct iwm_umac_cmd_set_param_var *)param;
umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_VAR;
umac_cmd.resp = 0;
param_hdr->tbl = cpu_to_le16(UMAC_PARAM_TBL_CFG_VAR);
param_hdr->key = cpu_to_le16(key);
param_hdr->len = cpu_to_le16(payload_size);
memcpy(param + sizeof(struct iwm_umac_cmd_set_param_var),
payload, payload_size);
ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, param,
sizeof(struct iwm_umac_cmd_set_param_var) +
payload_size);
kfree(param);
return ret;
}
int iwm_send_umac_config(struct iwm_priv *iwm, __le32 reset_flags)
{
int ret;
/* Use UMAC default values */
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_POWER_INDEX, iwm->conf.power_index);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
CFG_FRAG_THRESHOLD,
iwm->conf.frag_threshold);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_RTS_THRESHOLD,
iwm->conf.rts_threshold);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_CTS_TO_SELF, iwm->conf.cts_to_self);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_WIRELESS_MODE,
iwm->conf.wireless_mode);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_COEX_MODE, modparam_wiwi);
if (ret < 0)
return ret;
/*
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_ASSOCIATION_TIMEOUT,
iwm->conf.assoc_timeout);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_ROAM_TIMEOUT,
iwm->conf.roam_timeout);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_WIRELESS_MODE,
WIRELESS_MODE_11A | WIRELESS_MODE_11G);
if (ret < 0)
return ret;
*/
ret = iwm_umac_set_config_var(iwm, CFG_NET_ADDR,
iwm_to_ndev(iwm)->dev_addr, ETH_ALEN);
if (ret < 0)
return ret;
/* UMAC PM static configurations */
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_PM_LEGACY_RX_TIMEOUT, 0x12C);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_PM_LEGACY_TX_TIMEOUT, 0x15E);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_PM_CTRL_FLAGS, 0x1);
if (ret < 0)
return ret;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_PM_KEEP_ALIVE_IN_BEACONS, 0x80);
if (ret < 0)
return ret;
/* reset UMAC */
ret = iwm_send_umac_reset(iwm, reset_flags, 1);
if (ret < 0)
return ret;
ret = iwm_notif_handle(iwm, UMAC_CMD_OPCODE_RESET, IWM_SRC_UMAC,
WAIT_NOTIF_TIMEOUT);
if (ret) {
IWM_ERR(iwm, "Wait for UMAC RESET timeout\n");
return ret;
}
return ret;
}
int iwm_send_packet(struct iwm_priv *iwm, struct sk_buff *skb, int pool_id)
{
struct iwm_udma_wifi_cmd udma_cmd;
struct iwm_umac_cmd umac_cmd;
struct iwm_tx_info *tx_info = skb_to_tx_info(skb);
udma_cmd.eop = 1; /* always set eop for non-concatenated Tx */
udma_cmd.credit_group = pool_id;
udma_cmd.ra_tid = tx_info->sta << 4 | tx_info->tid;
udma_cmd.lmac_offset = 0;
umac_cmd.id = REPLY_TX;
umac_cmd.color = tx_info->color;
umac_cmd.resp = 0;
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd,
skb->data, skb->len);
}
static int iwm_target_read(struct iwm_priv *iwm, __le32 address,
u8 *response, u32 resp_size)
{
struct iwm_udma_nonwifi_cmd target_cmd;
struct iwm_nonwifi_cmd *cmd;
u16 seq_num;
int ret = 0;
target_cmd.opcode = UMAC_HDI_OUT_OPCODE_READ;
target_cmd.addr = address;
target_cmd.op1_sz = cpu_to_le32(resp_size);
target_cmd.op2 = 0;
target_cmd.handle_by_hw = 0;
target_cmd.resp = 1;
target_cmd.eop = 1;
ret = iwm_hal_send_target_cmd(iwm, &target_cmd, NULL);
if (ret < 0) {
IWM_ERR(iwm, "Couldn't send READ command\n");
return ret;
}
/* When succeding, the send_target routine returns the seq number */
seq_num = ret;
ret = wait_event_interruptible_timeout(iwm->nonwifi_queue,
(cmd = iwm_get_pending_nonwifi_cmd(iwm, seq_num,
UMAC_HDI_OUT_OPCODE_READ)) != NULL,
2 * HZ);
if (!ret) {
IWM_ERR(iwm, "Didn't receive a target READ answer\n");
return ret;
}
memcpy(response, cmd->buf.hdr + sizeof(struct iwm_udma_in_hdr),
resp_size);
kfree(cmd);
return 0;
}
int iwm_read_mac(struct iwm_priv *iwm, u8 *mac)
{
int ret;
u8 mac_align[ALIGN(ETH_ALEN, 8)];
ret = iwm_target_read(iwm, cpu_to_le32(WICO_MAC_ADDRESS_ADDR),
mac_align, sizeof(mac_align));
if (ret)
return ret;
if (is_valid_ether_addr(mac_align))
memcpy(mac, mac_align, ETH_ALEN);
else {
IWM_ERR(iwm, "Invalid EEPROM MAC\n");
memcpy(mac, iwm->conf.mac_addr, ETH_ALEN);
get_random_bytes(&mac[3], 3);
}
return 0;
}
static int iwm_check_profile(struct iwm_priv *iwm)
{
if (!iwm->umac_profile_active)
return -EAGAIN;
if (iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 &&
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104 &&
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_TKIP &&
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_CCMP) {
IWM_ERR(iwm, "Wrong unicast cipher: 0x%x\n",
iwm->umac_profile->sec.ucast_cipher);
return -EAGAIN;
}
if (iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_40 &&
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_104 &&
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_TKIP &&
iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_CCMP) {
IWM_ERR(iwm, "Wrong multicast cipher: 0x%x\n",
iwm->umac_profile->sec.mcast_cipher);
return -EAGAIN;
}
if ((iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_40 ||
iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_104) &&
(iwm->umac_profile->sec.ucast_cipher !=
iwm->umac_profile->sec.mcast_cipher)) {
IWM_ERR(iwm, "Unicast and multicast ciphers differ for WEP\n");
}
return 0;
}
int iwm_set_tx_key(struct iwm_priv *iwm, u8 key_idx)
{
struct iwm_umac_tx_key_id tx_key_id;
int ret;
ret = iwm_check_profile(iwm);
if (ret < 0)
return ret;
/* UMAC only allows to set default key for WEP and auth type is
* NOT 802.1X or RSNA. */
if ((iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 &&
iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104) ||
iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_8021X ||
iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_RSNA_PSK)
return 0;
tx_key_id.hdr.oid = UMAC_WIFI_IF_CMD_GLOBAL_TX_KEY_ID;
tx_key_id.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_tx_key_id) -
sizeof(struct iwm_umac_wifi_if));
tx_key_id.key_idx = key_idx;
return iwm_send_wifi_if_cmd(iwm, &tx_key_id, sizeof(tx_key_id), 1);
}
int iwm_set_key(struct iwm_priv *iwm, bool remove, struct iwm_key *key)
{
int ret = 0;
u8 cmd[64], *sta_addr, *key_data, key_len;
s8 key_idx;
u16 cmd_size = 0;
struct iwm_umac_key_hdr *key_hdr = &key->hdr;
struct iwm_umac_key_wep40 *wep40 = (struct iwm_umac_key_wep40 *)cmd;
struct iwm_umac_key_wep104 *wep104 = (struct iwm_umac_key_wep104 *)cmd;
struct iwm_umac_key_tkip *tkip = (struct iwm_umac_key_tkip *)cmd;
struct iwm_umac_key_ccmp *ccmp = (struct iwm_umac_key_ccmp *)cmd;
if (!remove) {
ret = iwm_check_profile(iwm);
if (ret < 0)
return ret;
}
sta_addr = key->hdr.mac;
key_data = key->key;
key_len = key->key_len;
key_idx = key->hdr.key_idx;
if (!remove) {
u8 auth_type = iwm->umac_profile->sec.auth_type;
IWM_DBG_WEXT(iwm, DBG, "key_idx:%d\n", key_idx);
IWM_DBG_WEXT(iwm, DBG, "key_len:%d\n", key_len);
IWM_DBG_WEXT(iwm, DBG, "MAC:%pM, idx:%d, multicast:%d\n",
key_hdr->mac, key_hdr->key_idx, key_hdr->multicast);
IWM_DBG_WEXT(iwm, DBG, "profile: mcast:0x%x, ucast:0x%x\n",
iwm->umac_profile->sec.mcast_cipher,
iwm->umac_profile->sec.ucast_cipher);
IWM_DBG_WEXT(iwm, DBG, "profile: auth_type:0x%x, flags:0x%x\n",
iwm->umac_profile->sec.auth_type,
iwm->umac_profile->sec.flags);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
wep40->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP40_KEY;
wep40->hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_key_wep40) -
sizeof(struct iwm_umac_wifi_if));
memcpy(&wep40->key_hdr, key_hdr,
sizeof(struct iwm_umac_key_hdr));
memcpy(wep40->key, key_data, key_len);
wep40->static_key =
!!((auth_type != UMAC_AUTH_TYPE_8021X) &&
(auth_type != UMAC_AUTH_TYPE_RSNA_PSK));
cmd_size = sizeof(struct iwm_umac_key_wep40);
break;
case WLAN_CIPHER_SUITE_WEP104:
wep104->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP104_KEY;
wep104->hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_key_wep104) -
sizeof(struct iwm_umac_wifi_if));
memcpy(&wep104->key_hdr, key_hdr,
sizeof(struct iwm_umac_key_hdr));
memcpy(wep104->key, key_data, key_len);
wep104->static_key =
!!((auth_type != UMAC_AUTH_TYPE_8021X) &&
(auth_type != UMAC_AUTH_TYPE_RSNA_PSK));
cmd_size = sizeof(struct iwm_umac_key_wep104);
break;
case WLAN_CIPHER_SUITE_CCMP:
key_hdr->key_idx++;
ccmp->hdr.oid = UMAC_WIFI_IF_CMD_ADD_CCMP_KEY;
ccmp->hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_key_ccmp) -
sizeof(struct iwm_umac_wifi_if));
memcpy(&ccmp->key_hdr, key_hdr,
sizeof(struct iwm_umac_key_hdr));
memcpy(ccmp->key, key_data, key_len);
if (key->seq_len)
memcpy(ccmp->iv_count, key->seq, key->seq_len);
cmd_size = sizeof(struct iwm_umac_key_ccmp);
break;
case WLAN_CIPHER_SUITE_TKIP:
key_hdr->key_idx++;
tkip->hdr.oid = UMAC_WIFI_IF_CMD_ADD_TKIP_KEY;
tkip->hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_key_tkip) -
sizeof(struct iwm_umac_wifi_if));
memcpy(&tkip->key_hdr, key_hdr,
sizeof(struct iwm_umac_key_hdr));
memcpy(tkip->tkip_key, key_data, IWM_TKIP_KEY_SIZE);
memcpy(tkip->mic_tx_key, key_data + IWM_TKIP_KEY_SIZE,
IWM_TKIP_MIC_SIZE);
memcpy(tkip->mic_rx_key,
key_data + IWM_TKIP_KEY_SIZE + IWM_TKIP_MIC_SIZE,
IWM_TKIP_MIC_SIZE);
if (key->seq_len)
memcpy(ccmp->iv_count, key->seq, key->seq_len);
cmd_size = sizeof(struct iwm_umac_key_tkip);
break;
default:
return -ENOTSUPP;
}
if ((key->cipher == WLAN_CIPHER_SUITE_TKIP) ||
(key->cipher == WLAN_CIPHER_SUITE_CCMP))
/*
* UGLY_UGLY_UGLY
* Copied HACK from the MWG driver.
* Without it, the key is set before the second
* EAPOL frame is sent, and the latter is thus
* encrypted.
*/
schedule_timeout_interruptible(usecs_to_jiffies(300));
ret = iwm_send_wifi_if_cmd(iwm, cmd, cmd_size, 1);
} else {
struct iwm_umac_key_remove key_remove;
IWM_DBG_WEXT(iwm, ERR, "Removing key_idx:%d\n", key_idx);
key_remove.hdr.oid = UMAC_WIFI_IF_CMD_REMOVE_KEY;
key_remove.hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_key_remove) -
sizeof(struct iwm_umac_wifi_if));
memcpy(&key_remove.key_hdr, key_hdr,
sizeof(struct iwm_umac_key_hdr));
ret = iwm_send_wifi_if_cmd(iwm, &key_remove,
sizeof(struct iwm_umac_key_remove),
1);
if (ret)
return ret;
iwm->keys[key_idx].key_len = 0;
}
return ret;
}
int iwm_send_mlme_profile(struct iwm_priv *iwm)
{
int ret;
struct iwm_umac_profile profile;
memcpy(&profile, iwm->umac_profile, sizeof(profile));
profile.hdr.oid = UMAC_WIFI_IF_CMD_SET_PROFILE;
profile.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_profile) -
sizeof(struct iwm_umac_wifi_if));
ret = iwm_send_wifi_if_cmd(iwm, &profile, sizeof(profile), 1);
if (ret) {
IWM_ERR(iwm, "Send profile command failed\n");
return ret;
}
set_bit(IWM_STATUS_SME_CONNECTING, &iwm->status);
return 0;
}
int iwm_invalidate_mlme_profile(struct iwm_priv *iwm)
{
struct iwm_umac_invalidate_profile invalid;
int ret;
invalid.hdr.oid = UMAC_WIFI_IF_CMD_INVALIDATE_PROFILE;
invalid.hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_invalidate_profile) -
sizeof(struct iwm_umac_wifi_if));
invalid.reason = WLAN_REASON_UNSPECIFIED;
ret = iwm_send_wifi_if_cmd(iwm, &invalid, sizeof(invalid), 1);
if (ret)
return ret;
ret = wait_event_interruptible_timeout(iwm->mlme_queue,
(iwm->umac_profile_active == 0), 5 * HZ);
return ret ? 0 : -EBUSY;
}
int iwm_tx_power_trigger(struct iwm_priv *iwm)
{
struct iwm_umac_pwr_trigger pwr_trigger;
pwr_trigger.hdr.oid = UMAC_WIFI_IF_CMD_TX_PWR_TRIGGER;
pwr_trigger.hdr.buf_size =
cpu_to_le16(sizeof(struct iwm_umac_pwr_trigger) -
sizeof(struct iwm_umac_wifi_if));
return iwm_send_wifi_if_cmd(iwm, &pwr_trigger, sizeof(pwr_trigger), 1);
}
int iwm_send_umac_stats_req(struct iwm_priv *iwm, u32 flags)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_stats_req stats_req;
stats_req.flags = cpu_to_le32(flags);
umac_cmd.id = UMAC_CMD_OPCODE_STATISTIC_REQUEST;
umac_cmd.resp = 0;
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stats_req,
sizeof(struct iwm_umac_cmd_stats_req));
}
int iwm_send_umac_channel_list(struct iwm_priv *iwm)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_get_channel_list *ch_list;
int size = sizeof(struct iwm_umac_cmd_get_channel_list) +
sizeof(struct iwm_umac_channel_info) * 4;
int ret;
ch_list = kzalloc(size, GFP_KERNEL);
if (!ch_list) {
IWM_ERR(iwm, "Couldn't allocate channel list cmd\n");
return -ENOMEM;
}
ch_list->ch[0].band = UMAC_BAND_2GHZ;
ch_list->ch[0].type = UMAC_CHANNEL_WIDTH_20MHZ;
ch_list->ch[0].flags = UMAC_CHANNEL_FLAG_VALID;
ch_list->ch[1].band = UMAC_BAND_5GHZ;
ch_list->ch[1].type = UMAC_CHANNEL_WIDTH_20MHZ;
ch_list->ch[1].flags = UMAC_CHANNEL_FLAG_VALID;
ch_list->ch[2].band = UMAC_BAND_2GHZ;
ch_list->ch[2].type = UMAC_CHANNEL_WIDTH_20MHZ;
ch_list->ch[2].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS;
ch_list->ch[3].band = UMAC_BAND_5GHZ;
ch_list->ch[3].type = UMAC_CHANNEL_WIDTH_20MHZ;
ch_list->ch[3].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS;
ch_list->count = cpu_to_le16(4);
umac_cmd.id = UMAC_CMD_OPCODE_GET_CHAN_INFO_LIST;
umac_cmd.resp = 1;
ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ch_list, size);
kfree(ch_list);
return ret;
}
int iwm_scan_ssids(struct iwm_priv *iwm, struct cfg80211_ssid *ssids,
int ssid_num)
{
struct iwm_umac_cmd_scan_request req;
int i, ret;
memset(&req, 0, sizeof(struct iwm_umac_cmd_scan_request));
req.hdr.oid = UMAC_WIFI_IF_CMD_SCAN_REQUEST;
req.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_cmd_scan_request)
- sizeof(struct iwm_umac_wifi_if));
req.type = UMAC_WIFI_IF_SCAN_TYPE_USER;
req.timeout = 2;
req.seq_num = iwm->scan_id;
req.ssid_num = min(ssid_num, UMAC_WIFI_IF_PROBE_OPTION_MAX);
for (i = 0; i < req.ssid_num; i++) {
memcpy(req.ssids[i].ssid, ssids[i].ssid, ssids[i].ssid_len);
req.ssids[i].ssid_len = ssids[i].ssid_len;
}
ret = iwm_send_wifi_if_cmd(iwm, &req, sizeof(req), 0);
if (ret) {
IWM_ERR(iwm, "Couldn't send scan request\n");
return ret;
}
iwm->scan_id = iwm->scan_id++ % IWM_SCAN_ID_MAX;
return 0;
}
int iwm_scan_one_ssid(struct iwm_priv *iwm, u8 *ssid, int ssid_len)
{
struct cfg80211_ssid one_ssid;
if (test_and_set_bit(IWM_STATUS_SCANNING, &iwm->status))
return 0;
one_ssid.ssid_len = min(ssid_len, IEEE80211_MAX_SSID_LEN);
memcpy(&one_ssid.ssid, ssid, one_ssid.ssid_len);
return iwm_scan_ssids(iwm, &one_ssid, 1);
}
int iwm_target_reset(struct iwm_priv *iwm)
{
struct iwm_udma_nonwifi_cmd target_cmd;
target_cmd.opcode = UMAC_HDI_OUT_OPCODE_REBOOT;
target_cmd.addr = 0;
target_cmd.op1_sz = 0;
target_cmd.op2 = 0;
target_cmd.handle_by_hw = 0;
target_cmd.resp = 0;
target_cmd.eop = 1;
return iwm_hal_send_target_cmd(iwm, &target_cmd, NULL);
}
int iwm_send_umac_stop_resume_tx(struct iwm_priv *iwm,
struct iwm_umac_notif_stop_resume_tx *ntf)
{
struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT;
struct iwm_umac_cmd umac_cmd;
struct iwm_umac_cmd_stop_resume_tx stp_res_cmd;
struct iwm_sta_info *sta_info;
u8 sta_id = STA_ID_N_COLOR_ID(ntf->sta_id);
int i;
sta_info = &iwm->sta_table[sta_id];
if (!sta_info->valid) {
IWM_ERR(iwm, "Invalid STA: %d\n", sta_id);
return -EINVAL;
}
umac_cmd.id = UMAC_CMD_OPCODE_STOP_RESUME_STA_TX;
umac_cmd.resp = 0;
stp_res_cmd.flags = ntf->flags;
stp_res_cmd.sta_id = ntf->sta_id;
stp_res_cmd.stop_resume_tid_msk = ntf->stop_resume_tid_msk;
for (i = 0; i < IWM_UMAC_TID_NR; i++)
stp_res_cmd.last_seq_num[i] =
sta_info->tid_info[i].last_seq_num;
return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stp_res_cmd,
sizeof(struct iwm_umac_cmd_stop_resume_tx));
}
int iwm_send_pmkid_update(struct iwm_priv *iwm,
struct cfg80211_pmksa *pmksa, u32 command)
{
struct iwm_umac_pmkid_update update;
int ret;
memset(&update, 0, sizeof(struct iwm_umac_pmkid_update));
update.hdr.oid = UMAC_WIFI_IF_CMD_PMKID_UPDATE;
update.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_pmkid_update) -
sizeof(struct iwm_umac_wifi_if));
update.command = cpu_to_le32(command);
if (pmksa->bssid)
memcpy(&update.bssid, pmksa->bssid, ETH_ALEN);
if (pmksa->pmkid)
memcpy(&update.pmkid, pmksa->pmkid, WLAN_PMKID_LEN);
ret = iwm_send_wifi_if_cmd(iwm, &update,
sizeof(struct iwm_umac_pmkid_update), 0);
if (ret) {
IWM_ERR(iwm, "PMKID update command failed\n");
return ret;
}
return 0;
}