/******************************************************************************
Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
802.11 status code portion of this file from ethereal-0.10.6:
Copyright 2000, Axis Communications AB
Ethereal - Network traffic analyzer
By Gerald Combs <gerald@ethereal.com>
Copyright 1998 Gerald Combs
This program is free software; you can redistribute it and/or modify it
under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
James P. Ketrenos <ipw2100-admin@linux.intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
******************************************************************************/
#include "ipw2200.h"
#define IPW2200_VERSION "1.0.0"
#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
#define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation"
#define DRV_VERSION IPW2200_VERSION
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");
static int debug = 0;
static int channel = 0;
static char *ifname;
static int mode = 0;
static u32 ipw_debug_level;
static int associate = 1;
static int auto_create = 1;
static int disable = 0;
static const char ipw_modes[] = {
'a', 'b', 'g', '?'
};
static void ipw_rx(struct ipw_priv *priv);
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
struct clx2_tx_queue *txq, int qindex);
static int ipw_queue_reset(struct ipw_priv *priv);
static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
int len, int sync);
static void ipw_tx_queue_free(struct ipw_priv *);
static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
static void ipw_rx_queue_replenish(void *);
static int ipw_up(struct ipw_priv *);
static void ipw_down(struct ipw_priv *);
static int ipw_config(struct ipw_priv *);
static int init_supported_rates(struct ipw_priv *priv,
struct ipw_supported_rates *prates);
static u8 band_b_active_channel[MAX_B_CHANNELS] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0
};
static u8 band_a_active_channel[MAX_A_CHANNELS] = {
36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0
};
static int is_valid_channel(int mode_mask, int channel)
{
int i;
if (!channel)
return 0;
if (mode_mask & IEEE_A)
for (i = 0; i < MAX_A_CHANNELS; i++)
if (band_a_active_channel[i] == channel)
return IEEE_A;
if (mode_mask & (IEEE_B | IEEE_G))
for (i = 0; i < MAX_B_CHANNELS; i++)
if (band_b_active_channel[i] == channel)
return mode_mask & (IEEE_B | IEEE_G);
return 0;
}
static char *snprint_line(char *buf, size_t count,
const u8 * data, u32 len, u32 ofs)
{
int out, i, j, l;
char c;
out = snprintf(buf, count, "%08X", ofs);
for (l = 0, i = 0; i < 2; i++) {
out += snprintf(buf + out, count - out, " ");
for (j = 0; j < 8 && l < len; j++, l++)
out += snprintf(buf + out, count - out, "%02X ",
data[(i * 8 + j)]);
for (; j < 8; j++)
out += snprintf(buf + out, count - out, " ");
}
out += snprintf(buf + out, count - out, " ");
for (l = 0, i = 0; i < 2; i++) {
out += snprintf(buf + out, count - out, " ");
for (j = 0; j < 8 && l < len; j++, l++) {
c = data[(i * 8 + j)];
if (!isascii(c) || !isprint(c))
c = '.';
out += snprintf(buf + out, count - out, "%c", c);
}
for (; j < 8; j++)
out += snprintf(buf + out, count - out, " ");
}
return buf;
}
static void printk_buf(int level, const u8 * data, u32 len)
{
char line[81];
u32 ofs = 0;
if (!(ipw_debug_level & level))
return;
while (len) {
printk(KERN_DEBUG "%s\n",
snprint_line(line, sizeof(line), &data[ofs],
min(len, 16U), ofs));
ofs += 16;
len -= min(len, 16U);
}
}
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
{
IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
__LINE__, (u32) (b), (u32) (c));
_ipw_write_reg8(a, b, c);
}
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
{
IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
__LINE__, (u32) (b), (u32) (c));
_ipw_write_reg16(a, b, c);
}
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
{
IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
__LINE__, (u32) (b), (u32) (c));
_ipw_write_reg32(a, b, c);
}
#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
#define ipw_write8(ipw, ofs, val) \
IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
_ipw_write8(ipw, ofs, val)
#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
#define ipw_write16(ipw, ofs, val) \
IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
_ipw_write16(ipw, ofs, val)
#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
#define ipw_write32(ipw, ofs, val) \
IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
_ipw_write32(ipw, ofs, val)
#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
return _ipw_read8(ipw, ofs);
}
#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
return _ipw_read16(ipw, ofs);
}
#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
return _ipw_read32(ipw, ofs);
}
#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
#define ipw_read_indirect(a, b, c, d) \
IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
_ipw_read_indirect(a, b, c, d)
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
int num);
#define ipw_write_indirect(a, b, c, d) \
IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
_ipw_write_indirect(a, b, c, d)
/* indirect write s */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
{
IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
_ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
_ipw_write32(priv, CX2_INDIRECT_DATA, value);
}
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
{
IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
_ipw_write8(priv, CX2_INDIRECT_DATA, value);
IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n",
(unsigned long)(priv->hw_base + CX2_INDIRECT_DATA), value);
}
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
{
IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
_ipw_write16(priv, CX2_INDIRECT_DATA, value);
}
/* indirect read s */
static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
{
u32 word;
_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
word = _ipw_read32(priv, CX2_INDIRECT_DATA);
return (word >> ((reg & 0x3) * 8)) & 0xff;
}
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
{
u32 value;
IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
_ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
value = _ipw_read32(priv, CX2_INDIRECT_DATA);
IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
return value;
}
/* iterative/auto-increment 32 bit reads and writes */
static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
int num)
{
u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
u32 dif_len = addr - aligned_addr;
u32 aligned_len;
u32 i;
IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
/* Read the first nibble byte by byte */
if (unlikely(dif_len)) {
/* Start reading at aligned_addr + dif_len */
_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
for (i = dif_len; i < 4; i++, buf++)
*buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i);
num -= dif_len;
aligned_addr += 4;
}
/* Read DWs through autoinc register */
_ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
aligned_len = num & CX2_INDIRECT_ADDR_MASK;
for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
*(u32 *) buf = ipw_read32(priv, CX2_AUTOINC_DATA);
/* Copy the last nibble */
dif_len = num - aligned_len;
_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
for (i = 0; i < dif_len; i++, buf++)
*buf = ipw_read8(priv, CX2_INDIRECT_DATA + i);
}
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
int num)
{
u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
u32 dif_len = addr - aligned_addr;
u32 aligned_len;
u32 i;
IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
/* Write the first nibble byte by byte */
if (unlikely(dif_len)) {
/* Start writing at aligned_addr + dif_len */
_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
for (i = dif_len; i < 4; i++, buf++)
_ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
num -= dif_len;
aligned_addr += 4;
}
/* Write DWs through autoinc register */
_ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
aligned_len = num & CX2_INDIRECT_ADDR_MASK;
for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
_ipw_write32(priv, CX2_AUTOINC_DATA, *(u32 *) buf);
/* Copy the last nibble */
dif_len = num - aligned_len;
_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
for (i = 0; i < dif_len; i++, buf++)
_ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
}
static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
int num)
{
memcpy_toio((priv->hw_base + addr), buf, num);
}
static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
}
static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
}
static inline void ipw_enable_interrupts(struct ipw_priv *priv)
{
if (priv->status & STATUS_INT_ENABLED)
return;
priv->status |= STATUS_INT_ENABLED;
ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL);
}
static inline void ipw_disable_interrupts(struct ipw_priv *priv)
{
if (!(priv->status & STATUS_INT_ENABLED))
return;
priv->status &= ~STATUS_INT_ENABLED;
ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
}
static char *ipw_error_desc(u32 val)
{
switch (val) {
case IPW_FW_ERROR_OK:
return "ERROR_OK";
case IPW_FW_ERROR_FAIL:
return "ERROR_FAIL";
case IPW_FW_ERROR_MEMORY_UNDERFLOW:
return "MEMORY_UNDERFLOW";
case IPW_FW_ERROR_MEMORY_OVERFLOW:
return "MEMORY_OVERFLOW";
case IPW_FW_ERROR_BAD_PARAM:
return "ERROR_BAD_PARAM";
case IPW_FW_ERROR_BAD_CHECKSUM:
return "ERROR_BAD_CHECKSUM";
case IPW_FW_ERROR_NMI_INTERRUPT:
return "ERROR_NMI_INTERRUPT";
case IPW_FW_ERROR_BAD_DATABASE:
return "ERROR_BAD_DATABASE";
case IPW_FW_ERROR_ALLOC_FAIL:
return "ERROR_ALLOC_FAIL";
case IPW_FW_ERROR_DMA_UNDERRUN:
return "ERROR_DMA_UNDERRUN";
case IPW_FW_ERROR_DMA_STATUS:
return "ERROR_DMA_STATUS";
case IPW_FW_ERROR_DINOSTATUS_ERROR:
return "ERROR_DINOSTATUS_ERROR";
case IPW_FW_ERROR_EEPROMSTATUS_ERROR:
return "ERROR_EEPROMSTATUS_ERROR";
case IPW_FW_ERROR_SYSASSERT:
return "ERROR_SYSASSERT";
case IPW_FW_ERROR_FATAL_ERROR:
return "ERROR_FATALSTATUS_ERROR";
default:
return "UNKNOWNSTATUS_ERROR";
}
}
static void ipw_dump_nic_error_log(struct ipw_priv *priv)
{
u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base;
base = ipw_read32(priv, IPWSTATUS_ERROR_LOG);
count = ipw_read_reg32(priv, base);
if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
IPW_ERROR("Start IPW Error Log Dump:\n");
IPW_ERROR("Status: 0x%08X, Config: %08X\n",
priv->status, priv->config);
}
for (i = ERROR_START_OFFSET;
i <= count * ERROR_ELEM_SIZE; i += ERROR_ELEM_SIZE) {
desc = ipw_read_reg32(priv, base + i);
time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
blink1 = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
blink2 = ipw_read_reg32(priv, base + i + 3 * sizeof(u32));
ilink1 = ipw_read_reg32(priv, base + i + 4 * sizeof(u32));
ilink2 = ipw_read_reg32(priv, base + i + 5 * sizeof(u32));
idata = ipw_read_reg32(priv, base + i + 6 * sizeof(u32));
IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
ipw_error_desc(desc), time, blink1, blink2,
ilink1, ilink2, idata);
}
}
static void ipw_dump_nic_event_log(struct ipw_priv *priv)
{
u32 ev, time, data, i, count, base;
base = ipw_read32(priv, IPW_EVENT_LOG);
count = ipw_read_reg32(priv, base);
if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE)
IPW_ERROR("Start IPW Event Log Dump:\n");
for (i = EVENT_START_OFFSET;
i <= count * EVENT_ELEM_SIZE; i += EVENT_ELEM_SIZE) {
ev = ipw_read_reg32(priv, base + i);
time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
data = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
#ifdef CONFIG_IPW_DEBUG
IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev);
#endif
}
}
static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
{
u32 addr, field_info, field_len, field_count, total_len;
IPW_DEBUG_ORD("ordinal = %i\n", ord);
if (!priv || !val || !len) {
IPW_DEBUG_ORD("Invalid argument\n");
return -EINVAL;
}
/* verify device ordinal tables have been initialized */
if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
IPW_DEBUG_ORD("Access ordinals before initialization\n");
return -EINVAL;
}
switch (IPW_ORD_TABLE_ID_MASK & ord) {
case IPW_ORD_TABLE_0_MASK:
/*
* TABLE 0: Direct access to a table of 32 bit values
*
* This is a very simple table with the data directly
* read from the table
*/
/* remove the table id from the ordinal */
ord &= IPW_ORD_TABLE_VALUE_MASK;
/* boundary check */
if (ord > priv->table0_len) {
IPW_DEBUG_ORD("ordinal value (%i) longer then "
"max (%i)\n", ord, priv->table0_len);
return -EINVAL;
}
/* verify we have enough room to store the value */
if (*len < sizeof(u32)) {
IPW_DEBUG_ORD("ordinal buffer length too small, "
"need %zd\n", sizeof(u32));
return -EINVAL;
}
IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
ord, priv->table0_addr + (ord << 2));
*len = sizeof(u32);
ord <<= 2;
*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
break;
case IPW_ORD_TABLE_1_MASK:
/*
* TABLE 1: Indirect access to a table of 32 bit values
*
* This is a fairly large table of u32 values each
* representing starting addr for the data (which is
* also a u32)
*/
/* remove the table id from the ordinal */
ord &= IPW_ORD_TABLE_VALUE_MASK;
/* boundary check */
if (ord > priv->table1_len) {
IPW_DEBUG_ORD("ordinal value too long\n");
return -EINVAL;
}
/* verify we have enough room to store the value */
if (*len < sizeof(u32)) {
IPW_DEBUG_ORD("ordinal buffer length too small, "
"need %zd\n", sizeof(u32));
return -EINVAL;
}
*((u32 *) val) =
ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
*len = sizeof(u32);
break;
case IPW_ORD_TABLE_2_MASK:
/*
* TABLE 2: Indirect access to a table of variable sized values
*
* This table consist of six values, each containing
* - dword containing the starting offset of the data
* - dword containing the lengh in the first 16bits
* and the count in the second 16bits
*/
/* remove the table id from the ordinal */
ord &= IPW_ORD_TABLE_VALUE_MASK;
/* boundary check */
if (ord > priv->table2_len) {
IPW_DEBUG_ORD("ordinal value too long\n");
return -EINVAL;
}
/* get the address of statistic */
addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
/* get the second DW of statistics ;
* two 16-bit words - first is length, second is count */
field_info =
ipw_read_reg32(priv,
priv->table2_addr + (ord << 3) +
sizeof(u32));
/* get each entry length */
field_len = *((u16 *) & field_info);
/* get number of entries */
field_count = *(((u16 *) & field_info) + 1);
/* abort if not enought memory */
total_len = field_len * field_count;
if (total_len > *len) {
*len = total_len;
return -EINVAL;
}
*len = total_len;
if (!total_len)
return 0;
IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
"field_info = 0x%08x\n",
addr, total_len, field_info);
ipw_read_indirect(priv, addr, val, total_len);
break;
default:
IPW_DEBUG_ORD("Invalid ordinal!\n");
return -EINVAL;
}
return 0;
}
static void ipw_init_ordinals(struct ipw_priv *priv)
{
priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
priv->table0_len = ipw_read32(priv, priv->table0_addr);
IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
priv->table0_addr, priv->table0_len);
priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
priv->table1_addr, priv->table1_len);
priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
priv->table2_len &= 0x0000ffff; /* use first two bytes */
IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
priv->table2_addr, priv->table2_len);
}
/*
* The following adds a new attribute to the sysfs representation
* of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
* used for controling the debug level.
*
* See the level definitions in ipw for details.
*/
static ssize_t show_debug_level(struct device_driver *d, char *buf)
{
return sprintf(buf, "0x%08X\n", ipw_debug_level);
}
static ssize_t store_debug_level(struct device_driver *d,
const char *buf, size_t count)
{
char *p = (char *)buf;
u32 val;
if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
p++;
if (p[0] == 'x' || p[0] == 'X')
p++;
val = simple_strtoul(p, &p, 16);
} else
val = simple_strtoul(p, &p, 10);
if (p == buf)
printk(KERN_INFO DRV_NAME
": %s is not in hex or decimal form.\n", buf);
else
ipw_debug_level = val;
return strnlen(buf, count);
}
static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
show_debug_level, store_debug_level);
static ssize_t show_status(struct device *d,
struct device_attribute *attr, char *buf)
{
struct ipw_priv *p = d->driver_data;
return sprintf(buf, "0x%08x\n", (int)p->status);
}
static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
char *buf)
{
struct ipw_priv *p = d->driver_data;
return sprintf(buf, "0x%08x\n", (int)p->config);
}
static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
static ssize_t show_nic_type(struct device *d,
struct device_attribute *attr, char *buf)
{
struct ipw_priv *p = d->driver_data;
u8 type = p->eeprom[EEPROM_NIC_TYPE];
switch (type) {
case EEPROM_NIC_TYPE_STANDARD:
return sprintf(buf, "STANDARD\n");
case EEPROM_NIC_TYPE_DELL:
return sprintf(buf, "DELL\n");
case EEPROM_NIC_TYPE_FUJITSU:
return sprintf(buf, "FUJITSU\n");
case EEPROM_NIC_TYPE_IBM:
return sprintf(buf, "IBM\n");
case EEPROM_NIC_TYPE_HP:
return sprintf(buf, "HP\n");
}
return sprintf(buf, "UNKNOWN\n");
}
static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
static ssize_t dump_error_log(struct device *d,
struct device_attribute *attr, const char *buf,
size_t count)
{
char *p = (char *)buf;
if (p[0] == '1')
ipw_dump_nic_error_log((struct ipw_priv *)d->driver_data);
return strnlen(buf, count);
}
static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
static ssize_t dump_event_log(struct device *d,
struct device_attribute *attr, const char *buf,
size_t count)
{
char *p = (char *)buf;
if (p[0] == '1')
ipw_dump_nic_event_log((struct ipw_priv *)d->driver_data);
return strnlen(buf, count);
}
static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);
static ssize_t show_ucode_version(struct device *d,
struct device_attribute *attr, char *buf)
{
u32 len = sizeof(u32), tmp = 0;
struct ipw_priv *p = d->driver_data;
if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
return 0;
return sprintf(buf, "0x%08x\n", tmp);
}
static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
char *buf)
{
u32 len = sizeof(u32), tmp = 0;
struct ipw_priv *p = d->driver_data;
if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
return 0;
return sprintf(buf, "0x%08x\n", tmp);
}
static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
/*
* Add a device attribute to view/control the delay between eeprom
* operations.
*/
static ssize_t show_eeprom_delay(struct device *d,
struct device_attribute *attr, char *buf)
{
int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
return sprintf(buf, "%i\n", n);
}
static ssize_t store_eeprom_delay(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ipw_priv *p = d->driver_data;
sscanf(buf, "%i", &p->eeprom_delay);
return strnlen(buf, count);
}
static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
show_eeprom_delay, store_eeprom_delay);
static ssize_t show_command_event_reg(struct device *d,
struct device_attribute *attr, char *buf)
{
u32 reg = 0;
struct ipw_priv *p = d->driver_data;
reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT);
return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_command_event_reg(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
u32 reg;
struct ipw_priv *p = d->driver_data;
sscanf(buf, "%x", ®);
ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg);
return strnlen(buf, count);
}
static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
show_command_event_reg, store_command_event_reg);
static ssize_t show_mem_gpio_reg(struct device *d,
struct device_attribute *attr, char *buf)
{
u32 reg = 0;
struct ipw_priv *p = d->driver_data;
reg = ipw_read_reg32(p, 0x301100);
return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_mem_gpio_reg(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
u32 reg;
struct ipw_priv *p = d->driver_data;
sscanf(buf, "%x", ®);
ipw_write_reg32(p, 0x301100, reg);
return strnlen(buf, count);
}
static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
show_mem_gpio_reg, store_mem_gpio_reg);
static ssize_t show_indirect_dword(struct device *d,
struct device_attribute *attr, char *buf)
{
u32 reg = 0;
struct ipw_priv *priv = d->driver_data;
if (priv->status & STATUS_INDIRECT_DWORD)
reg = ipw_read_reg32(priv, priv->indirect_dword);
else
reg = 0;
return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_indirect_dword(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ipw_priv *priv = d->driver_data;
sscanf(buf, "%x", &priv->indirect_dword);
priv->status |= STATUS_INDIRECT_DWORD;
return strnlen(buf, count);
}
static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
show_indirect_dword, store_indirect_dword);
static ssize_t show_indirect_byte(struct device *d,
struct device_attribute *attr, char *buf)
{
u8 reg = 0;
struct ipw_priv *priv = d->driver_data;
if (priv->status & STATUS_INDIRECT_BYTE)
reg = ipw_read_reg8(priv, priv->indirect_byte);
else
reg = 0;
return sprintf(buf, "0x%02x\n", reg);
}
static ssize_t store_indirect_byte(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ipw_priv *priv = d->driver_data;
sscanf(buf, "%x", &priv->indirect_byte);
priv->status |= STATUS_INDIRECT_BYTE;
return strnlen(buf, count);
}
static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
show_indirect_byte, store_indirect_byte);
static ssize_t show_direct_dword(struct device *d,
struct device_attribute *attr, char *buf)
{
u32 reg = 0;
struct ipw_priv *priv = d->driver_data;
if (priv->status & STATUS_DIRECT_DWORD)
reg = ipw_read32(priv, priv->direct_dword);
else
reg = 0;
return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_direct_dword(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ipw_priv *priv = d->driver_data;
sscanf(buf, "%x", &priv->direct_dword);
priv->status |= STATUS_DIRECT_DWORD;
return strnlen(buf, count);
}
static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
show_direct_dword, store_direct_dword);
static inline int rf_kill_active(struct ipw_priv *priv)
{
if (0 == (ipw_read32(priv, 0x30) & 0x10000))
priv->status |= STATUS_RF_KILL_HW;
else
priv->status &= ~STATUS_RF_KILL_HW;
return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
}
static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
char *buf)
{
/* 0 - RF kill not enabled
1 - SW based RF kill active (sysfs)
2 - HW based RF kill active
3 - Both HW and SW baed RF kill active */
struct ipw_priv *priv = d->driver_data;
int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
(rf_kill_active(priv) ? 0x2 : 0x0);
return sprintf(buf, "%i\n", val);
}
static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
{
if ((disable_radio ? 1 : 0) ==
(priv->status & STATUS_RF_KILL_SW ? 1 : 0))
return 0;
IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
disable_radio ? "OFF" : "ON");
if (disable_radio) {
priv->status |= STATUS_RF_KILL_SW;
if (priv->workqueue) {
cancel_delayed_work(&priv->request_scan);
}
wake_up_interruptible(&priv->wait_command_queue);
queue_work(priv->workqueue, &priv->down);
} else {
priv->status &= ~STATUS_RF_KILL_SW;
if (rf_kill_active(priv)) {
IPW_DEBUG_RF_KILL("Can not turn radio back on - "
"disabled by HW switch\n");
/* Make sure the RF_KILL check timer is running */
cancel_delayed_work(&priv->rf_kill);
queue_delayed_work(priv->workqueue, &priv->rf_kill,
2 * HZ);
} else
queue_work(priv->workqueue, &priv->up);
}
return 1;
}
static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ipw_priv *priv = d->driver_data;
ipw_radio_kill_sw(priv, buf[0] == '1');
return count;
}
static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
static void ipw_irq_tasklet(struct ipw_priv *priv)
{
u32 inta, inta_mask, handled = 0;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&priv->lock, flags);
inta = ipw_read32(priv, CX2_INTA_RW);
inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
inta &= (CX2_INTA_MASK_ALL & inta_mask);
/* Add any cached INTA values that need to be handled */
inta |= priv->isr_inta;
/* handle all the justifications for the interrupt */
if (inta & CX2_INTA_BIT_RX_TRANSFER) {
ipw_rx(priv);
handled |= CX2_INTA_BIT_RX_TRANSFER;
}
if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) {
IPW_DEBUG_HC("Command completed.\n");
rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
priv->status &= ~STATUS_HCMD_ACTIVE;
wake_up_interruptible(&priv->wait_command_queue);
handled |= CX2_INTA_BIT_TX_CMD_QUEUE;
}
if (inta & CX2_INTA_BIT_TX_QUEUE_1) {
IPW_DEBUG_TX("TX_QUEUE_1\n");
rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
handled |= CX2_INTA_BIT_TX_QUEUE_1;
}
if (inta & CX2_INTA_BIT_TX_QUEUE_2) {
IPW_DEBUG_TX("TX_QUEUE_2\n");
rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
handled |= CX2_INTA_BIT_TX_QUEUE_2;
}
if (inta & CX2_INTA_BIT_TX_QUEUE_3) {
IPW_DEBUG_TX("TX_QUEUE_3\n");
rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
handled |= CX2_INTA_BIT_TX_QUEUE_3;
}
if (inta & CX2_INTA_BIT_TX_QUEUE_4) {
IPW_DEBUG_TX("TX_QUEUE_4\n");
rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
handled |= CX2_INTA_BIT_TX_QUEUE_4;
}
if (inta & CX2_INTA_BIT_STATUS_CHANGE) {
IPW_WARNING("STATUS_CHANGE\n");
handled |= CX2_INTA_BIT_STATUS_CHANGE;
}
if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) {
IPW_WARNING("TX_PERIOD_EXPIRED\n");
handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED;
}
if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
IPW_WARNING("HOST_CMD_DONE\n");
handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
}
if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) {
IPW_WARNING("FW_INITIALIZATION_DONE\n");
handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE;
}
if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
IPW_WARNING("PHY_OFF_DONE\n");
handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
}
if (inta & CX2_INTA_BIT_RF_KILL_DONE) {
IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
priv->status |= STATUS_RF_KILL_HW;
wake_up_interruptible(&priv->wait_command_queue);
netif_carrier_off(priv->net_dev);
netif_stop_queue(priv->net_dev);
cancel_delayed_work(&priv->request_scan);
queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
handled |= CX2_INTA_BIT_RF_KILL_DONE;
}
if (inta & CX2_INTA_BIT_FATAL_ERROR) {
IPW_ERROR("Firmware error detected. Restarting.\n");
#ifdef CONFIG_IPW_DEBUG
if (ipw_debug_level & IPW_DL_FW_ERRORS) {
ipw_dump_nic_error_log(priv);
ipw_dump_nic_event_log(priv);
}
#endif
queue_work(priv->workqueue, &priv->adapter_restart);
handled |= CX2_INTA_BIT_FATAL_ERROR;
}
if (inta & CX2_INTA_BIT_PARITY_ERROR) {
IPW_ERROR("Parity error\n");
handled |= CX2_INTA_BIT_PARITY_ERROR;
}
if (handled != inta) {
IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
}
/* enable all interrupts */
ipw_enable_interrupts(priv);
spin_unlock_irqrestore(&priv->lock, flags);
}
#ifdef CONFIG_IPW_DEBUG
#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
static char *get_cmd_string(u8 cmd)
{
switch (cmd) {
IPW_CMD(HOST_COMPLETE);
IPW_CMD(POWER_DOWN);
IPW_CMD(SYSTEM_CONFIG);
IPW_CMD(MULTICAST_ADDRESS);
IPW_CMD(SSID);
IPW_CMD(ADAPTER_ADDRESS);
IPW_CMD(PORT_TYPE);
IPW_CMD(RTS_THRESHOLD);
IPW_CMD(FRAG_THRESHOLD);
IPW_CMD(POWER_MODE);
IPW_CMD(WEP_KEY);
IPW_CMD(TGI_TX_KEY);
IPW_CMD(SCAN_REQUEST);
IPW_CMD(SCAN_REQUEST_EXT);
IPW_CMD(ASSOCIATE);
IPW_CMD(SUPPORTED_RATES);
IPW_CMD(SCAN_ABORT);
IPW_CMD(TX_FLUSH);
IPW_CMD(QOS_PARAMETERS);
IPW_CMD(DINO_CONFIG);
IPW_CMD(RSN_CAPABILITIES);
IPW_CMD(RX_KEY);
IPW_CMD(CARD_DISABLE);
IPW_CMD(SEED_NUMBER);
IPW_CMD(TX_POWER);
IPW_CMD(COUNTRY_INFO);
IPW_CMD(AIRONET_INFO);
IPW_CMD(AP_TX_POWER);
IPW_CMD(CCKM_INFO);
IPW_CMD(CCX_VER_INFO);
IPW_CMD(SET_CALIBRATION);
IPW_CMD(SENSITIVITY_CALIB);
IPW_CMD(RETRY_LIMIT);
IPW_CMD(IPW_PRE_POWER_DOWN);
IPW_CMD(VAP_BEACON_TEMPLATE);
IPW_CMD(VAP_DTIM_PERIOD);
IPW_CMD(EXT_SUPPORTED_RATES);
IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
IPW_CMD(VAP_QUIET_INTERVALS);
IPW_CMD(VAP_CHANNEL_SWITCH);
IPW_CMD(VAP_MANDATORY_CHANNELS);
IPW_CMD(VAP_CELL_PWR_LIMIT);
IPW_CMD(VAP_CF_PARAM_SET);
IPW_CMD(VAP_SET_BEACONING_STATE);
IPW_CMD(MEASUREMENT);
IPW_CMD(POWER_CAPABILITY);
IPW_CMD(SUPPORTED_CHANNELS);
IPW_CMD(TPC_REPORT);
IPW_CMD(WME_INFO);
IPW_CMD(PRODUCTION_COMMAND);
default:
return "UNKNOWN";
}
}
#endif /* CONFIG_IPW_DEBUG */
#define HOST_COMPLETE_TIMEOUT HZ
static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
{
int rc = 0;
if (priv->status & STATUS_HCMD_ACTIVE) {
IPW_ERROR("Already sending a command\n");
return -1;
}
priv->status |= STATUS_HCMD_ACTIVE;
IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
get_cmd_string(cmd->cmd), cmd->cmd, cmd->len);
printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
if (rc)
return rc;
rc = wait_event_interruptible_timeout(priv->wait_command_queue,
!(priv->
status & STATUS_HCMD_ACTIVE),
HOST_COMPLETE_TIMEOUT);
if (rc == 0) {
IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
priv->status &= ~STATUS_HCMD_ACTIVE;
return -EIO;
}
if (priv->status & STATUS_RF_KILL_MASK) {
IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n");
return -EIO;
}
return 0;
}
static int ipw_send_host_complete(struct ipw_priv *priv)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_HOST_COMPLETE,
.len = 0
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send HOST_COMPLETE command\n");
return -1;
}
return 0;
}
static int ipw_send_system_config(struct ipw_priv *priv,
struct ipw_sys_config *config)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SYSTEM_CONFIG,
.len = sizeof(*config)
};
if (!priv || !config) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, config, sizeof(*config));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SYSTEM_CONFIG command\n");
return -1;
}
return 0;
}
static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SSID,
.len = min(len, IW_ESSID_MAX_SIZE)
};
if (!priv || !ssid) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, ssid, cmd.len);
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SSID command\n");
return -1;
}
return 0;
}
static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_ADAPTER_ADDRESS,
.len = ETH_ALEN
};
if (!priv || !mac) {
IPW_ERROR("Invalid args\n");
return -1;
}
IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
priv->net_dev->name, MAC_ARG(mac));
memcpy(&cmd.param, mac, ETH_ALEN);
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send ADAPTER_ADDRESS command\n");
return -1;
}
return 0;
}
static void ipw_adapter_restart(void *adapter)
{
struct ipw_priv *priv = adapter;
if (priv->status & STATUS_RF_KILL_MASK)
return;
ipw_down(priv);
if (ipw_up(priv)) {
IPW_ERROR("Failed to up device\n");
return;
}
}
#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
static void ipw_scan_check(void *data)
{
struct ipw_priv *priv = data;
if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
IPW_DEBUG_SCAN("Scan completion watchdog resetting "
"adapter (%dms).\n",
IPW_SCAN_CHECK_WATCHDOG / 100);
ipw_adapter_restart(priv);
}
}
static int ipw_send_scan_request_ext(struct ipw_priv *priv,
struct ipw_scan_request_ext *request)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SCAN_REQUEST_EXT,
.len = sizeof(*request)
};
if (!priv || !request) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, request, sizeof(*request));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n");
return -1;
}
queue_delayed_work(priv->workqueue, &priv->scan_check,
IPW_SCAN_CHECK_WATCHDOG);
return 0;
}
static int ipw_send_scan_abort(struct ipw_priv *priv)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SCAN_ABORT,
.len = 0
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SCAN_ABORT command\n");
return -1;
}
return 0;
}
static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SENSITIVITY_CALIB,
.len = sizeof(struct ipw_sensitivity_calib)
};
struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
&cmd.param;
calib->beacon_rssi_raw = sens;
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SENSITIVITY CALIB command\n");
return -1;
}
return 0;
}
static int ipw_send_associate(struct ipw_priv *priv,
struct ipw_associate *associate)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_ASSOCIATE,
.len = sizeof(*associate)
};
if (!priv || !associate) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, associate, sizeof(*associate));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send ASSOCIATE command\n");
return -1;
}
return 0;
}
static int ipw_send_supported_rates(struct ipw_priv *priv,
struct ipw_supported_rates *rates)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SUPPORTED_RATES,
.len = sizeof(*rates)
};
if (!priv || !rates) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, rates, sizeof(*rates));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SUPPORTED_RATES command\n");
return -1;
}
return 0;
}
static int ipw_set_random_seed(struct ipw_priv *priv)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_SEED_NUMBER,
.len = sizeof(u32)
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
get_random_bytes(&cmd.param, sizeof(u32));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send SEED_NUMBER command\n");
return -1;
}
return 0;
}
#if 0
static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_CARD_DISABLE,
.len = sizeof(u32)
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
*((u32 *) & cmd.param) = phy_off;
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send CARD_DISABLE command\n");
return -1;
}
return 0;
}
#endif
static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_TX_POWER,
.len = sizeof(*power)
};
if (!priv || !power) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, power, sizeof(*power));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send TX_POWER command\n");
return -1;
}
return 0;
}
static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
{
struct ipw_rts_threshold rts_threshold = {
.rts_threshold = rts,
};
struct host_cmd cmd = {
.cmd = IPW_CMD_RTS_THRESHOLD,
.len = sizeof(rts_threshold)
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send RTS_THRESHOLD command\n");
return -1;
}
return 0;
}
static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
{
struct ipw_frag_threshold frag_threshold = {
.frag_threshold = frag,
};
struct host_cmd cmd = {
.cmd = IPW_CMD_FRAG_THRESHOLD,
.len = sizeof(frag_threshold)
};
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold));
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send FRAG_THRESHOLD command\n");
return -1;
}
return 0;
}
static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
{
struct host_cmd cmd = {
.cmd = IPW_CMD_POWER_MODE,
.len = sizeof(u32)
};
u32 *param = (u32 *) (&cmd.param);
if (!priv) {
IPW_ERROR("Invalid args\n");
return -1;
}
/* If on battery, set to 3, if AC set to CAM, else user
* level */
switch (mode) {
case IPW_POWER_BATTERY:
*param = IPW_POWER_INDEX_3;
break;
case IPW_POWER_AC:
*param = IPW_POWER_MODE_CAM;
break;
default:
*param = mode;
break;
}
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send POWER_MODE command\n");
return -1;
}
return 0;
}
/*
* The IPW device contains a Microwire compatible EEPROM that stores
* various data like the MAC address. Usually the firmware has exclusive
* access to the eeprom, but during device initialization (before the
* device driver has sent the HostComplete command to the firmware) the
* device driver has read access to the EEPROM by way of indirect addressing
* through a couple of memory mapped registers.
*
* The following is a simplified implementation for pulling data out of the
* the eeprom, along with some helper functions to find information in
* the per device private data's copy of the eeprom.
*
* NOTE: To better understand how these functions work (i.e what is a chip
* select and why do have to keep driving the eeprom clock?), read
* just about any data sheet for a Microwire compatible EEPROM.
*/
/* write a 32 bit value into the indirect accessor register */
static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
{
ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
/* the eeprom requires some time to complete the operation */
udelay(p->eeprom_delay);
return;
}
/* perform a chip select operation */
static inline void eeprom_cs(struct ipw_priv *priv)
{
eeprom_write_reg(priv, 0);
eeprom_write_reg(priv, EEPROM_BIT_CS);
eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
eeprom_write_reg(priv, EEPROM_BIT_CS);
}
/* perform a chip select operation */
static inline void eeprom_disable_cs(struct ipw_priv *priv)
{
eeprom_write_reg(priv, EEPROM_BIT_CS);
eeprom_write_reg(priv, 0);
eeprom_write_reg(priv, EEPROM_BIT_SK);
}
/* push a single bit down to the eeprom */
static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
{
int d = (bit ? EEPROM_BIT_DI : 0);
eeprom_write_reg(p, EEPROM_BIT_CS | d);
eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
}
/* push an opcode followed by an address down to the eeprom */
static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
{
int i;
eeprom_cs(priv);
eeprom_write_bit(priv, 1);
eeprom_write_bit(priv, op & 2);
eeprom_write_bit(priv, op & 1);
for (i = 7; i >= 0; i--) {
eeprom_write_bit(priv, addr & (1 << i));
}
}
/* pull 16 bits off the eeprom, one bit at a time */
static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
{
int i;
u16 r = 0;
/* Send READ Opcode */
eeprom_op(priv, EEPROM_CMD_READ, addr);
/* Send dummy bit */
eeprom_write_reg(priv, EEPROM_BIT_CS);
/* Read the byte off the eeprom one bit at a time */
for (i = 0; i < 16; i++) {
u32 data = 0;
eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
eeprom_write_reg(priv, EEPROM_BIT_CS);
data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
}
/* Send another dummy bit */
eeprom_write_reg(priv, 0);
eeprom_disable_cs(priv);
return r;
}
/* helper function for pulling the mac address out of the private */
/* data's copy of the eeprom data */
static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
{
u8 *ee = (u8 *) priv->eeprom;
memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6);
}
/*
* Either the device driver (i.e. the host) or the firmware can
* load eeprom data into the designated region in SRAM. If neither
* happens then the FW will shutdown with a fatal error.
*
* In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
* bit needs region of shared SRAM needs to be non-zero.
*/
static void ipw_eeprom_init_sram(struct ipw_priv *priv)
{
int i;
u16 *eeprom = (u16 *) priv->eeprom;
IPW_DEBUG_TRACE(">>\n");
/* read entire contents of eeprom into private buffer */
for (i = 0; i < 128; i++)
eeprom[i] = eeprom_read_u16(priv, (u8) i);
/*
If the data looks correct, then copy it to our private
copy. Otherwise let the firmware know to perform the operation
on it's own
*/
if ((priv->eeprom + EEPROM_VERSION) != 0) {
IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
/* write the eeprom data to sram */
for (i = 0; i < CX2_EEPROM_IMAGE_SIZE; i++)
ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
/* Do not load eeprom data on fatal error or suspend */
ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
} else {
IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
/* Load eeprom data on fatal error or suspend */
ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
}
IPW_DEBUG_TRACE("<<\n");
}
static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
{
count >>= 2;
if (!count)
return;
_ipw_write32(priv, CX2_AUTOINC_ADDR, start);
while (count--)
_ipw_write32(priv, CX2_AUTOINC_DATA, 0);
}
static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
{
ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL,
CB_NUMBER_OF_ELEMENTS_SMALL *
sizeof(struct command_block));
}
static int ipw_fw_dma_enable(struct ipw_priv *priv)
{ /* start dma engine but no transfers yet */
IPW_DEBUG_FW(">> : \n");
/* Start the dma */
ipw_fw_dma_reset_command_blocks(priv);
/* Write CB base address */
ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL);
IPW_DEBUG_FW("<< : \n");
return 0;
}
static void ipw_fw_dma_abort(struct ipw_priv *priv)
{
u32 control = 0;
IPW_DEBUG_FW(">> :\n");
//set the Stop and Abort bit
control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
priv->sram_desc.last_cb_index = 0;
IPW_DEBUG_FW("<< \n");
}
static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
struct command_block *cb)
{
u32 address =
CX2_SHARED_SRAM_DMA_CONTROL +
(sizeof(struct command_block) * index);
IPW_DEBUG_FW(">> :\n");
ipw_write_indirect(priv, address, (u8 *) cb,
(int)sizeof(struct command_block));
IPW_DEBUG_FW("<< :\n");
return 0;
}
static int ipw_fw_dma_kick(struct ipw_priv *priv)
{
u32 control = 0;
u32 index = 0;
IPW_DEBUG_FW(">> :\n");
for (index = 0; index < priv->sram_desc.last_cb_index; index++)
ipw_fw_dma_write_command_block(priv, index,
&priv->sram_desc.cb_list[index]);
/* Enable the DMA in the CSR register */
ipw_clear_bit(priv, CX2_RESET_REG,
CX2_RESET_REG_MASTER_DISABLED |
CX2_RESET_REG_STOP_MASTER);
/* Set the Start bit. */
control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
IPW_DEBUG_FW("<< :\n");
return 0;
}
static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
{
u32 address;
u32 register_value = 0;
u32 cb_fields_address = 0;
IPW_DEBUG_FW(">> :\n");
address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
/* Read the DMA Controlor register */
register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL);
IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
/* Print the CB values */
cb_fields_address = address;
register_value = ipw_read_reg32(priv, cb_fields_address);
IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
cb_fields_address += sizeof(u32);
register_value = ipw_read_reg32(priv, cb_fields_address);
IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
cb_fields_address += sizeof(u32);
register_value = ipw_read_reg32(priv, cb_fields_address);
IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
register_value);
cb_fields_address += sizeof(u32);
register_value = ipw_read_reg32(priv, cb_fields_address);
IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
IPW_DEBUG_FW(">> :\n");
}
static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
{
u32 current_cb_address = 0;
u32 current_cb_index = 0;
IPW_DEBUG_FW("<< :\n");
current_cb_address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL) /
sizeof(struct command_block);
IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
current_cb_index, current_cb_address);
IPW_DEBUG_FW(">> :\n");
return current_cb_index;
}
static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
u32 src_address,
u32 dest_address,
u32 length,
int interrupt_enabled, int is_last)
{
u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
CB_DEST_SIZE_LONG;
struct command_block *cb;
u32 last_cb_element = 0;
IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
src_address, dest_address, length);
if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
return -1;
last_cb_element = priv->sram_desc.last_cb_index;
cb = &priv->sram_desc.cb_list[last_cb_element];
priv->sram_desc.last_cb_index++;
/* Calculate the new CB control word */
if (interrupt_enabled)
control |= CB_INT_ENABLED;
if (is_last)
control |= CB_LAST_VALID;
control |= length;
/* Calculate the CB Element's checksum value */
cb->status = control ^ src_address ^ dest_address;
/* Copy the Source and Destination addresses */
cb->dest_addr = dest_address;
cb->source_addr = src_address;
/* Copy the Control Word last */
cb->control = control;
return 0;
}
static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
u32 src_phys, u32 dest_address, u32 length)
{
u32 bytes_left = length;
u32 src_offset = 0;
u32 dest_offset = 0;
int status = 0;
IPW_DEBUG_FW(">> \n");
IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
src_phys, dest_address, length);
while (bytes_left > CB_MAX_LENGTH) {
status = ipw_fw_dma_add_command_block(priv,
src_phys + src_offset,
dest_address +
dest_offset,
CB_MAX_LENGTH, 0, 0);
if (status) {
IPW_DEBUG_FW_INFO(": Failed\n");
return -1;
} else
IPW_DEBUG_FW_INFO(": Added new cb\n");
src_offset += CB_MAX_LENGTH;
dest_offset += CB_MAX_LENGTH;
bytes_left -= CB_MAX_LENGTH;
}
/* add the buffer tail */
if (bytes_left > 0) {
status =
ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
dest_address + dest_offset,
bytes_left, 0, 0);
if (status) {
IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
return -1;
} else
IPW_DEBUG_FW_INFO
(": Adding new cb - the buffer tail\n");
}
IPW_DEBUG_FW("<< \n");
return 0;
}
static int ipw_fw_dma_wait(struct ipw_priv *priv)
{
u32 current_index = 0;
u32 watchdog = 0;
IPW_DEBUG_FW(">> : \n");
current_index = ipw_fw_dma_command_block_index(priv);
IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
(int)priv->sram_desc.last_cb_index);
while (current_index < priv->sram_desc.last_cb_index) {
udelay(50);
current_index = ipw_fw_dma_command_block_index(priv);
watchdog++;
if (watchdog > 400) {
IPW_DEBUG_FW_INFO("Timeout\n");
ipw_fw_dma_dump_command_block(priv);
ipw_fw_dma_abort(priv);
return -1;
}
}
ipw_fw_dma_abort(priv);
/*Disable the DMA in the CSR register */
ipw_set_bit(priv, CX2_RESET_REG,
CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
IPW_DEBUG_FW("<< dmaWaitSync \n");
return 0;
}
static void ipw_remove_current_network(struct ipw_priv *priv)
{
struct list_head *element, *safe;
struct ieee80211_network *network = NULL;
list_for_each_safe(element, safe, &priv->ieee->network_list) {
network = list_entry(element, struct ieee80211_network, list);
if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
list_del(element);
list_add_tail(&network->list,
&priv->ieee->network_free_list);
}
}
}
/**
* Check that card is still alive.
* Reads debug register from domain0.
* If card is present, pre-defined value should
* be found there.
*
* @param priv
* @return 1 if card is present, 0 otherwise
*/
static inline int ipw_alive(struct ipw_priv *priv)
{
return ipw_read32(priv, 0x90) == 0xd55555d5;
}
static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
int timeout)
{
int i = 0;
do {
if ((ipw_read32(priv, addr) & mask) == mask)
return i;
mdelay(10);
i += 10;
} while (i < timeout);
return -ETIME;
}
/* These functions load the firmware and micro code for the operation of
* the ipw hardware. It assumes the buffer has all the bits for the
* image and the caller is handling the memory allocation and clean up.
*/
static int ipw_stop_master(struct ipw_priv *priv)
{
int rc;
IPW_DEBUG_TRACE(">> \n");
/* stop master. typical delay - 0 */
ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
rc = ipw_poll_bit(priv, CX2_RESET_REG,
CX2_RESET_REG_MASTER_DISABLED, 100);
if (rc < 0) {
IPW_ERROR("stop master failed in 10ms\n");
return -1;
}
IPW_DEBUG_INFO("stop master %dms\n", rc);
return rc;
}
static void ipw_arc_release(struct ipw_priv *priv)
{
IPW_DEBUG_TRACE(">> \n");
mdelay(5);
ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
/* no one knows timing, for safety add some delay */
mdelay(5);
}
struct fw_header {
u32 version;
u32 mode;
};
struct fw_chunk {
u32 address;
u32 length;
};
#define IPW_FW_MAJOR_VERSION 2
#define IPW_FW_MINOR_VERSION 2
#define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
#define IPW_FW_MAJOR(x) (x & 0xff)
#define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \
IPW_FW_MAJOR_VERSION)
#define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
"." __stringify(IPW_FW_MINOR_VERSION) "-"
#if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
#define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
#else
#define IPW_FW_NAME(x) "ipw2200_" x ".fw"
#endif
static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
{
int rc = 0, i, addr;
u8 cr = 0;
u16 *image;
image = (u16 *) data;
IPW_DEBUG_TRACE(">> \n");
rc = ipw_stop_master(priv);
if (rc < 0)
return rc;
// spin_lock_irqsave(&priv->lock, flags);
for (addr = CX2_SHARED_LOWER_BOUND;
addr < CX2_REGISTER_DOMAIN1_END; addr += 4) {
ipw_write32(priv, addr, 0);
}
/* no ucode (yet) */
memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
/* destroy DMA queues */
/* reset sequence */
ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_ON);
ipw_arc_release(priv);
ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF);
mdelay(1);
/* reset PHY */
ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN);
mdelay(1);
ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0);
mdelay(1);
/* enable ucode store */
ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
mdelay(1);
/* write ucode */
/**
* @bug
* Do NOT set indirect address register once and then
* store data to indirect data register in the loop.
* It seems very reasonable, but in this case DINO do not
* accept ucode. It is essential to set address each time.
*/
/* load new ipw uCode */
for (i = 0; i < len / 2; i++)
ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]);
/* enable DINO */
ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
/* this is where the igx / win driver deveates from the VAP driver. */
/* wait for alive response */
for (i = 0; i < 100; i++) {
/* poll for incoming data */
cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS);
if (cr & DINO_RXFIFO_DATA)
break;
mdelay(1);
}
if (cr & DINO_RXFIFO_DATA) {
/* alive_command_responce size is NOT multiple of 4 */
u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
response_buffer[i] =
ipw_read_reg32(priv, CX2_BASEBAND_RX_FIFO_READ);
memcpy(&priv->dino_alive, response_buffer,
sizeof(priv->dino_alive));
if (priv->dino_alive.alive_command == 1
&& priv->dino_alive.ucode_valid == 1) {
rc = 0;
IPW_DEBUG_INFO
("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
"of %02d/%02d/%02d %02d:%02d\n",
priv->dino_alive.software_revision,
priv->dino_alive.software_revision,
priv->dino_alive.device_identifier,
priv->dino_alive.device_identifier,
priv->dino_alive.time_stamp[0],
priv->dino_alive.time_stamp[1],
priv->dino_alive.time_stamp[2],
priv->dino_alive.time_stamp[3],
priv->dino_alive.time_stamp[4]);
} else {
IPW_DEBUG_INFO("Microcode is not alive\n");
rc = -EINVAL;
}
} else {
IPW_DEBUG_INFO("No alive response from DINO\n");
rc = -ETIME;
}
/* disable DINO, otherwise for some reason
firmware have problem getting alive resp. */
ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
// spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
{
int rc = -1;
int offset = 0;
struct fw_chunk *chunk;
dma_addr_t shared_phys;
u8 *shared_virt;
IPW_DEBUG_TRACE("<< : \n");
shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
if (!shared_virt)
return -ENOMEM;
memmove(shared_virt, data, len);
/* Start the Dma */
rc = ipw_fw_dma_enable(priv);
if (priv->sram_desc.last_cb_index > 0) {
/* the DMA is already ready this would be a bug. */
BUG();
goto out;
}
do {
chunk = (struct fw_chunk *)(data + offset);
offset += sizeof(struct fw_chunk);
/* build DMA packet and queue up for sending */
/* dma to chunk->address, the chunk->length bytes from data +
* offeset*/
/* Dma loading */
rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
chunk->address, chunk->length);
if (rc) {
IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
goto out;
}
offset += chunk->length;
} while (offset < len);
/* Run the DMA and wait for the answer */
rc = ipw_fw_dma_kick(priv);
if (rc) {
IPW_ERROR("dmaKick Failed\n");
goto out;
}
rc = ipw_fw_dma_wait(priv);
if (rc) {
IPW_ERROR("dmaWaitSync Failed\n");
goto out;
}
out:
pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
return rc;
}
/* stop nic */
static int ipw_stop_nic(struct ipw_priv *priv)
{
int rc = 0;
/* stop */
ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
rc = ipw_poll_bit(priv, CX2_RESET_REG,
CX2_RESET_REG_MASTER_DISABLED, 500);
if (rc < 0) {
IPW_ERROR("wait for reg master disabled failed\n");
return rc;
}
ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
return rc;
}
static void ipw_start_nic(struct ipw_priv *priv)
{
IPW_DEBUG_TRACE(">>\n");
/* prvHwStartNic release ARC */
ipw_clear_bit(priv, CX2_RESET_REG,
CX2_RESET_REG_MASTER_DISABLED |
CX2_RESET_REG_STOP_MASTER |
CBD_RESET_REG_PRINCETON_RESET);
/* enable power management */
ipw_set_bit(priv, CX2_GP_CNTRL_RW,
CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
IPW_DEBUG_TRACE("<<\n");
}
static int ipw_init_nic(struct ipw_priv *priv)
{
int rc;
IPW_DEBUG_TRACE(">>\n");
/* reset */
/*prvHwInitNic */
/* set "initialization complete" bit to move adapter to D0 state */
ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
/* low-level PLL activation */
ipw_write32(priv, CX2_READ_INT_REGISTER,
CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
/* wait for clock stabilization */
rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW,
CX2_GP_CNTRL_BIT_CLOCK_READY, 250);
if (rc < 0)
IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
/* assert SW reset */
ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET);
udelay(10);
/* set "initialization complete" bit to move adapter to D0 state */
ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
IPW_DEBUG_TRACE(">>\n");
return 0;
}
/* Call this function from process context, it will sleep in request_firmware.
* Probe is an ok place to call this from.
*/
static int ipw_reset_nic(struct ipw_priv *priv)
{
int rc = 0;
IPW_DEBUG_TRACE(">>\n");
rc = ipw_init_nic(priv);
/* Clear the 'host command active' bit... */
priv->status &= ~STATUS_HCMD_ACTIVE;
wake_up_interruptible(&priv->wait_command_queue);
IPW_DEBUG_TRACE("<<\n");
return rc;
}
static int ipw_get_fw(struct ipw_priv *priv,
const struct firmware **fw, const char *name)
{
struct fw_header *header;
int rc;
/* ask firmware_class module to get the boot firmware off disk */
rc = request_firmware(fw, name, &priv->pci_dev->dev);
if (rc < 0) {
IPW_ERROR("%s load failed: Reason %d\n", name, rc);
return rc;
}
header = (struct fw_header *)(*fw)->data;
if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) {
IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
name,
IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION);
return -EINVAL;
}
IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
name,
IPW_FW_MAJOR(header->version),
IPW_FW_MINOR(header->version),
(*fw)->size - sizeof(struct fw_header));
return 0;
}
#define CX2_RX_BUF_SIZE (3000)
static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
struct ipw_rx_queue *rxq)
{
unsigned long flags;
int i;
spin_lock_irqsave(&rxq->lock, flags);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
/* In the reset function, these buffers may have been allocated
* to an SKB, so we need to unmap and free potential storage */
if (rxq->pool[i].skb != NULL) {
pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(rxq->pool[i].skb);
}
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
}
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->processed = RX_QUEUE_SIZE - 1;
rxq->free_count = 0;
spin_unlock_irqrestore(&rxq->lock, flags);
}
#ifdef CONFIG_PM
static int fw_loaded = 0;
static const struct firmware *bootfw = NULL;
static const struct firmware *firmware = NULL;
static const struct firmware *ucode = NULL;
#endif
static int ipw_load(struct ipw_priv *priv)
{
#ifndef CONFIG_PM
const struct firmware *bootfw = NULL;
const struct firmware *firmware = NULL;
const struct firmware *ucode = NULL;
#endif
int rc = 0, retries = 3;
#ifdef CONFIG_PM
if (!fw_loaded) {
#endif
rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
if (rc)
goto error;
switch (priv->ieee->iw_mode) {
case IW_MODE_ADHOC:
rc = ipw_get_fw(priv, &ucode,
IPW_FW_NAME("ibss_ucode"));
if (rc)
goto error;
rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
break;
#ifdef CONFIG_IPW_PROMISC
case IW_MODE_MONITOR:
rc = ipw_get_fw(priv, &ucode,
IPW_FW_NAME("ibss_ucode"));
if (rc)
goto error;
rc = ipw_get_fw(priv, &firmware,
IPW_FW_NAME("sniffer"));
break;
#endif
case IW_MODE_INFRA:
rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
if (rc)
goto error;
rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
break;
default:
rc = -EINVAL;
}
if (rc)
goto error;
#ifdef CONFIG_PM
fw_loaded = 1;
}
#endif
if (!priv->rxq)
priv->rxq = ipw_rx_queue_alloc(priv);
else
ipw_rx_queue_reset(priv, priv->rxq);
if (!priv->rxq) {
IPW_ERROR("Unable to initialize Rx queue\n");
goto error;
}
retry:
/* Ensure interrupts are disabled */
ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
priv->status &= ~STATUS_INT_ENABLED;
/* ack pending interrupts */
ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
ipw_stop_nic(priv);
rc = ipw_reset_nic(priv);
if (rc) {
IPW_ERROR("Unable to reset NIC\n");
goto error;
}
ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND,
CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND);
/* DMA the initial boot firmware into the device */
rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
bootfw->size - sizeof(struct fw_header));
if (rc < 0) {
IPW_ERROR("Unable to load boot firmware\n");
goto error;
}
/* kick start the device */
ipw_start_nic(priv);
/* wait for the device to finish it's initial startup sequence */
rc = ipw_poll_bit(priv, CX2_INTA_RW,
CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
if (rc < 0) {
IPW_ERROR("device failed to boot initial fw image\n");
goto error;
}
IPW_DEBUG_INFO("initial device response after %dms\n", rc);
/* ack fw init done interrupt */
ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
/* DMA the ucode into the device */
rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
ucode->size - sizeof(struct fw_header));
if (rc < 0) {
IPW_ERROR("Unable to load ucode\n");
goto error;
}
/* stop nic */
ipw_stop_nic(priv);
/* DMA bss firmware into the device */
rc = ipw_load_firmware(priv, firmware->data +
sizeof(struct fw_header),
firmware->size - sizeof(struct fw_header));
if (rc < 0) {
IPW_ERROR("Unable to load firmware\n");
goto error;
}
ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
rc = ipw_queue_reset(priv);
if (rc) {
IPW_ERROR("Unable to initialize queues\n");
goto error;
}
/* Ensure interrupts are disabled */
ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
/* kick start the device */
ipw_start_nic(priv);
if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) {
if (retries > 0) {
IPW_WARNING("Parity error. Retrying init.\n");
retries--;
goto retry;
}
IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
rc = -EIO;
goto error;
}
/* wait for the device */
rc = ipw_poll_bit(priv, CX2_INTA_RW,
CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
if (rc < 0) {
IPW_ERROR("device failed to start after 500ms\n");
goto error;
}
IPW_DEBUG_INFO("device response after %dms\n", rc);
/* ack fw init done interrupt */
ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
/* read eeprom data and initialize the eeprom region of sram */
priv->eeprom_delay = 1;
ipw_eeprom_init_sram(priv);
/* enable interrupts */
ipw_enable_interrupts(priv);
/* Ensure our queue has valid packets */
ipw_rx_queue_replenish(priv);
ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read);
/* ack pending interrupts */
ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
#ifndef CONFIG_PM
release_firmware(bootfw);
release_firmware(ucode);
release_firmware(firmware);
#endif
return 0;
error:
if (priv->rxq) {
ipw_rx_queue_free(priv, priv->rxq);
priv->rxq = NULL;
}
ipw_tx_queue_free(priv);
if (bootfw)
release_firmware(bootfw);
if (ucode)
release_firmware(ucode);
if (firmware)
release_firmware(firmware);
#ifdef CONFIG_PM
fw_loaded = 0;
bootfw = ucode = firmware = NULL;
#endif
return rc;
}
/**
* DMA services
*
* Theory of operation
*
* A queue is a circular buffers with 'Read' and 'Write' pointers.
* 2 empty entries always kept in the buffer to protect from overflow.
*
* For Tx queue, there are low mark and high mark limits. If, after queuing
* the packet for Tx, free space become < low mark, Tx queue stopped. When
* reclaiming packets (on 'tx done IRQ), if free space become > high mark,
* Tx queue resumed.
*
* The IPW operates with six queues, one receive queue in the device's
* sram, one transmit queue for sending commands to the device firmware,
* and four transmit queues for data.
*
* The four transmit queues allow for performing quality of service (qos)
* transmissions as per the 802.11 protocol. Currently Linux does not
* provide a mechanism to the user for utilizing prioritized queues, so
* we only utilize the first data transmit queue (queue1).
*/
/**
* Driver allocates buffers of this size for Rx
*/
static inline int ipw_queue_space(const struct clx2_queue *q)
{
int s = q->last_used - q->first_empty;
if (s <= 0)
s += q->n_bd;
s -= 2; /* keep some reserve to not confuse empty and full situations */
if (s < 0)
s = 0;
return s;
}
static inline int ipw_queue_inc_wrap(int index, int n_bd)
{
return (++index == n_bd) ? 0 : index;
}
/**
* Initialize common DMA queue structure
*
* @param q queue to init
* @param count Number of BD's to allocate. Should be power of 2
* @param read_register Address for 'read' register
* (not offset within BAR, full address)
* @param write_register Address for 'write' register
* (not offset within BAR, full address)
* @param base_register Address for 'base' register
* (not offset within BAR, full address)
* @param size Address for 'size' register
* (not offset within BAR, full address)
*/
static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
int count, u32 read, u32 write, u32 base, u32 size)
{
q->n_bd = count;
q->low_mark = q->n_bd / 4;
if (q->low_mark < 4)
q->low_mark = 4;
q->high_mark = q->n_bd / 8;
if (q->high_mark < 2)
q->high_mark = 2;
q->first_empty = q->last_used = 0;
q->reg_r = read;
q->reg_w = write;
ipw_write32(priv, base, q->dma_addr);
ipw_write32(priv, size, count);
ipw_write32(priv, read, 0);
ipw_write32(priv, write, 0);
_ipw_read32(priv, 0x90);
}
static int ipw_queue_tx_init(struct ipw_priv *priv,
struct clx2_tx_queue *q,
int count, u32 read, u32 write, u32 base, u32 size)
{
struct pci_dev *dev = priv->pci_dev;
q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
if (!q->txb) {
IPW_ERROR("vmalloc for auxilary BD structures failed\n");
return -ENOMEM;
}
q->bd =
pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
if (!q->bd) {
IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
sizeof(q->bd[0]) * count);
kfree(q->txb);
q->txb = NULL;
return -ENOMEM;
}
ipw_queue_init(priv, &q->q, count, read, write, base, size);
return 0;
}
/**
* Free one TFD, those at index [txq->q.last_used].
* Do NOT advance any indexes
*
* @param dev
* @param txq
*/
static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
struct clx2_tx_queue *txq)
{
struct tfd_frame *bd = &txq->bd[txq->q.last_used];
struct pci_dev *dev = priv->pci_dev;
int i;
/* classify bd */
if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
/* nothing to cleanup after for host commands */
return;
/* sanity check */
if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) {
IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks);
/** @todo issue fatal error, it is quite serious situation */
return;
}
/* unmap chunks if any */
for (i = 0; i < bd->u.data.num_chunks; i++) {
pci_unmap_single(dev, bd->u.data.chunk_ptr[i],
bd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
if (txq->txb[txq->q.last_used]) {
ieee80211_txb_free(txq->txb[txq->q.last_used]);
txq->txb[txq->q.last_used] = NULL;
}
}
}
/**
* Deallocate DMA queue.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
*
* @param dev
* @param q
*/
static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
{
struct clx2_queue *q = &txq->q;
struct pci_dev *dev = priv->pci_dev;
if (q->n_bd == 0)
return;
/* first, empty all BD's */
for (; q->first_empty != q->last_used;
q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
ipw_queue_tx_free_tfd(priv, txq);
}
/* free buffers belonging to queue itself */
pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
q->dma_addr);
kfree(txq->txb);
/* 0 fill whole structure */
memset(txq, 0, sizeof(*txq));
}
/**
* Destroy all DMA queues and structures
*
* @param priv
*/
static void ipw_tx_queue_free(struct ipw_priv *priv)
{
/* Tx CMD queue */
ipw_queue_tx_free(priv, &priv->txq_cmd);
/* Tx queues */
ipw_queue_tx_free(priv, &priv->txq[0]);
ipw_queue_tx_free(priv, &priv->txq[1]);
ipw_queue_tx_free(priv, &priv->txq[2]);
ipw_queue_tx_free(priv, &priv->txq[3]);
}
static void inline __maybe_wake_tx(struct ipw_priv *priv)
{
if (netif_running(priv->net_dev)) {
switch (priv->port_type) {
case DCR_TYPE_MU_BSS:
case DCR_TYPE_MU_IBSS:
if (!(priv->status & STATUS_ASSOCIATED)) {
return;
}
}
netif_wake_queue(priv->net_dev);
}
}
static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
{
/* First 3 bytes are manufacturer */
bssid[0] = priv->mac_addr[0];
bssid[1] = priv->mac_addr[1];
bssid[2] = priv->mac_addr[2];
/* Last bytes are random */
get_random_bytes(&bssid[3], ETH_ALEN - 3);
bssid[0] &= 0xfe; /* clear multicast bit */
bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
}
static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
{
struct ipw_station_entry entry;
int i;
for (i = 0; i < priv->num_stations; i++) {
if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
/* Another node is active in network */
priv->missed_adhoc_beacons = 0;
if (!(priv->config & CFG_STATIC_CHANNEL))
/* when other nodes drop out, we drop out */
priv->config &= ~CFG_ADHOC_PERSIST;
return i;
}
}
if (i == MAX_STATIONS)
return IPW_INVALID_STATION;
IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
entry.reserved = 0;
entry.support_mode = 0;
memcpy(entry.mac_addr, bssid, ETH_ALEN);
memcpy(priv->stations[i], bssid, ETH_ALEN);
ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
&entry, sizeof(entry));
priv->num_stations++;
return i;
}
static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
{
int i;
for (i = 0; i < priv->num_stations; i++)
if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
return i;
return IPW_INVALID_STATION;
}
static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
{
int err;
if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) {
IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
return;
}
IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
"on channel %d.\n",
MAC_ARG(priv->assoc_request.bssid),
priv->assoc_request.channel);
priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
priv->status |= STATUS_DISASSOCIATING;
if (quiet)
priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
else
priv->assoc_request.assoc_type = HC_DISASSOCIATE;
err = ipw_send_associate(priv, &priv->assoc_request);
if (err) {
IPW_DEBUG_HC("Attempt to send [dis]associate command "
"failed.\n");
return;
}
}
static void ipw_disassociate(void *data)
{
ipw_send_disassociate(data, 0);
}
static void notify_wx_assoc_event(struct ipw_priv *priv)
{
union iwreq_data wrqu;
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
if (priv->status & STATUS_ASSOCIATED)
memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
else
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
}
struct ipw_status_code {
u16 status;
const char *reason;
};
static const struct ipw_status_code ipw_status_codes[] = {
{0x00, "Successful"},
{0x01, "Unspecified failure"},
{0x0A, "Cannot support all requested capabilities in the "
"Capability information field"},
{0x0B, "Reassociation denied due to inability to confirm that "
"association exists"},
{0x0C, "Association denied due to reason outside the scope of this "
"standard"},
{0x0D,
"Responding station does not support the specified authentication "
"algorithm"},
{0x0E,
"Received an Authentication frame with authentication sequence "
"transaction sequence number out of expected sequence"},
{0x0F, "Authentication rejected because of challenge failure"},
{0x10, "Authentication rejected due to timeout waiting for next "
"frame in sequence"},
{0x11, "Association denied because AP is unable to handle additional "
"associated stations"},
{0x12,
"Association denied due to requesting station not supporting all "
"of the datarates in the BSSBasicServiceSet Parameter"},
{0x13,
"Association denied due to requesting station not supporting "
"short preamble operation"},
{0x14,
"Association denied due to requesting station not supporting "
"PBCC encoding"},
{0x15,
"Association denied due to requesting station not supporting "
"channel agility"},
{0x19,
"Association denied due to requesting station not supporting "
"short slot operation"},
{0x1A,
"Association denied due to requesting station not supporting "
"DSSS-OFDM operation"},
{0x28, "Invalid Information Element"},
{0x29, "Group Cipher is not valid"},
{0x2A, "Pairwise Cipher is not valid"},
{0x2B, "AKMP is not valid"},
{0x2C, "Unsupported RSN IE version"},
{0x2D, "Invalid RSN IE Capabilities"},
{0x2E, "Cipher suite is rejected per security policy"},
};
#ifdef CONFIG_IPW_DEBUG
static const char *ipw_get_status_code(u16 status)
{
int i;
for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
if (ipw_status_codes[i].status == status)
return ipw_status_codes[i].reason;
return "Unknown status value.";
}
#endif
static void inline average_init(struct average *avg)
{
memset(avg, 0, sizeof(*avg));
}
static void inline average_add(struct average *avg, s16 val)
{
avg->sum -= avg->entries[avg->pos];
avg->sum += val;
avg->entries[avg->pos++] = val;
if (unlikely(avg->pos == AVG_ENTRIES)) {
avg->init = 1;
avg->pos = 0;
}
}
static s16 inline average_value(struct average *avg)
{
if (!unlikely(avg->init)) {
if (avg->pos)
return avg->sum / avg->pos;
return 0;
}
return avg->sum / AVG_ENTRIES;
}
static void ipw_reset_stats(struct ipw_priv *priv)
{
u32 len = sizeof(u32);
priv->quality = 0;
average_init(&priv->average_missed_beacons);
average_init(&priv->average_rssi);
average_init(&priv->average_noise);
priv->last_rate = 0;
priv->last_missed_beacons = 0;
priv->last_rx_packets = 0;
priv->last_tx_packets = 0;
priv->last_tx_failures = 0;
/* Firmware managed, reset only when NIC is restarted, so we have to
* normalize on the current value */
ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
&priv->last_rx_err, &len);
ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
&priv->last_tx_failures, &len);
/* Driver managed, reset with each association */
priv->missed_adhoc_beacons = 0;
priv->missed_beacons = 0;
priv->tx_packets = 0;
priv->rx_packets = 0;
}
static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
{
u32 i = 0x80000000;
u32 mask = priv->rates_mask;
/* If currently associated in B mode, restrict the maximum
* rate match to B rates */
if (priv->assoc_request.ieee_mode == IPW_B_MODE)
mask &= IEEE80211_CCK_RATES_MASK;
/* TODO: Verify that the rate is supported by the current rates
* list. */
while (i && !(mask & i))
i >>= 1;
switch (i) {
case IEEE80211_CCK_RATE_1MB_MASK: return 1000000;
case IEEE80211_CCK_RATE_2MB_MASK: return 2000000;
case IEEE80211_CCK_RATE_5MB_MASK: return 5500000;
case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000;
case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000;
case IEEE80211_CCK_RATE_11MB_MASK: return 11000000;
case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000;
case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000;
case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000;
case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000;
case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000;
case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000;
}
if (priv->ieee->mode == IEEE_B)
return 11000000;
else
return 54000000;
}
static u32 ipw_get_current_rate(struct ipw_priv *priv)
{
u32 rate, len = sizeof(rate);
int err;
if (!(priv->status & STATUS_ASSOCIATED))
return 0;
if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
&len);
if (err) {
IPW_DEBUG_INFO("failed querying ordinals.\n");
return 0;
}
} else
return ipw_get_max_rate(priv);
switch (rate) {
case IPW_TX_RATE_1MB: return 1000000;
case IPW_TX_RATE_2MB: return 2000000;
case IPW_TX_RATE_5MB: return 5500000;
case IPW_TX_RATE_6MB: return 6000000;
case IPW_TX_RATE_9MB: return 9000000;
case IPW_TX_RATE_11MB: return 11000000;
case IPW_TX_RATE_12MB: return 12000000;
case IPW_TX_RATE_18MB: return 18000000;
case IPW_TX_RATE_24MB: return 24000000;
case IPW_TX_RATE_36MB: return 36000000;
case IPW_TX_RATE_48MB: return 48000000;
case IPW_TX_RATE_54MB: return 54000000;
}
return 0;
}
#define PERFECT_RSSI (-50)
#define WORST_RSSI (-85)
#define IPW_STATS_INTERVAL (2 * HZ)
static void ipw_gather_stats(struct ipw_priv *priv)
{
u32 rx_err, rx_err_delta, rx_packets_delta;
u32 tx_failures, tx_failures_delta, tx_packets_delta;
u32 missed_beacons_percent, missed_beacons_delta;
u32 quality = 0;
u32 len = sizeof(u32);
s16 rssi;
u32 beacon_quality, signal_quality, tx_quality, rx_quality,
rate_quality;
if (!(priv->status & STATUS_ASSOCIATED)) {
priv->quality = 0;
return;
}
/* Update the statistics */
ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
&priv->missed_beacons, &len);
missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
priv->last_missed_beacons = priv->missed_beacons;
if (priv->assoc_request.beacon_interval) {
missed_beacons_percent = missed_beacons_delta *
(HZ * priv->assoc_request.beacon_interval) /
(IPW_STATS_INTERVAL * 10);
} else {
missed_beacons_percent = 0;
}
average_add(&priv->average_missed_beacons, missed_beacons_percent);
ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
rx_err_delta = rx_err - priv->last_rx_err;
priv->last_rx_err = rx_err;
ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
tx_failures_delta = tx_failures - priv->last_tx_failures;
priv->last_tx_failures = tx_failures;
rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
priv->last_rx_packets = priv->rx_packets;
tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
priv->last_tx_packets = priv->tx_packets;
/* Calculate quality based on the following:
*
* Missed beacon: 100% = 0, 0% = 70% missed
* Rate: 60% = 1Mbs, 100% = Max
* Rx and Tx errors represent a straight % of total Rx/Tx
* RSSI: 100% = > -50, 0% = < -80
* Rx errors: 100% = 0, 0% = 50% missed
*
* The lowest computed quality is used.
*
*/
#define BEACON_THRESHOLD 5
beacon_quality = 100 - missed_beacons_percent;
if (beacon_quality < BEACON_THRESHOLD)
beacon_quality = 0;
else
beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
(100 - BEACON_THRESHOLD);
IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
beacon_quality, missed_beacons_percent);
priv->last_rate = ipw_get_current_rate(priv);
rate_quality = priv->last_rate * 40 / priv->last_rate + 60;
IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
rate_quality, priv->last_rate / 1000000);
if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
rx_quality = 100 - (rx_err_delta * 100) /
(rx_packets_delta + rx_err_delta);
else
rx_quality = 100;
IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
rx_quality, rx_err_delta, rx_packets_delta);
if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
tx_quality = 100 - (tx_failures_delta * 100) /
(tx_packets_delta + tx_failures_delta);
else
tx_quality = 100;
IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
tx_quality, tx_failures_delta, tx_packets_delta);
rssi = average_value(&priv->average_rssi);
if (rssi > PERFECT_RSSI)
signal_quality = 100;
else if (rssi < WORST_RSSI)
signal_quality = 0;
else
signal_quality = (rssi - WORST_RSSI) * 100 /
(PERFECT_RSSI - WORST_RSSI);
IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
signal_quality, rssi);
quality = min(beacon_quality,
min(rate_quality,
min(tx_quality, min(rx_quality, signal_quality))));
if (quality == beacon_quality)
IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
quality);
if (quality == rate_quality)
IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
quality);
if (quality == tx_quality)
IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
quality);
if (quality == rx_quality)
IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
quality);
if (quality == signal_quality)
IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
quality);
priv->quality = quality;
queue_delayed_work(priv->workqueue, &priv->gather_stats,
IPW_STATS_INTERVAL);
}
/**
* Handle host notification packet.
* Called from interrupt routine
*/
static inline void ipw_rx_notification(struct ipw_priv *priv,
struct ipw_rx_notification *notif)
{
IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
switch (notif->subtype) {
case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
struct notif_association *assoc = ¬if->u.assoc;
switch (assoc->state) {
case CMAS_ASSOCIATED:{
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC,
"associated: '%s' " MAC_FMT
" \n",
escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
switch (priv->ieee->iw_mode) {
case IW_MODE_INFRA:
memcpy(priv->ieee->bssid,
priv->bssid, ETH_ALEN);
break;
case IW_MODE_ADHOC:
memcpy(priv->ieee->bssid,
priv->bssid, ETH_ALEN);
/* clear out the station table */
priv->num_stations = 0;
IPW_DEBUG_ASSOC
("queueing adhoc check\n");
queue_delayed_work(priv->
workqueue,
&priv->
adhoc_check,
priv->
assoc_request.
beacon_interval);
break;
}
priv->status &= ~STATUS_ASSOCIATING;
priv->status |= STATUS_ASSOCIATED;
netif_carrier_on(priv->net_dev);
if (netif_queue_stopped(priv->net_dev)) {
IPW_DEBUG_NOTIF
("waking queue\n");
netif_wake_queue(priv->net_dev);
} else {
IPW_DEBUG_NOTIF
("starting queue\n");
netif_start_queue(priv->
net_dev);
}
ipw_reset_stats(priv);
/* Ensure the rate is updated immediately */
priv->last_rate =
ipw_get_current_rate(priv);
schedule_work(&priv->gather_stats);
notify_wx_assoc_event(priv);
/* queue_delayed_work(priv->workqueue,
&priv->request_scan,
SCAN_ASSOCIATED_INTERVAL);
*/
break;
}
case CMAS_AUTHENTICATED:{
if (priv->
status & (STATUS_ASSOCIATED |
STATUS_AUTH)) {
#ifdef CONFIG_IPW_DEBUG
struct notif_authenticate *auth
= ¬if->u.auth;
IPW_DEBUG(IPW_DL_NOTIF |
IPW_DL_STATE |
IPW_DL_ASSOC,
"deauthenticated: '%s' "
MAC_FMT
": (0x%04X) - %s \n",
escape_essid(priv->
essid,
priv->
essid_len),
MAC_ARG(priv->bssid),
ntohs(auth->status),
ipw_get_status_code
(ntohs
(auth->status)));
#endif
priv->status &=
~(STATUS_ASSOCIATING |
STATUS_AUTH |
STATUS_ASSOCIATED);
netif_carrier_off(priv->
net_dev);
netif_stop_queue(priv->net_dev);
queue_work(priv->workqueue,
&priv->request_scan);
notify_wx_assoc_event(priv);
break;
}
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC,
"authenticated: '%s' " MAC_FMT
"\n",
escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
break;
}
case CMAS_INIT:{
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC,
"disassociated: '%s' " MAC_FMT
" \n",
escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
priv->status &=
~(STATUS_DISASSOCIATING |
STATUS_ASSOCIATING |
STATUS_ASSOCIATED | STATUS_AUTH);
netif_stop_queue(priv->net_dev);
if (!(priv->status & STATUS_ROAMING)) {
netif_carrier_off(priv->
net_dev);
notify_wx_assoc_event(priv);
/* Cancel any queued work ... */
cancel_delayed_work(&priv->
request_scan);
cancel_delayed_work(&priv->
adhoc_check);
/* Queue up another scan... */
queue_work(priv->workqueue,
&priv->request_scan);
cancel_delayed_work(&priv->
gather_stats);
} else {
priv->status |= STATUS_ROAMING;
queue_work(priv->workqueue,
&priv->request_scan);
}
ipw_reset_stats(priv);
break;
}
default:
IPW_ERROR("assoc: unknown (%d)\n",
assoc->state);
break;
}
break;
}
case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
struct notif_authenticate *auth = ¬if->u.auth;
switch (auth->state) {
case CMAS_AUTHENTICATED:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
"authenticated: '%s' " MAC_FMT " \n",
escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
priv->status |= STATUS_AUTH;
break;
case CMAS_INIT:
if (priv->status & STATUS_AUTH) {
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC,
"authentication failed (0x%04X): %s\n",
ntohs(auth->status),
ipw_get_status_code(ntohs
(auth->
status)));
}
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC,
"deauthenticated: '%s' " MAC_FMT "\n",
escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
priv->status &= ~(STATUS_ASSOCIATING |
STATUS_AUTH |
STATUS_ASSOCIATED);
netif_carrier_off(priv->net_dev);
netif_stop_queue(priv->net_dev);
queue_work(priv->workqueue,
&priv->request_scan);
notify_wx_assoc_event(priv);
break;
case CMAS_TX_AUTH_SEQ_1:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_1\n");
break;
case CMAS_RX_AUTH_SEQ_2:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_2\n");
break;
case CMAS_AUTH_SEQ_1_PASS:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
break;
case CMAS_AUTH_SEQ_1_FAIL:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
break;
case CMAS_TX_AUTH_SEQ_3:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_3\n");
break;
case CMAS_RX_AUTH_SEQ_4:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
break;
case CMAS_AUTH_SEQ_2_PASS:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
break;
case CMAS_AUTH_SEQ_2_FAIL:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
break;
case CMAS_TX_ASSOC:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "TX_ASSOC\n");
break;
case CMAS_RX_ASSOC_RESP:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
break;
case CMAS_ASSOCIATED:
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
IPW_DL_ASSOC, "ASSOCIATED\n");
break;
default:
IPW_DEBUG_NOTIF("auth: failure - %d\n",
auth->state);
break;
}
break;
}
case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
struct notif_channel_result *x =
¬if->u.channel_result;
if (notif->size == sizeof(*x)) {
IPW_DEBUG_SCAN("Scan result for channel %d\n",
x->channel_num);
} else {
IPW_DEBUG_SCAN("Scan result of wrong size %d "
"(should be %zd)\n",
notif->size, sizeof(*x));
}
break;
}
case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
struct notif_scan_complete *x = ¬if->u.scan_complete;
if (notif->size == sizeof(*x)) {
IPW_DEBUG_SCAN
("Scan completed: type %d, %d channels, "
"%d status\n", x->scan_type,
x->num_channels, x->status);
} else {
IPW_ERROR("Scan completed of wrong size %d "
"(should be %zd)\n",
notif->size, sizeof(*x));
}
priv->status &=
~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
cancel_delayed_work(&priv->scan_check);
if (!(priv->status & (STATUS_ASSOCIATED |
STATUS_ASSOCIATING |
STATUS_ROAMING |
STATUS_DISASSOCIATING)))
queue_work(priv->workqueue, &priv->associate);
else if (priv->status & STATUS_ROAMING) {
/* If a scan completed and we are in roam mode, then
* the scan that completed was the one requested as a
* result of entering roam... so, schedule the
* roam work */
queue_work(priv->workqueue, &priv->roam);
} else if (priv->status & STATUS_SCAN_PENDING)
queue_work(priv->workqueue,
&priv->request_scan);
priv->ieee->scans++;
break;
}
case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
struct notif_frag_length *x = ¬if->u.frag_len;
if (notif->size == sizeof(*x)) {
IPW_ERROR("Frag length: %d\n", x->frag_length);
} else {
IPW_ERROR("Frag length of wrong size %d "
"(should be %zd)\n",
notif->size, sizeof(*x));
}
break;
}
case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
struct notif_link_deterioration *x =
¬if->u.link_deterioration;
if (notif->size == sizeof(*x)) {
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
"link deterioration: '%s' " MAC_FMT
" \n", escape_essid(priv->essid,
priv->essid_len),
MAC_ARG(priv->bssid));
memcpy(&priv->last_link_deterioration, x,
sizeof(*x));
} else {
IPW_ERROR("Link Deterioration of wrong size %d "
"(should be %zd)\n",
notif->size, sizeof(*x));
}
break;
}
case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
IPW_ERROR("Dino config\n");
if (priv->hcmd
&& priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) {
/* TODO: Do anything special? */
} else {
IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
}
break;
}
case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
struct notif_beacon_state *x = ¬if->u.beacon_state;
if (notif->size != sizeof(*x)) {
IPW_ERROR
("Beacon state of wrong size %d (should "
"be %zd)\n", notif->size, sizeof(*x));
break;
}
if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) {
if (priv->status & STATUS_SCANNING) {
/* Stop scan to keep fw from getting
* stuck... */
queue_work(priv->workqueue,
&priv->abort_scan);
}
if (x->number > priv->missed_beacon_threshold &&
priv->status & STATUS_ASSOCIATED) {
IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
IPW_DL_STATE,
"Missed beacon: %d - disassociate\n",
x->number);
queue_work(priv->workqueue,
&priv->disassociate);
} else if (x->number > priv->roaming_threshold) {
IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
"Missed beacon: %d - initiate "
"roaming\n", x->number);
queue_work(priv->workqueue,
&priv->roam);
} else {
IPW_DEBUG_NOTIF("Missed beacon: %d\n",
x->number);
}
priv->notif_missed_beacons = x->number;
}
break;
}
case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
if (notif->size == sizeof(*x)) {
IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
"0x%02x station %d\n",
x->key_state, x->security_type,
x->station_index);
break;
}
IPW_ERROR
("TGi Tx Key of wrong size %d (should be %zd)\n",
notif->size, sizeof(*x));
break;
}
case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
struct notif_calibration *x = ¬if->u.calibration;
if (notif->size == sizeof(*x)) {
memcpy(&priv->calib, x, sizeof(*x));
IPW_DEBUG_INFO("TODO: Calibration\n");
break;
}
IPW_ERROR
("Calibration of wrong size %d (should be %zd)\n",
notif->size, sizeof(*x));
break;
}
case HOST_NOTIFICATION_NOISE_STATS:{
if (notif->size == sizeof(u32)) {
priv->last_noise =
(u8) (notif->u.noise.value & 0xff);
average_add(&priv->average_noise,
priv->last_noise);
break;
}
IPW_ERROR
("Noise stat is wrong size %d (should be %zd)\n",
notif->size, sizeof(u32));
break;
}
default:
IPW_ERROR("Unknown notification: "
"subtype=%d,flags=0x%2x,size=%d\n",
notif->subtype, notif->flags, notif->size);
}
}
/**
* Destroys all DMA structures and initialise them again
*
* @param priv
* @return error code
*/
static int ipw_queue_reset(struct ipw_priv *priv)
{
int rc = 0;
/** @todo customize queue sizes */
int nTx = 64, nTxCmd = 8;
ipw_tx_queue_free(priv);
/* Tx CMD queue */
rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
CX2_TX_CMD_QUEUE_READ_INDEX,
CX2_TX_CMD_QUEUE_WRITE_INDEX,
CX2_TX_CMD_QUEUE_BD_BASE,
CX2_TX_CMD_QUEUE_BD_SIZE);
if (rc) {
IPW_ERROR("Tx Cmd queue init failed\n");
goto error;
}
/* Tx queue(s) */
rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
CX2_TX_QUEUE_0_READ_INDEX,
CX2_TX_QUEUE_0_WRITE_INDEX,
CX2_TX_QUEUE_0_BD_BASE, CX2_TX_QUEUE_0_BD_SIZE);
if (rc) {
IPW_ERROR("Tx 0 queue init failed\n");
goto error;
}
rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
CX2_TX_QUEUE_1_READ_INDEX,
CX2_TX_QUEUE_1_WRITE_INDEX,
CX2_TX_QUEUE_1_BD_BASE, CX2_TX_QUEUE_1_BD_SIZE);
if (rc) {
IPW_ERROR("Tx 1 queue init failed\n");
goto error;
}
rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
CX2_TX_QUEUE_2_READ_INDEX,
CX2_TX_QUEUE_2_WRITE_INDEX,
CX2_TX_QUEUE_2_BD_BASE, CX2_TX_QUEUE_2_BD_SIZE);
if (rc) {
IPW_ERROR("Tx 2 queue init failed\n");
goto error;
}
rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
CX2_TX_QUEUE_3_READ_INDEX,
CX2_TX_QUEUE_3_WRITE_INDEX,
CX2_TX_QUEUE_3_BD_BASE, CX2_TX_QUEUE_3_BD_SIZE);
if (rc) {
IPW_ERROR("Tx 3 queue init failed\n");
goto error;
}
/* statistics */
priv->rx_bufs_min = 0;
priv->rx_pend_max = 0;
return rc;
error:
ipw_tx_queue_free(priv);
return rc;
}
/**
* Reclaim Tx queue entries no more used by NIC.
*
* When FW adwances 'R' index, all entries between old and
* new 'R' index need to be reclaimed. As result, some free space
* forms. If there is enough free space (> low mark), wake Tx queue.
*
* @note Need to protect against garbage in 'R' index
* @param priv
* @param txq
* @param qindex
* @return Number of used entries remains in the queue
*/
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
struct clx2_tx_queue *txq, int qindex)
{
u32 hw_tail;
int used;
struct clx2_queue *q = &txq->q;
hw_tail = ipw_read32(priv, q->reg_r);
if (hw_tail >= q->n_bd) {
IPW_ERROR
("Read index for DMA queue (%d) is out of range [0-%d)\n",
hw_tail, q->n_bd);
goto done;
}
for (; q->last_used != hw_tail;
q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
ipw_queue_tx_free_tfd(priv, txq);
priv->tx_packets++;
}
done:
if (ipw_queue_space(q) > q->low_mark && qindex >= 0) {
__maybe_wake_tx(priv);
}
used = q->first_empty - q->last_used;
if (used < 0)
used += q->n_bd;
return used;
}
static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
int len, int sync)
{
struct clx2_tx_queue *txq = &priv->txq_cmd;
struct clx2_queue *q = &txq->q;
struct tfd_frame *tfd;
if (ipw_queue_space(q) < (sync ? 1 : 2)) {
IPW_ERROR("No space for Tx\n");
return -EBUSY;
}
tfd = &txq->bd[q->first_empty];
txq->txb[q->first_empty] = NULL;
memset(tfd, 0, sizeof(*tfd));
tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
priv->hcmd_seq++;
tfd->u.cmd.index = hcmd;
tfd->u.cmd.length = len;
memcpy(tfd->u.cmd.payload, buf, len);
q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
ipw_write32(priv, q->reg_w, q->first_empty);
_ipw_read32(priv, 0x90);
return 0;
}
/*
* Rx theory of operation
*
* The host allocates 32 DMA target addresses and passes the host address
* to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
* 0 to 31
*
* Rx Queue Indexes
* The host/firmware share two index registers for managing the Rx buffers.
*
* The READ index maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ index is managed by the firmware once the card is enabled.
*
* The WRITE index maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization the host sets up the READ queue position to the first
* INDEX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer it will advance the READ index
* and fire the RX interrupt. The driver can then query the READ index and
* process as many packets as possible, moving the WRITE index forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
* ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replensish the ipw->rxq->rx_free.
* + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
* ipw->rxq is replenished and the READ INDEX is updated (updating the
* 'processed' and 'read' driver indexes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the ipw->rxq. The driver 'processed' index is updated.
* + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
* INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* ipw_rx_queue_alloc() Allocates rx_free
* ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
* ipw_rx_queue_restock
* ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE index. If insufficient rx_free buffers
* are available, schedules ipw_rx_queue_replenish
*
* -- enable interrupts --
* ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
* READ INDEX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls ipw_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/*
* If there are slots in the RX queue that need to be restocked,
* and we have free pre-allocated buffers, fill the ranks as much
* as we can pulling from rx_free.
*
* This moves the 'write' index forward to catch up with 'processed', and
* also updates the memory address in the firmware to reference the new
* target buffer.
*/
static void ipw_rx_queue_restock(struct ipw_priv *priv)
{
struct ipw_rx_queue *rxq = priv->rxq;
struct list_head *element;
struct ipw_rx_mem_buffer *rxb;
unsigned long flags;
int write;
spin_lock_irqsave(&rxq->lock, flags);
write = rxq->write;
while ((rxq->write != rxq->processed) && (rxq->free_count)) {
element = rxq->rx_free.next;
rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
list_del(element);
ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
rxb->dma_addr);
rxq->queue[rxq->write] = rxb;
rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
rxq->free_count--;
}
spin_unlock_irqrestore(&rxq->lock, flags);
/* If the pre-allocated buffer pool is dropping low, schedule to
* refill it */
if (rxq->free_count <= RX_LOW_WATERMARK)
queue_work(priv->workqueue, &priv->rx_replenish);
/* If we've added more space for the firmware to place data, tell it */
if (write != rxq->write)
ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write);
}
/*
* Move all used packet from rx_used to rx_free, allocating a new SKB for each.
* Also restock the Rx queue via ipw_rx_queue_restock.
*
* This is called as a scheduled work item (except for during intialization)
*/
static void ipw_rx_queue_replenish(void *data)
{
struct ipw_priv *priv = data;
struct ipw_rx_queue *rxq = priv->rxq;
struct list_head *element;
struct ipw_rx_mem_buffer *rxb;
unsigned long flags;
spin_lock_irqsave(&rxq->lock, flags);
while (!list_empty(&rxq->rx_used)) {
element = rxq->rx_used.next;
rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC);
if (!rxb->skb) {
printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
priv->net_dev->name);
/* We don't reschedule replenish work here -- we will
* call the restock method and if it still needs
* more buffers it will schedule replenish */
break;
}
list_del(element);
rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
rxb->dma_addr =
pci_map_single(priv->pci_dev, rxb->skb->data,
CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
}
spin_unlock_irqrestore(&rxq->lock, flags);
ipw_rx_queue_restock(priv);
}
/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
* If an SKB has been detached, the POOL needs to have it's SKB set to NULL
* This free routine walks the list of POOL entries and if SKB is set to
* non NULL it is unmapped and freed
*/
static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
{
int i;
if (!rxq)
return;
for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
if (rxq->pool[i].skb != NULL) {
pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(rxq->pool[i].skb);
}
}
kfree(rxq);
}
static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
{
struct ipw_rx_queue *rxq;
int i;
rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
memset(rxq, 0, sizeof(*rxq));
spin_lock_init(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->processed = RX_QUEUE_SIZE - 1;
rxq->free_count = 0;
return rxq;
}
static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
{
rate &= ~IEEE80211_BASIC_RATE_MASK;
if (ieee_mode == IEEE_A) {
switch (rate) {
case IEEE80211_OFDM_RATE_6MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
1 : 0;
case IEEE80211_OFDM_RATE_9MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
1 : 0;
case IEEE80211_OFDM_RATE_12MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_18MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_24MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_36MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_48MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_54MB:
return priv->
rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
default:
return 0;
}
}
/* B and G mixed */
switch (rate) {
case IEEE80211_CCK_RATE_1MB:
return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
case IEEE80211_CCK_RATE_2MB:
return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
case IEEE80211_CCK_RATE_5MB:
return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
case IEEE80211_CCK_RATE_11MB:
return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
}
/* If we are limited to B modulations, bail at this point */
if (ieee_mode == IEEE_B)
return 0;
/* G */
switch (rate) {
case IEEE80211_OFDM_RATE_6MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_9MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_12MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_18MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_24MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_36MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_48MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
case IEEE80211_OFDM_RATE_54MB:
return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
}
return 0;
}
static int ipw_compatible_rates(struct ipw_priv *priv,
const struct ieee80211_network *network,
struct ipw_supported_rates *rates)
{
int num_rates, i;
memset(rates, 0, sizeof(*rates));
num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
rates->num_rates = 0;
for (i = 0; i < num_rates; i++) {
if (!ipw_is_rate_in_mask
(priv, network->mode, network->rates[i])) {
IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
network->rates[i], priv->rates_mask);
continue;
}
rates->supported_rates[rates->num_rates++] = network->rates[i];
}
num_rates =
min(network->rates_ex_len, (u8) (IPW_MAX_RATES - num_rates));
for (i = 0; i < num_rates; i++) {
if (!ipw_is_rate_in_mask
(priv, network->mode, network->rates_ex[i])) {
IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
network->rates_ex[i], priv->rates_mask);
continue;
}
rates->supported_rates[rates->num_rates++] =
network->rates_ex[i];
}
return rates->num_rates;
}
static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
const struct ipw_supported_rates *src)
{
u8 i;
for (i = 0; i < src->num_rates; i++)
dest->supported_rates[i] = src->supported_rates[i];
dest->num_rates = src->num_rates;
}
/* TODO: Look at sniffed packets in the air to determine if the basic rate
* mask should ever be used -- right now all callers to add the scan rates are
* set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
u8 modulation, u32 rate_mask)
{
u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
IEEE80211_BASIC_RATE_MASK : 0;
if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
rates->supported_rates[rates->num_rates++] = basic_mask |
IEEE80211_CCK_RATE_5MB;
if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
rates->supported_rates[rates->num_rates++] = basic_mask |
IEEE80211_CCK_RATE_11MB;
}
static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
u8 modulation, u32 rate_mask)
{
u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
IEEE80211_BASIC_RATE_MASK : 0;
if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
rates->supported_rates[rates->num_rates++] = basic_mask |
IEEE80211_OFDM_RATE_6MB;
if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_OFDM_RATE_9MB;
if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
rates->supported_rates[rates->num_rates++] = basic_mask |
IEEE80211_OFDM_RATE_12MB;
if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_OFDM_RATE_18MB;
if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
rates->supported_rates[rates->num_rates++] = basic_mask |
IEEE80211_OFDM_RATE_24MB;
if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_OFDM_RATE_36MB;
if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_OFDM_RATE_48MB;
if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
rates->supported_rates[rates->num_rates++] =
IEEE80211_OFDM_RATE_54MB;
}
struct ipw_network_match {
struct ieee80211_network *network;
struct ipw_supported_rates rates;
};
static int ipw_best_network(struct ipw_priv *priv,
struct ipw_network_match *match,
struct ieee80211_network *network, int roaming)
{
struct ipw_supported_rates rates;
/* Verify that this network's capability is compatible with the
* current mode (AdHoc or Infrastructure) */
if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
!(network->capability & WLAN_CAPABILITY_ESS)) ||
(priv->ieee->iw_mode == IW_MODE_ADHOC &&
!(network->capability & WLAN_CAPABILITY_IBSS))) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
"capability mismatch.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid));
return 0;
}
/* If we do not have an ESSID for this AP, we can not associate with
* it */
if (network->flags & NETWORK_EMPTY_ESSID) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of hidden ESSID.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid));
return 0;
}
if (unlikely(roaming)) {
/* If we are roaming, then ensure check if this is a valid
* network to try and roam to */
if ((network->ssid_len != match->network->ssid_len) ||
memcmp(network->ssid, match->network->ssid,
network->ssid_len)) {
IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
"because of non-network ESSID.\n",
escape_essid(network->ssid,
network->ssid_len),
MAC_ARG(network->bssid));
return 0;
}
} else {
/* If an ESSID has been configured then compare the broadcast
* ESSID to ours */
if ((priv->config & CFG_STATIC_ESSID) &&
((network->ssid_len != priv->essid_len) ||
memcmp(network->ssid, priv->essid,
min(network->ssid_len, priv->essid_len)))) {
char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
strncpy(escaped,
escape_essid(network->ssid, network->ssid_len),
sizeof(escaped));
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of ESSID mismatch: '%s'.\n",
escaped, MAC_ARG(network->bssid),
escape_essid(priv->essid,
priv->essid_len));
return 0;
}
}
/* If the old network rate is better than this one, don't bother
* testing everything else. */
if (match->network && match->network->stats.rssi > network->stats.rssi) {
char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
strncpy(escaped,
escape_essid(network->ssid, network->ssid_len),
sizeof(escaped));
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
"'%s (" MAC_FMT ")' has a stronger signal.\n",
escaped, MAC_ARG(network->bssid),
escape_essid(match->network->ssid,
match->network->ssid_len),
MAC_ARG(match->network->bssid));
return 0;
}
/* If this network has already had an association attempt within the
* last 3 seconds, do not try and associate again... */
if (network->last_associate &&
time_after(network->last_associate + (HZ * 5UL), jiffies)) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of storming (%lu since last "
"assoc attempt).\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid),
(jiffies - network->last_associate) / HZ);
return 0;
}
/* Now go through and see if the requested network is valid... */
if (priv->ieee->scan_age != 0 &&
jiffies - network->last_scanned > priv->ieee->scan_age) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of age: %lums.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid),
(jiffies - network->last_scanned) / (HZ / 100));
return 0;
}
if ((priv->config & CFG_STATIC_CHANNEL) &&
(network->channel != priv->channel)) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of channel mismatch: %d != %d.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid),
network->channel, priv->channel);
return 0;
}
/* Verify privacy compatability */
if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of privacy mismatch: %s != %s.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid),
priv->capability & CAP_PRIVACY_ON ? "on" :
"off",
network->capability &
WLAN_CAPABILITY_PRIVACY ? "on" : "off");
return 0;
}
if ((priv->config & CFG_STATIC_BSSID) &&
memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of BSSID mismatch: " MAC_FMT ".\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
return 0;
}
/* Filter out any incompatible freq / mode combinations */
if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of invalid frequency/mode "
"combination.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid));
return 0;
}
ipw_compatible_rates(priv, network, &rates);
if (rates.num_rates == 0) {
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
"because of no compatible rates.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid));
return 0;
}
/* TODO: Perform any further minimal comparititive tests. We do not
* want to put too much policy logic here; intelligent scan selection
* should occur within a generic IEEE 802.11 user space tool. */
/* Set up 'new' AP to this network */
ipw_copy_rates(&match->rates, &rates);
match->network = network;
IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
escape_essid(network->ssid, network->ssid_len),
MAC_ARG(network->bssid));
return 1;
}
static void ipw_adhoc_create(struct ipw_priv *priv,
struct ieee80211_network *network)
{
/*
* For the purposes of scanning, we can set our wireless mode
* to trigger scans across combinations of bands, but when it
* comes to creating a new ad-hoc network, we have tell the FW
* exactly which band to use.
*
* We also have the possibility of an invalid channel for the
* chossen band. Attempting to create a new ad-hoc network
* with an invalid channel for wireless mode will trigger a
* FW fatal error.
*/
network->mode = is_valid_channel(priv->ieee->mode, priv->channel);
if (network->mode) {
network->channel = priv->channel;
} else {
IPW_WARNING("Overriding invalid channel\n");
if (priv->ieee->mode & IEEE_A) {
network->mode = IEEE_A;
priv->channel = band_a_active_channel[0];
} else if (priv->ieee->mode & IEEE_G) {
network->mode = IEEE_G;
priv->channel = band_b_active_channel[0];
} else {
network->mode = IEEE_B;
priv->channel = band_b_active_channel[0];
}
}
network->channel = priv->channel;
priv->config |= CFG_ADHOC_PERSIST;
ipw_create_bssid(priv, network->bssid);
network->ssid_len = priv->essid_len;
memcpy(network->ssid, priv->essid, priv->essid_len);
memset(&network->stats, 0, sizeof(network->stats));
network->capability = WLAN_CAPABILITY_IBSS;
if (priv->capability & CAP_PRIVACY_ON)
network->capability |= WLAN_CAPABILITY_PRIVACY;
network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
network->rates_ex_len = priv->rates.num_rates - network->rates_len;
memcpy(network->rates_ex,
&priv->rates.supported_rates[network->rates_len],
network->rates_ex_len);
network->last_scanned = 0;
network->flags = 0;
network->last_associate = 0;
network->time_stamp[0] = 0;
network->time_stamp[1] = 0;
network->beacon_interval = 100; /* Default */
network->listen_interval = 10; /* Default */
network->atim_window = 0; /* Default */
#ifdef CONFIG_IEEE80211_WPA
network->wpa_ie_len = 0;
network->rsn_ie_len = 0;
#endif /* CONFIG_IEEE80211_WPA */
}
static void ipw_send_wep_keys(struct ipw_priv *priv)
{
struct ipw_wep_key *key;
int i;
struct host_cmd cmd = {
.cmd = IPW_CMD_WEP_KEY,
.len = sizeof(*key)
};
key = (struct ipw_wep_key *)&cmd.param;
key->cmd_id = DINO_CMD_WEP_KEY;
key->seq_num = 0;
for (i = 0; i < 4; i++) {
key->key_index = i;
if (!(priv->sec.flags & (1 << i))) {
key->key_size = 0;
} else {
key->key_size = priv->sec.key_sizes[i];
memcpy(key->key, priv->sec.keys[i], key->key_size);
}
if (ipw_send_cmd(priv, &cmd)) {
IPW_ERROR("failed to send WEP_KEY command\n");
return;
}
}
}
static void ipw_adhoc_check(void *data)
{
struct ipw_priv *priv = data;
if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold &&
!(priv->config & CFG_ADHOC_PERSIST)) {
IPW_DEBUG_SCAN("Disassociating due to missed beacons\n");
ipw_remove_current_network(priv);
ipw_disassociate(priv);
return;
}
queue_delayed_work(priv->workqueue, &priv->adhoc_check,
priv->assoc_request.beacon_interval);
}
#ifdef CONFIG_IPW_DEBUG
static void ipw_debug_config(struct ipw_priv *priv)
{
IPW_DEBUG_INFO("Scan completed, no valid APs matched "
"[CFG 0x%08X]\n", priv->config);
if (priv->config & CFG_STATIC_CHANNEL)
IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
else
IPW_DEBUG_INFO("Channel unlocked.\n");
if (priv->config & CFG_STATIC_ESSID)
IPW_DEBUG_INFO("ESSID locked to '%s'\n",
escape_essid(priv->essid, priv->essid_len));
else
IPW_DEBUG_INFO("ESSID unlocked.\n");
if (priv->config & CFG_STATIC_BSSID)
IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel);
else
IPW_DEBUG_INFO("BSSID unlocked.\n");
if (priv->capability & CAP_PRIVACY_ON)
IPW_DEBUG_INFO("PRIVACY on\n");
else
IPW_DEBUG_INFO("PRIVACY off\n");
IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
}
#else
#define ipw_debug_config(x) do {} while (0)
#endif
static inline void ipw_set_fixed_rate(struct ipw_priv *priv,
struct ieee80211_network *network)
{
/* TODO: Verify that this works... */
struct ipw_fixed_rate fr = {
.tx_rates = priv->rates_mask
};
u32 reg;
u16 mask = 0;
/* Identify 'current FW band' and match it with the fixed
* Tx rates */
switch (priv->ieee->freq_band) {
case IEEE80211_52GHZ_BAND: /* A only */
/* IEEE_A */
if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
/* Invalid fixed rate mask */
fr.tx_rates = 0;
break;
}
fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
break;
default: /* 2.4Ghz or Mixed */
/* IEEE_B */
if (network->mode == IEEE_B) {
if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
/* Invalid fixed rate mask */
fr.tx_rates = 0;
}
break;
}
/* IEEE_G */
if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
IEEE80211_OFDM_RATES_MASK)) {
/* Invalid fixed rate mask */
fr.tx_rates = 0;
break;
}
if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
}
if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
}
if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
}
fr.tx_rates |= mask;
break;
}
reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
ipw_write_reg32(priv, reg, *(u32 *) & fr);
}
static int ipw_associate_network(struct ipw_priv *priv,
struct ieee80211_network *network,
struct ipw_supported_rates *rates, int roaming)
{
int err;
if (priv->config & CFG_FIXED_RATE)
ipw_set_fixed_rate(priv, network);
if (!(priv->config & CFG_STATIC_ESSID)) {
priv->essid_len = min(network->ssid_len,
(u8) IW_ESSID_MAX_SIZE);
memcpy(priv->essid, network->ssid, priv->essid_len);
}
network->last_associate = jiffies;
memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
priv->assoc_request.channel = network->channel;
if ((priv->capability & CAP_PRIVACY_ON) &&
(priv->capability & CAP_SHARED_KEY)) {
priv->assoc_request.auth_type = AUTH_SHARED_KEY;
priv->assoc_request.auth_key = priv->sec.active_key;
} else {
priv->assoc_request.auth_type = AUTH_OPEN;
priv->assoc_request.auth_key = 0;
}
if (priv->capability & CAP_PRIVACY_ON)
ipw_send_wep_keys(priv);
/*
* It is valid for our ieee device to support multiple modes, but
* when it comes to associating to a given network we have to choose
* just one mode.
*/
if (network->mode & priv->ieee->mode & IEEE_A)
priv->assoc_request.ieee_mode = IPW_A_MODE;
else if (network->mode & priv->ieee->mode & IEEE_G)
priv->assoc_request.ieee_mode = IPW_G_MODE;
else if (network->mode & priv->ieee->mode & IEEE_B)
priv->assoc_request.ieee_mode = IPW_B_MODE;
IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
"802.11%c [%d], enc=%s%s%s%c%c\n",
roaming ? "Rea" : "A",
escape_essid(priv->essid, priv->essid_len),
network->channel,
ipw_modes[priv->assoc_request.ieee_mode],
rates->num_rates,
priv->capability & CAP_PRIVACY_ON ? "on " : "off",
priv->capability & CAP_PRIVACY_ON ?
(priv->capability & CAP_SHARED_KEY ? "(shared)" :
"(open)") : "",
priv->capability & CAP_PRIVACY_ON ? " key=" : "",
priv->capability & CAP_PRIVACY_ON ?
'1' + priv->sec.active_key : '.',
priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
priv->assoc_request.beacon_interval = network->beacon_interval;
if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
(network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
priv->assoc_request.assoc_type = HC_IBSS_START;
priv->assoc_request.assoc_tsf_msw = 0;
priv->assoc_request.assoc_tsf_lsw = 0;
} else {
if (unlikely(roaming))
priv->assoc_request.assoc_type = HC_REASSOCIATE;
else
priv->assoc_request.assoc_type = HC_ASSOCIATE;
priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
}
memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN);
if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
priv->assoc_request.atim_window = network->atim_window;
} else {
memcpy(&priv->assoc_request.dest, network->bssid, ETH_ALEN);
priv->assoc_request.atim_window = 0;
}
priv->assoc_request.capability = network->capability;
priv->assoc_request.listen_interval = network->listen_interval;
err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
if (err) {
IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
return err;
}
rates->ieee_mode = priv->assoc_request.ieee_mode;
rates->purpose = IPW_RATE_CONNECT;
ipw_send_supported_rates(priv, rates);
if (priv->assoc_request.ieee_mode == IPW_G_MODE)
priv->sys_config.dot11g_auto_detection = 1;
else
priv->sys_config.dot11g_auto_detection = 0;
err = ipw_send_system_config(priv, &priv->sys_config);
if (err) {
IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
return err;
}
IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
err = ipw_set_sensitivity(priv, network->stats.rssi);
if (err) {
IPW_DEBUG_HC("Attempt to send associate command failed.\n");
return err;
}
/*
* If preemption is enabled, it is possible for the association
* to complete before we return from ipw_send_associate. Therefore
* we have to be sure and update our priviate data first.
*/
priv->channel = network->channel;
memcpy(priv->bssid, network->bssid, ETH_ALEN);
priv->status |= STATUS_ASSOCIATING;
priv->status &= ~STATUS_SECURITY_UPDATED;
priv->assoc_network = network;
err = ipw_send_associate(priv, &priv->assoc_request);
if (err) {
IPW_DEBUG_HC("Attempt to send associate command failed.\n");
return err;
}
IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
escape_essid(priv->essid, priv->essid_len),
MAC_ARG(priv->bssid));
return 0;
}
static void ipw_roam(void *data)
{
struct ipw_priv *priv = data;
struct ieee80211_network *network = NULL;
struct ipw_network_match match = {
.network = priv->assoc_network
};
/* The roaming process is as follows:
*
* 1. Missed beacon threshold triggers the roaming process by
* setting the status ROAM bit and requesting a scan.
* 2. When the scan completes, it schedules the ROAM work
* 3. The ROAM work looks at all of the known networks for one that
* is a better network than the currently associated. If none
* found, the ROAM process is over (ROAM bit cleared)
* 4. If a better network is found, a disassociation request is
* sent.
* 5. When the disassociation completes, the roam work is again
* scheduled. The second time through, the driver is no longer
* associated, and the newly selected network is sent an
* association request.
* 6. At this point ,the roaming process is complete and the ROAM
* status bit is cleared.
*/
/* If we are no longer associated, and the roaming bit is no longer
* set, then we are not actively roaming, so just return */
if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
return;
if (priv->status & STATUS_ASSOCIATED) {
/* First pass through ROAM process -- look for a better
* network */
u8 rssi = priv->assoc_network->stats.rssi;
priv->assoc_network->stats.rssi = -128;
list_for_each_entry(network, &priv->ieee->network_list, list) {
if (network != priv->assoc_network)
ipw_best_network(priv, &match, network, 1);
}
priv->assoc_network->stats.rssi = rssi;
if (match.network == priv->assoc_network) {
IPW_DEBUG_ASSOC("No better APs in this network to "
"roam to.\n");
priv->status &= ~STATUS_ROAMING;
ipw_debug_config(priv);
return;
}
ipw_send_disassociate(priv, 1);
priv->assoc_network = match.network;
return;
}
/* Second pass through ROAM process -- request association */
ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
priv->status &= ~STATUS_ROAMING;
}
static void ipw_associate(void *data)
{
struct ipw_priv *priv = data;
struct ieee80211_network *network = NULL;
struct ipw_network_match match = {
.network = NULL
};
struct ipw_supported_rates *rates;
struct list_head *element;
if (!(priv->config & CFG_ASSOCIATE) &&
!(priv->config & (CFG_STATIC_ESSID |
CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
return;
}
list_for_each_entry(network, &priv->ieee->network_list, list)
ipw_best_network(priv, &match, network, 0);
network = match.network;
rates = &match.rates;
if (network == NULL &&
priv->ieee->iw_mode == IW_MODE_ADHOC &&
priv->config & CFG_ADHOC_CREATE &&
priv->config & CFG_STATIC_ESSID &&
!list_empty(&priv->ieee->network_free_list)) {
element = priv->ieee->network_free_list.next;
network = list_entry(element, struct ieee80211_network, list);
ipw_adhoc_create(priv, network);
rates = &priv->rates;
list_del(element);
list_add_tail(&network->list, &priv->ieee->network_list);
}
/* If we reached the end of the list, then we don't have any valid
* matching APs */
if (!network) {
ipw_debug_config(priv);
queue_delayed_work(priv->workqueue, &priv->request_scan,
SCAN_INTERVAL);
return;
}
ipw_associate_network(priv, network, rates, 0);
}
static inline void ipw_handle_data_packet(struct ipw_priv *priv,
struct ipw_rx_mem_buffer *rxb,
struct ieee80211_rx_stats *stats)
{
struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
/* We received data from the HW, so stop the watchdog */
priv->net_dev->trans_start = jiffies;
/* We only process data packets if the
* interface is open */
if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) >
skb_tailroom(rxb->skb))) {
priv->ieee->stats.rx_errors++;
priv->wstats.discard.misc++;
IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
return;
} else if (unlikely(!netif_running(priv->net_dev))) {
priv->ieee->stats.rx_dropped++;
priv->wstats.discard.misc++;
IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
return;
}
/* Advance skb->data to the start of the actual payload */
skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
/* Set the size of the skb to the size of the frame */
skb_put(rxb->skb, pkt->u.frame.length);
IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
priv->ieee->stats.rx_errors++;
else /* ieee80211_rx succeeded, so it now owns the SKB */
rxb->skb = NULL;
}
/*
* Main entry function for recieving a packet with 80211 headers. This
* should be called when ever the FW has notified us that there is a new
* skb in the recieve queue.
*/
static void ipw_rx(struct ipw_priv *priv)
{
struct ipw_rx_mem_buffer *rxb;
struct ipw_rx_packet *pkt;
struct ieee80211_hdr *header;
u32 r, w, i;
u8 network_packet;
r = ipw_read32(priv, CX2_RX_READ_INDEX);
w = ipw_read32(priv, CX2_RX_WRITE_INDEX);
i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
while (i != r) {
rxb = priv->rxq->queue[i];
#ifdef CONFIG_IPW_DEBUG
if (unlikely(rxb == NULL)) {
printk(KERN_CRIT "Queue not allocated!\n");
break;
}
#endif
priv->rxq->queue[i] = NULL;
pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
CX2_RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
pkt = (struct ipw_rx_packet *)rxb->skb->data;
IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
pkt->header.message_type,
pkt->header.rx_seq_num, pkt->header.control_bits);
switch (pkt->header.message_type) {
case RX_FRAME_TYPE: /* 802.11 frame */ {
struct ieee80211_rx_stats stats = {
.rssi = pkt->u.frame.rssi_dbm -
IPW_RSSI_TO_DBM,
.signal = pkt->u.frame.signal,
.rate = pkt->u.frame.rate,
.mac_time = jiffies,
.received_channel =
pkt->u.frame.received_channel,
.freq =
(pkt->u.frame.
control & (1 << 0)) ?
IEEE80211_24GHZ_BAND :
IEEE80211_52GHZ_BAND,
.len = pkt->u.frame.length,
};
if (stats.rssi != 0)
stats.mask |= IEEE80211_STATMASK_RSSI;
if (stats.signal != 0)
stats.mask |= IEEE80211_STATMASK_SIGNAL;
if (stats.rate != 0)
stats.mask |= IEEE80211_STATMASK_RATE;
priv->rx_packets++;
#ifdef CONFIG_IPW_PROMISC
if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
ipw_handle_data_packet(priv, rxb,
&stats);
break;
}
#endif
header =
(struct ieee80211_hdr *)(rxb->skb->data +
IPW_RX_FRAME_SIZE);
/* TODO: Check Ad-Hoc dest/source and make sure
* that we are actually parsing these packets
* correctly -- we should probably use the
* frame control of the packet and disregard
* the current iw_mode */
switch (priv->ieee->iw_mode) {
case IW_MODE_ADHOC:
network_packet =
!memcmp(header->addr1,
priv->net_dev->dev_addr,
ETH_ALEN) ||
!memcmp(header->addr3,
priv->bssid, ETH_ALEN) ||
is_broadcast_ether_addr(header->
addr1)
|| is_multicast_ether_addr(header->
addr1);
break;
case IW_MODE_INFRA:
default:
network_packet =
!memcmp(header->addr3,
priv->bssid, ETH_ALEN) ||
!memcmp(header->addr1,
priv->net_dev->dev_addr,
ETH_ALEN) ||
is_broadcast_ether_addr(header->
addr1)
|| is_multicast_ether_addr(header->
addr1);
break;
}
if (network_packet && priv->assoc_network) {
priv->assoc_network->stats.rssi =
stats.rssi;
average_add(&priv->average_rssi,
stats.rssi);
priv->last_rx_rssi = stats.rssi;
}
IPW_DEBUG_RX("Frame: len=%u\n",
pkt->u.frame.length);
if (pkt->u.frame.length < frame_hdr_len(header)) {
IPW_DEBUG_DROP
("Received packet is too small. "
"Dropping.\n");
priv->ieee->stats.rx_errors++;
priv->wstats.discard.misc++;
break;
}
switch (WLAN_FC_GET_TYPE(header->frame_ctl)) {
case IEEE80211_FTYPE_MGMT:
ieee80211_rx_mgt(priv->ieee, header,
&stats);
if (priv->ieee->iw_mode == IW_MODE_ADHOC
&&
((WLAN_FC_GET_STYPE
(header->frame_ctl) ==
IEEE80211_STYPE_PROBE_RESP)
||
(WLAN_FC_GET_STYPE
(header->frame_ctl) ==
IEEE80211_STYPE_BEACON))
&& !memcmp(header->addr3,
priv->bssid, ETH_ALEN))
ipw_add_station(priv,
header->addr2);
break;
case IEEE80211_FTYPE_CTL:
break;
case IEEE80211_FTYPE_DATA:
if (network_packet)
ipw_handle_data_packet(priv,
rxb,
&stats);
else
IPW_DEBUG_DROP("Dropping: "
MAC_FMT ", "
MAC_FMT ", "
MAC_FMT "\n",
MAC_ARG(header->
addr1),
MAC_ARG(header->
addr2),
MAC_ARG(header->
addr3));
break;
}
break;
}
case RX_HOST_NOTIFICATION_TYPE:{
IPW_DEBUG_RX
("Notification: subtype=%02X flags=%02X size=%d\n",
pkt->u.notification.subtype,
pkt->u.notification.flags,
pkt->u.notification.size);
ipw_rx_notification(priv, &pkt->u.notification);
break;
}
default:
IPW_DEBUG_RX("Bad Rx packet of type %d\n",
pkt->header.message_type);
break;
}
/* For now we just don't re-use anything. We can tweak this
* later to try and re-use notification packets and SKBs that
* fail to Rx correctly */
if (rxb->skb != NULL) {
dev_kfree_skb_any(rxb->skb);
rxb->skb = NULL;
}
pci_unmap_single(priv->pci_dev, rxb->dma_addr,
CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
list_add_tail(&rxb->list, &priv->rxq->rx_used);
i = (i + 1) % RX_QUEUE_SIZE;
}
/* Backtrack one entry */
priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
ipw_rx_queue_restock(priv);
}
static void ipw_abort_scan(struct ipw_priv *priv)
{
int err;
if (priv->status & STATUS_SCAN_ABORTING) {
IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
return;
}
priv->status |= STATUS_SCAN_ABORTING;
err = ipw_send_scan_abort(priv);
if (err)
IPW_DEBUG_HC("Request to abort scan failed.\n");
}
static int ipw_request_scan(struct ipw_priv *priv)
{
struct ipw_scan_request_ext scan;
int channel_index = 0;
int i, err, scan_type;
if (priv->status & STATUS_EXIT_PENDING) {
IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n");
priv->status |= STATUS_SCAN_PENDING;
return 0;
}
if (priv->status & STATUS_SCANNING) {
IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n");
priv->status |= STATUS_SCAN_PENDING;
ipw_abort_scan(priv);
return 0;
}
if (priv->status & STATUS_SCAN_ABORTING) {
IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
priv->status |= STATUS_SCAN_PENDING;
return 0;
}
if (priv->status & STATUS_RF_KILL_MASK) {
IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
priv->status |= STATUS_SCAN_PENDING;
return 0;
}
memset(&scan, 0, sizeof(scan));
scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20;
scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20;
scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20;
scan.full_scan_index = ieee80211_get_scans(priv->ieee);
/* If we are roaming, then make this a directed scan for the current
* network. Otherwise, ensure that every other scan is a fast
* channel hop scan */
if ((priv->status & STATUS_ROAMING)
|| (!(priv->status & STATUS_ASSOCIATED)
&& (priv->config & CFG_STATIC_ESSID)
&& (scan.full_scan_index % 2))) {
err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
if (err) {
IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
return err;
}
scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
} else {
scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
}
if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
int start = channel_index;
for (i = 0; i < MAX_A_CHANNELS; i++) {
if (band_a_active_channel[i] == 0)
break;
if ((priv->status & STATUS_ASSOCIATED) &&
band_a_active_channel[i] == priv->channel)
continue;
channel_index++;
scan.channels_list[channel_index] =
band_a_active_channel[i];
ipw_set_scan_type(&scan, channel_index, scan_type);
}
if (start != channel_index) {
scan.channels_list[start] = (u8) (IPW_A_MODE << 6) |
(channel_index - start);
channel_index++;
}
}
if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
int start = channel_index;
for (i = 0; i < MAX_B_CHANNELS; i++) {
if (band_b_active_channel[i] == 0)
break;
if ((priv->status & STATUS_ASSOCIATED) &&
band_b_active_channel[i] == priv->channel)
continue;
channel_index++;
scan.channels_list[channel_index] =
band_b_active_channel[i];
ipw_set_scan_type(&scan, channel_index, scan_type);
}
if (start != channel_index) {
scan.channels_list[start] = (u8) (IPW_B_MODE << 6) |
(channel_index - start);
}
}
err = ipw_send_scan_request_ext(priv, &scan);
if (err) {
IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
return -EIO;
}
priv->status |= STATUS_SCANNING;
priv->status &= ~STATUS_SCAN_PENDING;
return 0;
}
/*
* This file defines the Wireless Extension handlers. It does not
* define any methods of hardware manipulation and relies on the
* functions defined in ipw_main to provide the HW interaction.
*
* The exception to this is the use of the ipw_get_ordinal()
* function used to poll the hardware vs. making unecessary calls.
*
*/
static int ipw_wx_get_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
if (!(priv->status & STATUS_ASSOCIATED))
strcpy(wrqu->name, "unassociated");
else
snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
ipw_modes[priv->assoc_request.ieee_mode]);
IPW_DEBUG_WX("Name: %s\n", wrqu->name);
return 0;
}
static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
{
if (channel == 0) {
IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
priv->config &= ~CFG_STATIC_CHANNEL;
if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
STATUS_ASSOCIATING))) {
IPW_DEBUG_ASSOC("Attempting to associate with new "
"parameters.\n");
ipw_associate(priv);
}
return 0;
}
priv->config |= CFG_STATIC_CHANNEL;
if (priv->channel == channel) {
IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
channel);
return 0;
}
IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
priv->channel = channel;
/* If we are currently associated, or trying to associate
* then see if this is a new channel (causing us to disassociate) */
if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
IPW_DEBUG_ASSOC("Disassociating due to channel change.\n");
ipw_disassociate(priv);
} else {
ipw_associate(priv);
}
return 0;
}
static int ipw_wx_set_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
struct iw_freq *fwrq = &wrqu->freq;
/* if setting by freq convert to channel */
if (fwrq->e == 1) {
if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
int f = fwrq->m / 100000;
int c = 0;
while ((c < REG_MAX_CHANNEL) &&
(f != ipw_frequencies[c]))
c++;
/* hack to fall through */
fwrq->e = 0;
fwrq->m = c + 1;
}
}
if (fwrq->e > 0 || fwrq->m > 1000)
return -EOPNOTSUPP;
IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
return ipw_set_channel(priv, (u8) fwrq->m);
return 0;
}
static int ipw_wx_get_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->freq.e = 0;
/* If we are associated, trying to associate, or have a statically
* configured CHANNEL then return that; otherwise return ANY */
if (priv->config & CFG_STATIC_CHANNEL ||
priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
wrqu->freq.m = priv->channel;
else
wrqu->freq.m = 0;
IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
return 0;
}
static int ipw_wx_set_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int err = 0;
IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
if (wrqu->mode == priv->ieee->iw_mode)
return 0;
switch (wrqu->mode) {
#ifdef CONFIG_IPW_PROMISC
case IW_MODE_MONITOR:
#endif
case IW_MODE_ADHOC:
case IW_MODE_INFRA:
break;
case IW_MODE_AUTO:
wrqu->mode = IW_MODE_INFRA;
break;
default:
return -EINVAL;
}
#ifdef CONFIG_IPW_PROMISC
if (priv->ieee->iw_mode == IW_MODE_MONITOR)
priv->net_dev->type = ARPHRD_ETHER;
if (wrqu->mode == IW_MODE_MONITOR)
priv->net_dev->type = ARPHRD_IEEE80211;
#endif /* CONFIG_IPW_PROMISC */
#ifdef CONFIG_PM
/* Free the existing firmware and reset the fw_loaded
* flag so ipw_load() will bring in the new firmawre */
if (fw_loaded) {
fw_loaded = 0;
}
release_firmware(bootfw);
release_firmware(ucode);
release_firmware(firmware);
bootfw = ucode = firmware = NULL;
#endif
priv->ieee->iw_mode = wrqu->mode;
ipw_adapter_restart(priv);
return err;
}
static int ipw_wx_get_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->mode = priv->ieee->iw_mode;
IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
return 0;
}
#define DEFAULT_RTS_THRESHOLD 2304U
#define MIN_RTS_THRESHOLD 1U
#define MAX_RTS_THRESHOLD 2304U
#define DEFAULT_BEACON_INTERVAL 100U
#define DEFAULT_SHORT_RETRY_LIMIT 7U
#define DEFAULT_LONG_RETRY_LIMIT 4U
/* Values are in microsecond */
static const s32 timeout_duration[] = {
350000,
250000,
75000,
37000,
25000,
};
static const s32 period_duration[] = {
400000,
700000,
1000000,
1000000,
1000000
};
static int ipw_wx_get_range(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
struct iw_range *range = (struct iw_range *)extra;
u16 val;
int i;
wrqu->data.length = sizeof(*range);
memset(range, 0, sizeof(*range));
/* 54Mbs == ~27 Mb/s real (802.11g) */
range->throughput = 27 * 1000 * 1000;
range->max_qual.qual = 100;
/* TODO: Find real max RSSI and stick here */
range->max_qual.level = 0;
range->max_qual.noise = 0;
range->max_qual.updated = 7; /* Updated all three */
range->avg_qual.qual = 70;
/* TODO: Find real 'good' to 'bad' threshol value for RSSI */
range->avg_qual.level = 0; /* FIXME to real average level */
range->avg_qual.noise = 0;
range->avg_qual.updated = 7; /* Updated all three */
range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
for (i = 0; i < range->num_bitrates; i++)
range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
500000;
range->max_rts = DEFAULT_RTS_THRESHOLD;
range->min_frag = MIN_FRAG_THRESHOLD;
range->max_frag = MAX_FRAG_THRESHOLD;
range->encoding_size[0] = 5;
range->encoding_size[1] = 13;
range->num_encoding_sizes = 2;
range->max_encoding_tokens = WEP_KEYS;
/* Set the Wireless Extension versions */
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 16;
range->num_channels = FREQ_COUNT;
val = 0;
for (i = 0; i < FREQ_COUNT; i++) {
range->freq[val].i = i + 1;
range->freq[val].m = ipw_frequencies[i] * 100000;
range->freq[val].e = 1;
val++;
if (val == IW_MAX_FREQUENCIES)
break;
}
range->num_frequency = val;
IPW_DEBUG_WX("GET Range\n");
return 0;
}
static int ipw_wx_set_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
static const unsigned char any[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static const unsigned char off[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
return -EINVAL;
if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
!memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
/* we disable mandatory BSSID association */
IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
priv->config &= ~CFG_STATIC_BSSID;
if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
STATUS_ASSOCIATING))) {
IPW_DEBUG_ASSOC("Attempting to associate with new "
"parameters.\n");
ipw_associate(priv);
}
return 0;
}
priv->config |= CFG_STATIC_BSSID;
if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
IPW_DEBUG_WX("BSSID set to current BSSID.\n");
return 0;
}
IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
MAC_ARG(wrqu->ap_addr.sa_data));
memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
/* If we are currently associated, or trying to associate
* then see if this is a new BSSID (causing us to disassociate) */
if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n");
ipw_disassociate(priv);
} else {
ipw_associate(priv);
}
return 0;
}
static int ipw_wx_get_wap(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
/* If we are associated, trying to associate, or have a statically
* configured BSSID then return that; otherwise return ANY */
if (priv->config & CFG_STATIC_BSSID ||
priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
wrqu->ap_addr.sa_family = ARPHRD_ETHER;
memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN);
} else
memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
MAC_ARG(wrqu->ap_addr.sa_data));
return 0;
}
static int ipw_wx_set_essid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
char *essid = ""; /* ANY */
int length = 0;
if (wrqu->essid.flags && wrqu->essid.length) {
length = wrqu->essid.length - 1;
essid = extra;
}
if (length == 0) {
IPW_DEBUG_WX("Setting ESSID to ANY\n");
priv->config &= ~CFG_STATIC_ESSID;
if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
STATUS_ASSOCIATING))) {
IPW_DEBUG_ASSOC("Attempting to associate with new "
"parameters.\n");
ipw_associate(priv);
}
return 0;
}
length = min(length, IW_ESSID_MAX_SIZE);
priv->config |= CFG_STATIC_ESSID;
if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
IPW_DEBUG_WX("ESSID set to current ESSID.\n");
return 0;
}
IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
length);
priv->essid_len = length;
memcpy(priv->essid, essid, priv->essid_len);
/* If we are currently associated, or trying to associate
* then see if this is a new ESSID (causing us to disassociate) */
if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n");
ipw_disassociate(priv);
} else {
ipw_associate(priv);
}
return 0;
}
static int ipw_wx_get_essid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
/* If we are associated, trying to associate, or have a statically
* configured ESSID then return that; otherwise return ANY */
if (priv->config & CFG_STATIC_ESSID ||
priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
IPW_DEBUG_WX("Getting essid: '%s'\n",
escape_essid(priv->essid, priv->essid_len));
memcpy(extra, priv->essid, priv->essid_len);
wrqu->essid.length = priv->essid_len;
wrqu->essid.flags = 1; /* active */
} else {
IPW_DEBUG_WX("Getting essid: ANY\n");
wrqu->essid.length = 0;
wrqu->essid.flags = 0; /* active */
}
return 0;
}
static int ipw_wx_set_nick(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
if (wrqu->data.length > IW_ESSID_MAX_SIZE)
return -E2BIG;
wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
memset(priv->nick, 0, sizeof(priv->nick));
memcpy(priv->nick, extra, wrqu->data.length);
IPW_DEBUG_TRACE("<<\n");
return 0;
}
static int ipw_wx_get_nick(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
IPW_DEBUG_WX("Getting nick\n");
wrqu->data.length = strlen(priv->nick) + 1;
memcpy(extra, priv->nick, wrqu->data.length);
wrqu->data.flags = 1; /* active */
return 0;
}
static int ipw_wx_set_rate(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
return -EOPNOTSUPP;
}
static int ipw_wx_get_rate(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->bitrate.value = priv->last_rate;
IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
return 0;
}
static int ipw_wx_set_rts(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
if (wrqu->rts.disabled)
priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
else {
if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
wrqu->rts.value > MAX_RTS_THRESHOLD)
return -EINVAL;
priv->rts_threshold = wrqu->rts.value;
}
ipw_send_rts_threshold(priv, priv->rts_threshold);
IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
return 0;
}
static int ipw_wx_get_rts(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->rts.value = priv->rts_threshold;
wrqu->rts.fixed = 0; /* no auto select */
wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
return 0;
}
static int ipw_wx_set_txpow(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
struct ipw_tx_power tx_power;
int i;
if (ipw_radio_kill_sw(priv, wrqu->power.disabled))
return -EINPROGRESS;
if (wrqu->power.flags != IW_TXPOW_DBM)
return -EINVAL;
if ((wrqu->power.value > 20) || (wrqu->power.value < -12))
return -EINVAL;
priv->tx_power = wrqu->power.value;
memset(&tx_power, 0, sizeof(tx_power));
/* configure device for 'G' band */
tx_power.ieee_mode = IPW_G_MODE;
tx_power.num_channels = 11;
for (i = 0; i < 11; i++) {
tx_power.channels_tx_power[i].channel_number = i + 1;
tx_power.channels_tx_power[i].tx_power = priv->tx_power;
}
if (ipw_send_tx_power(priv, &tx_power))
goto error;
/* configure device to also handle 'B' band */
tx_power.ieee_mode = IPW_B_MODE;
if (ipw_send_tx_power(priv, &tx_power))
goto error;
return 0;
error:
return -EIO;
}
static int ipw_wx_get_txpow(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->power.value = priv->tx_power;
wrqu->power.fixed = 1;
wrqu->power.flags = IW_TXPOW_DBM;
wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
IPW_DEBUG_WX("GET TX Power -> %s %d \n",
wrqu->power.disabled ? "ON" : "OFF", wrqu->power.value);
return 0;
}
static int ipw_wx_set_frag(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
if (wrqu->frag.disabled)
priv->ieee->fts = DEFAULT_FTS;
else {
if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
wrqu->frag.value > MAX_FRAG_THRESHOLD)
return -EINVAL;
priv->ieee->fts = wrqu->frag.value & ~0x1;
}
ipw_send_frag_threshold(priv, wrqu->frag.value);
IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
return 0;
}
static int ipw_wx_get_frag(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
wrqu->frag.value = priv->ieee->fts;
wrqu->frag.fixed = 0; /* no auto select */
wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
return 0;
}
static int ipw_wx_set_retry(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
return -EOPNOTSUPP;
}
static int ipw_wx_get_retry(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
return -EOPNOTSUPP;
}
static int ipw_wx_set_scan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
IPW_DEBUG_WX("Start scan\n");
if (ipw_request_scan(priv))
return -EIO;
return 0;
}
static int ipw_wx_get_scan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
}
static int ipw_wx_set_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *key)
{
struct ipw_priv *priv = ieee80211_priv(dev);
return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
}
static int ipw_wx_get_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *key)
{
struct ipw_priv *priv = ieee80211_priv(dev);
return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
}
static int ipw_wx_set_power(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int err;
if (wrqu->power.disabled) {
priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
if (err) {
IPW_DEBUG_WX("failed setting power mode.\n");
return err;
}
IPW_DEBUG_WX("SET Power Management Mode -> off\n");
return 0;
}
switch (wrqu->power.flags & IW_POWER_MODE) {
case IW_POWER_ON: /* If not specified */
case IW_POWER_MODE: /* If set all mask */
case IW_POWER_ALL_R: /* If explicitely state all */
break;
default: /* Otherwise we don't support it */
IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
wrqu->power.flags);
return -EOPNOTSUPP;
}
/* If the user hasn't specified a power management mode yet, default
* to BATTERY */
if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
else
priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
if (err) {
IPW_DEBUG_WX("failed setting power mode.\n");
return err;
}
IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
return 0;
}
static int ipw_wx_get_power(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
if (!(priv->power_mode & IPW_POWER_ENABLED)) {
wrqu->power.disabled = 1;
} else {
wrqu->power.disabled = 0;
}
IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
return 0;
}
static int ipw_wx_set_powermode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int mode = *(int *)extra;
int err;
if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
mode = IPW_POWER_AC;
priv->power_mode = mode;
} else {
priv->power_mode = IPW_POWER_ENABLED | mode;
}
if (priv->power_mode != mode) {
err = ipw_send_power_mode(priv, mode);
if (err) {
IPW_DEBUG_WX("failed setting power mode.\n");
return err;
}
}
return 0;
}
#define MAX_WX_STRING 80
static int ipw_wx_get_powermode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int level = IPW_POWER_LEVEL(priv->power_mode);
char *p = extra;
p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
switch (level) {
case IPW_POWER_AC:
p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
break;
case IPW_POWER_BATTERY:
p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
break;
default:
p += snprintf(p, MAX_WX_STRING - (p - extra),
"(Timeout %dms, Period %dms)",
timeout_duration[level - 1] / 1000,
period_duration[level - 1] / 1000);
}
if (!(priv->power_mode & IPW_POWER_ENABLED))
p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
wrqu->data.length = p - extra + 1;
return 0;
}
static int ipw_wx_set_wireless_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int mode = *(int *)extra;
u8 band = 0, modulation = 0;
if (mode == 0 || mode & ~IEEE_MODE_MASK) {
IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
return -EINVAL;
}
if (priv->adapter == IPW_2915ABG) {
priv->ieee->abg_ture = 1;
if (mode & IEEE_A) {
band |= IEEE80211_52GHZ_BAND;
modulation |= IEEE80211_OFDM_MODULATION;
} else
priv->ieee->abg_ture = 0;
} else {
if (mode & IEEE_A) {
IPW_WARNING("Attempt to set 2200BG into "
"802.11a mode\n");
return -EINVAL;
}
priv->ieee->abg_ture = 0;
}
if (mode & IEEE_B) {
band |= IEEE80211_24GHZ_BAND;
modulation |= IEEE80211_CCK_MODULATION;
} else
priv->ieee->abg_ture = 0;
if (mode & IEEE_G) {
band |= IEEE80211_24GHZ_BAND;
modulation |= IEEE80211_OFDM_MODULATION;
} else
priv->ieee->abg_ture = 0;
priv->ieee->mode = mode;
priv->ieee->freq_band = band;
priv->ieee->modulation = modulation;
init_supported_rates(priv, &priv->rates);
/* If we are currently associated, or trying to associate
* then see if this is a new configuration (causing us to
* disassociate) */
if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
/* The resulting association will trigger
* the new rates to be sent to the device */
IPW_DEBUG_ASSOC("Disassociating due to mode change.\n");
ipw_disassociate(priv);
} else
ipw_send_supported_rates(priv, &priv->rates);
IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
mode & IEEE_A ? 'a' : '.',
mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
return 0;
}
static int ipw_wx_get_wireless_mode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
switch (priv->ieee->freq_band) {
case IEEE80211_24GHZ_BAND:
switch (priv->ieee->modulation) {
case IEEE80211_CCK_MODULATION:
strncpy(extra, "802.11b (2)", MAX_WX_STRING);
break;
case IEEE80211_OFDM_MODULATION:
strncpy(extra, "802.11g (4)", MAX_WX_STRING);
break;
default:
strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
break;
}
break;
case IEEE80211_52GHZ_BAND:
strncpy(extra, "802.11a (1)", MAX_WX_STRING);
break;
default: /* Mixed Band */
switch (priv->ieee->modulation) {
case IEEE80211_CCK_MODULATION:
strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
break;
case IEEE80211_OFDM_MODULATION:
strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
break;
default:
strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
break;
}
break;
}
IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
wrqu->data.length = strlen(extra) + 1;
return 0;
}
#ifdef CONFIG_IPW_PROMISC
static int ipw_wx_set_promisc(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int *parms = (int *)extra;
int enable = (parms[0] > 0);
IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]);
if (enable) {
if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
priv->net_dev->type = ARPHRD_IEEE80211;
ipw_adapter_restart(priv);
}
ipw_set_channel(priv, parms[1]);
} else {
if (priv->ieee->iw_mode != IW_MODE_MONITOR)
return 0;
priv->net_dev->type = ARPHRD_ETHER;
ipw_adapter_restart(priv);
}
return 0;
}
static int ipw_wx_reset(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct ipw_priv *priv = ieee80211_priv(dev);
IPW_DEBUG_WX("RESET\n");
ipw_adapter_restart(priv);
return 0;
}
#endif // CONFIG_IPW_PROMISC
/* Rebase the WE IOCTLs to zero for the handler array */
#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
static iw_handler ipw_wx_handlers[] = {
IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
};
#define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV
#define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1
#define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2
#define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3
#define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4
#define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5
static struct iw_priv_args ipw_priv_args[] = {
{
.cmd = IPW_PRIV_SET_POWER,
.set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
.name = "set_power"},
{
.cmd = IPW_PRIV_GET_POWER,
.get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
.name = "get_power"},
{
.cmd = IPW_PRIV_SET_MODE,
.set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
.name = "set_mode"},
{
.cmd = IPW_PRIV_GET_MODE,
.get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
.name = "get_mode"},
#ifdef CONFIG_IPW_PROMISC
{
IPW_PRIV_SET_PROMISC,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
{
IPW_PRIV_RESET,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
#endif /* CONFIG_IPW_PROMISC */
};
static iw_handler ipw_priv_handler[] = {
ipw_wx_set_powermode,
ipw_wx_get_powermode,
ipw_wx_set_wireless_mode,
ipw_wx_get_wireless_mode,
#ifdef CONFIG_IPW_PROMISC
ipw_wx_set_promisc,
ipw_wx_reset,
#endif
};
static struct iw_handler_def ipw_wx_handler_def = {
.standard = ipw_wx_handlers,
.num_standard = ARRAY_SIZE(ipw_wx_handlers),
.num_private = ARRAY_SIZE(ipw_priv_handler),
.num_private_args = ARRAY_SIZE(ipw_priv_args),
.private = ipw_priv_handler,
.private_args = ipw_priv_args,
};
/*
* Get wireless statistics.
* Called by /proc/net/wireless
* Also called by SIOCGIWSTATS
*/
static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
struct iw_statistics *wstats;
wstats = &priv->wstats;
/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
* ipw2100_wx_wireless_stats seems to be called before fw is
* initialized. STATUS_ASSOCIATED will only be set if the hw is up
* and associated; if not associcated, the values are all meaningless
* anyway, so set them all to NULL and INVALID */
if (!(priv->status & STATUS_ASSOCIATED)) {
wstats->miss.beacon = 0;
wstats->discard.retries = 0;
wstats->qual.qual = 0;
wstats->qual.level = 0;
wstats->qual.noise = 0;
wstats->qual.updated = 7;
wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
return wstats;
}
wstats->qual.qual = priv->quality;
wstats->qual.level = average_value(&priv->average_rssi);
wstats->qual.noise = average_value(&priv->average_noise);
wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
IW_QUAL_NOISE_UPDATED;
wstats->miss.beacon = average_value(&priv->average_missed_beacons);
wstats->discard.retries = priv->last_tx_failures;
wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
/* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
goto fail_get_ordinal;
wstats->discard.retries += tx_retry; */
return wstats;
}
/* net device stuff */
static inline void init_sys_config(struct ipw_sys_config *sys_config)
{
memset(sys_config, 0, sizeof(struct ipw_sys_config));
sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
sys_config->answer_broadcast_ssid_probe = 0;
sys_config->accept_all_data_frames = 0;
sys_config->accept_non_directed_frames = 1;
sys_config->exclude_unicast_unencrypted = 0;
sys_config->disable_unicast_decryption = 1;
sys_config->exclude_multicast_unencrypted = 0;
sys_config->disable_multicast_decryption = 1;
sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
sys_config->dot11g_auto_detection = 0;
sys_config->enable_cts_to_self = 0;
sys_config->bt_coexist_collision_thr = 0;
sys_config->pass_noise_stats_to_host = 1;
}
static int ipw_net_open(struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
IPW_DEBUG_INFO("dev->open\n");
/* we should be verifying the device is ready to be opened */
if (!(priv->status & STATUS_RF_KILL_MASK) &&
(priv->status & STATUS_ASSOCIATED))
netif_start_queue(dev);
return 0;
}
static int ipw_net_stop(struct net_device *dev)
{
IPW_DEBUG_INFO("dev->close\n");
netif_stop_queue(dev);
return 0;
}
/*
todo:
modify to send one tfd per fragment instead of using chunking. otherwise
we need to heavily modify the ieee80211_skb_to_txb.
*/
static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)
txb->fragments[0]->data;
int i = 0;
struct tfd_frame *tfd;
struct clx2_tx_queue *txq = &priv->txq[0];
struct clx2_queue *q = &txq->q;
u8 id, hdr_len, unicast;
u16 remaining_bytes;
switch (priv->ieee->iw_mode) {
case IW_MODE_ADHOC:
hdr_len = IEEE80211_3ADDR_LEN;
unicast = !is_broadcast_ether_addr(hdr->addr1) &&
!is_multicast_ether_addr(hdr->addr1);
id = ipw_find_station(priv, hdr->addr1);
if (id == IPW_INVALID_STATION) {
id = ipw_add_station(priv, hdr->addr1);
if (id == IPW_INVALID_STATION) {
IPW_WARNING("Attempt to send data to "
"invalid cell: " MAC_FMT "\n",
MAC_ARG(hdr->addr1));
goto drop;
}
}
break;
case IW_MODE_INFRA:
default:
unicast = !is_broadcast_ether_addr(hdr->addr3) &&
!is_multicast_ether_addr(hdr->addr3);
hdr_len = IEEE80211_3ADDR_LEN;
id = 0;
break;
}
tfd = &txq->bd[q->first_empty];
txq->txb[q->first_empty] = txb;
memset(tfd, 0, sizeof(*tfd));
tfd->u.data.station_number = id;
tfd->control_flags.message_type = TX_FRAME_TYPE;
tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
tfd->u.data.cmd_id = DINO_CMD_TX;
tfd->u.data.len = txb->payload_size;
remaining_bytes = txb->payload_size;
if (unlikely(!unicast))
tfd->u.data.tx_flags = DCT_FLAG_NO_WEP;
else
tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD;
if (priv->assoc_request.ieee_mode == IPW_B_MODE)
tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK;
else
tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM;
if (priv->config & CFG_PREAMBLE)
tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL;
memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
/* payload */
tfd->u.data.num_chunks = min((u8) (NUM_TFD_CHUNKS - 2), txb->nr_frags);
for (i = 0; i < tfd->u.data.num_chunks; i++) {
IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
i, tfd->u.data.num_chunks,
txb->fragments[i]->len - hdr_len);
printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
txb->fragments[i]->len - hdr_len);
tfd->u.data.chunk_ptr[i] =
pci_map_single(priv->pci_dev,
txb->fragments[i]->data + hdr_len,
txb->fragments[i]->len - hdr_len,
PCI_DMA_TODEVICE);
tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len;
}
if (i != txb->nr_frags) {
struct sk_buff *skb;
u16 remaining_bytes = 0;
int j;
for (j = i; j < txb->nr_frags; j++)
remaining_bytes += txb->fragments[j]->len - hdr_len;
printk(KERN_INFO "Trying to reallocate for %d bytes\n",
remaining_bytes);
skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
if (skb != NULL) {
tfd->u.data.chunk_len[i] = remaining_bytes;
for (j = i; j < txb->nr_frags; j++) {
int size = txb->fragments[j]->len - hdr_len;
printk(KERN_INFO "Adding frag %d %d...\n",
j, size);
memcpy(skb_put(skb, size),
txb->fragments[j]->data + hdr_len, size);
}
dev_kfree_skb_any(txb->fragments[i]);
txb->fragments[i] = skb;
tfd->u.data.chunk_ptr[i] =
pci_map_single(priv->pci_dev, skb->data,
tfd->u.data.chunk_len[i],
PCI_DMA_TODEVICE);
tfd->u.data.num_chunks++;
}
}
/* kick DMA */
q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
ipw_write32(priv, q->reg_w, q->first_empty);
if (ipw_queue_space(q) < q->high_mark)
netif_stop_queue(priv->net_dev);
return;
drop:
IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
ieee80211_txb_free(txb);
}
static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
unsigned long flags;
IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
spin_lock_irqsave(&priv->lock, flags);
if (!(priv->status & STATUS_ASSOCIATED)) {
IPW_DEBUG_INFO("Tx attempt while not associated.\n");
priv->ieee->stats.tx_carrier_errors++;
netif_stop_queue(dev);
goto fail_unlock;
}
ipw_tx_skb(priv, txb);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
fail_unlock:
spin_unlock_irqrestore(&priv->lock, flags);
return 1;
}
static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
priv->ieee->stats.tx_packets = priv->tx_packets;
priv->ieee->stats.rx_packets = priv->rx_packets;
return &priv->ieee->stats;
}
static void ipw_net_set_multicast_list(struct net_device *dev)
{
}
static int ipw_net_set_mac_address(struct net_device *dev, void *p)
{
struct ipw_priv *priv = ieee80211_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
priv->config |= CFG_CUSTOM_MAC;
memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
priv->net_dev->name, MAC_ARG(priv->mac_addr));
ipw_adapter_restart(priv);
return 0;
}
static void ipw_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ipw_priv *p = ieee80211_priv(dev);
char vers[64];
char date[32];
u32 len;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
len = sizeof(vers);
ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
len = sizeof(date);
ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
vers, date);
strcpy(info->bus_info, pci_name(p->pci_dev));
info->eedump_len = CX2_EEPROM_IMAGE_SIZE;
}
static u32 ipw_ethtool_get_link(struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
return (priv->status & STATUS_ASSOCIATED) != 0;
}
static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
{
return CX2_EEPROM_IMAGE_SIZE;
}
static int ipw_ethtool_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * bytes)
{
struct ipw_priv *p = ieee80211_priv(dev);
if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
return -EINVAL;
memcpy(bytes, &((u8 *) p->eeprom)[eeprom->offset], eeprom->len);
return 0;
}
static int ipw_ethtool_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * bytes)
{
struct ipw_priv *p = ieee80211_priv(dev);
int i;
if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
return -EINVAL;
memcpy(&((u8 *) p->eeprom)[eeprom->offset], bytes, eeprom->len);
for (i = IPW_EEPROM_DATA;
i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; i++)
ipw_write8(p, i, p->eeprom[i]);
return 0;
}
static struct ethtool_ops ipw_ethtool_ops = {
.get_link = ipw_ethtool_get_link,
.get_drvinfo = ipw_ethtool_get_drvinfo,
.get_eeprom_len = ipw_ethtool_get_eeprom_len,
.get_eeprom = ipw_ethtool_get_eeprom,
.set_eeprom = ipw_ethtool_set_eeprom,
};
static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
{
struct ipw_priv *priv = data;
u32 inta, inta_mask;
if (!priv)
return IRQ_NONE;
spin_lock(&priv->lock);
if (!(priv->status & STATUS_INT_ENABLED)) {
/* Shared IRQ */
goto none;
}
inta = ipw_read32(priv, CX2_INTA_RW);
inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
if (inta == 0xFFFFFFFF) {
/* Hardware disappeared */
IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
goto none;
}
if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) {
/* Shared interrupt */
goto none;
}
/* tell the device to stop sending interrupts */
ipw_disable_interrupts(priv);
/* ack current interrupts */
inta &= (CX2_INTA_MASK_ALL & inta_mask);
ipw_write32(priv, CX2_INTA_RW, inta);
/* Cache INTA value for our tasklet */
priv->isr_inta = inta;
tasklet_schedule(&priv->irq_tasklet);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
none:
spin_unlock(&priv->lock);
return IRQ_NONE;
}
static void ipw_rf_kill(void *adapter)
{
struct ipw_priv *priv = adapter;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
if (rf_kill_active(priv)) {
IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
if (priv->workqueue)
queue_delayed_work(priv->workqueue,
&priv->rf_kill, 2 * HZ);
goto exit_unlock;
}
/* RF Kill is now disabled, so bring the device back up */
if (!(priv->status & STATUS_RF_KILL_MASK)) {
IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
"device\n");
/* we can not do an adapter restart while inside an irq lock */
queue_work(priv->workqueue, &priv->adapter_restart);
} else
IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
"enabled\n");
exit_unlock:
spin_unlock_irqrestore(&priv->lock, flags);
}
static int ipw_setup_deferred_work(struct ipw_priv *priv)
{
int ret = 0;
priv->workqueue = create_workqueue(DRV_NAME);
init_waitqueue_head(&priv->wait_command_queue);
INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv);
INIT_WORK(&priv->associate, ipw_associate, priv);
INIT_WORK(&priv->disassociate, ipw_disassociate, priv);
INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv);
INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv);
INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv);
INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv);
INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv);
INIT_WORK(&priv->request_scan,
(void (*)(void *))ipw_request_scan, priv);
INIT_WORK(&priv->gather_stats,
(void (*)(void *))ipw_gather_stats, priv);
INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv);
INIT_WORK(&priv->roam, ipw_roam, priv);
INIT_WORK(&priv->scan_check, ipw_scan_check, priv);
tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
ipw_irq_tasklet, (unsigned long)priv);
return ret;
}
static void shim__set_security(struct net_device *dev,
struct ieee80211_security *sec)
{
struct ipw_priv *priv = ieee80211_priv(dev);
int i;
for (i = 0; i < 4; i++) {
if (sec->flags & (1 << i)) {
priv->sec.key_sizes[i] = sec->key_sizes[i];
if (sec->key_sizes[i] == 0)
priv->sec.flags &= ~(1 << i);
else
memcpy(priv->sec.keys[i], sec->keys[i],
sec->key_sizes[i]);
priv->sec.flags |= (1 << i);
priv->status |= STATUS_SECURITY_UPDATED;
}
}
if ((sec->flags & SEC_ACTIVE_KEY) &&
priv->sec.active_key != sec->active_key) {
if (sec->active_key <= 3) {
priv->sec.active_key = sec->active_key;
priv->sec.flags |= SEC_ACTIVE_KEY;
} else
priv->sec.flags &= ~SEC_ACTIVE_KEY;
priv->status |= STATUS_SECURITY_UPDATED;
}
if ((sec->flags & SEC_AUTH_MODE) &&
(priv->sec.auth_mode != sec->auth_mode)) {
priv->sec.auth_mode = sec->auth_mode;
priv->sec.flags |= SEC_AUTH_MODE;
if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
priv->capability |= CAP_SHARED_KEY;
else
priv->capability &= ~CAP_SHARED_KEY;
priv->status |= STATUS_SECURITY_UPDATED;
}
if (sec->flags & SEC_ENABLED && priv->sec.enabled != sec->enabled) {
priv->sec.flags |= SEC_ENABLED;
priv->sec.enabled = sec->enabled;
priv->status |= STATUS_SECURITY_UPDATED;
if (sec->enabled)
priv->capability |= CAP_PRIVACY_ON;
else
priv->capability &= ~CAP_PRIVACY_ON;
}
if (sec->flags & SEC_LEVEL && priv->sec.level != sec->level) {
priv->sec.level = sec->level;
priv->sec.flags |= SEC_LEVEL;
priv->status |= STATUS_SECURITY_UPDATED;
}
/* To match current functionality of ipw2100 (which works well w/
* various supplicants, we don't force a disassociate if the
* privacy capability changes ... */
#if 0
if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
(((priv->assoc_request.capability &
WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
(!(priv->assoc_request.capability &
WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
IPW_DEBUG_ASSOC("Disassociating due to capability "
"change.\n");
ipw_disassociate(priv);
}
#endif
}
static int init_supported_rates(struct ipw_priv *priv,
struct ipw_supported_rates *rates)
{
/* TODO: Mask out rates based on priv->rates_mask */
memset(rates, 0, sizeof(*rates));
/* configure supported rates */
switch (priv->ieee->freq_band) {
case IEEE80211_52GHZ_BAND:
rates->ieee_mode = IPW_A_MODE;
rates->purpose = IPW_RATE_CAPABILITIES;
ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
IEEE80211_OFDM_DEFAULT_RATES_MASK);
break;
default: /* Mixed or 2.4Ghz */
rates->ieee_mode = IPW_G_MODE;
rates->purpose = IPW_RATE_CAPABILITIES;
ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
IEEE80211_CCK_DEFAULT_RATES_MASK);
if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
IEEE80211_OFDM_DEFAULT_RATES_MASK);
}
break;
}
return 0;
}
static int ipw_config(struct ipw_priv *priv)
{
int i;
struct ipw_tx_power tx_power;
memset(&priv->sys_config, 0, sizeof(priv->sys_config));
memset(&tx_power, 0, sizeof(tx_power));
/* This is only called from ipw_up, which resets/reloads the firmware
so, we don't need to first disable the card before we configure
it */
/* configure device for 'G' band */
tx_power.ieee_mode = IPW_G_MODE;
tx_power.num_channels = 11;
for (i = 0; i < 11; i++) {
tx_power.channels_tx_power[i].channel_number = i + 1;
tx_power.channels_tx_power[i].tx_power = priv->tx_power;
}
if (ipw_send_tx_power(priv, &tx_power))
goto error;
/* configure device to also handle 'B' band */
tx_power.ieee_mode = IPW_B_MODE;
if (ipw_send_tx_power(priv, &tx_power))
goto error;
/* initialize adapter address */
if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
goto error;
/* set basic system config settings */
init_sys_config(&priv->sys_config);
if (ipw_send_system_config(priv, &priv->sys_config))
goto error;
init_supported_rates(priv, &priv->rates);
if (ipw_send_supported_rates(priv, &priv->rates))
goto error;
/* Set request-to-send threshold */
if (priv->rts_threshold) {
if (ipw_send_rts_threshold(priv, priv->rts_threshold))
goto error;
}
if (ipw_set_random_seed(priv))
goto error;
/* final state transition to the RUN state */
if (ipw_send_host_complete(priv))
goto error;
/* If configured to try and auto-associate, kick off a scan */
if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv))
goto error;
return 0;
error:
return -EIO;
}
#define MAX_HW_RESTARTS 5
static int ipw_up(struct ipw_priv *priv)
{
int rc, i;
if (priv->status & STATUS_EXIT_PENDING)
return -EIO;
for (i = 0; i < MAX_HW_RESTARTS; i++) {
/* Load the microcode, firmware, and eeprom.
* Also start the clocks. */
rc = ipw_load(priv);
if (rc) {
IPW_ERROR("Unable to load firmware: 0x%08X\n", rc);
return rc;
}
ipw_init_ordinals(priv);
if (!(priv->config & CFG_CUSTOM_MAC))
eeprom_parse_mac(priv, priv->mac_addr);
memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
if (priv->status & STATUS_RF_KILL_MASK)
return 0;
rc = ipw_config(priv);
if (!rc) {
IPW_DEBUG_INFO("Configured device on count %i\n", i);
priv->notif_missed_beacons = 0;
netif_start_queue(priv->net_dev);
return 0;
} else {
IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n",
rc);
}
IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
i, MAX_HW_RESTARTS);
/* We had an error bringing up the hardware, so take it
* all the way back down so we can try again */
ipw_down(priv);
}
/* tried to restart and config the device for as long as our
* patience could withstand */
IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
return -EIO;
}
static void ipw_down(struct ipw_priv *priv)
{
/* Attempt to disable the card */
#if 0
ipw_send_card_disable(priv, 0);
#endif
/* tell the device to stop sending interrupts */
ipw_disable_interrupts(priv);
/* Clear all bits but the RF Kill */
priv->status &= STATUS_RF_KILL_MASK;
netif_carrier_off(priv->net_dev);
netif_stop_queue(priv->net_dev);
ipw_stop_nic(priv);
}
/* Called by register_netdev() */
static int ipw_net_init(struct net_device *dev)
{
struct ipw_priv *priv = ieee80211_priv(dev);
if (priv->status & STATUS_RF_KILL_SW) {
IPW_WARNING("Radio disabled by module parameter.\n");
return 0;
} else if (rf_kill_active(priv)) {
IPW_WARNING("Radio Frequency Kill Switch is On:\n"
"Kill switch must be turned off for "
"wireless networking to work.\n");
queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
return 0;
}
if (ipw_up(priv))
return -EIO;
return 0;
}
/* PCI driver stuff */
static struct pci_device_id card_ids[] = {
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
{PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */
{PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
{PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, card_ids);
static struct attribute *ipw_sysfs_entries[] = {
&dev_attr_rf_kill.attr,
&dev_attr_direct_dword.attr,
&dev_attr_indirect_byte.attr,
&dev_attr_indirect_dword.attr,
&dev_attr_mem_gpio_reg.attr,
&dev_attr_command_event_reg.attr,
&dev_attr_nic_type.attr,
&dev_attr_status.attr,
&dev_attr_cfg.attr,
&dev_attr_dump_errors.attr,
&dev_attr_dump_events.attr,
&dev_attr_eeprom_delay.attr,
&dev_attr_ucode_version.attr,
&dev_attr_rtc.attr,
NULL
};
static struct attribute_group ipw_attribute_group = {
.name = NULL, /* put in device directory */
.attrs = ipw_sysfs_entries,
};
static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = 0;
struct net_device *net_dev;
void __iomem *base;
u32 length, val;
struct ipw_priv *priv;
int band, modulation;
net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
if (net_dev == NULL) {
err = -ENOMEM;
goto out;
}
priv = ieee80211_priv(net_dev);
priv->ieee = netdev_priv(net_dev);
priv->net_dev = net_dev;
priv->pci_dev = pdev;
#ifdef CONFIG_IPW_DEBUG
ipw_debug_level = debug;
#endif
spin_lock_init(&priv->lock);
if (pci_enable_device(pdev)) {
err = -ENODEV;
goto out_free_ieee80211;
}
pci_set_master(pdev);
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
goto out_pci_disable_device;
}
pci_set_drvdata(pdev, priv);
err = pci_request_regions(pdev, DRV_NAME);
if (err)
goto out_pci_disable_device;
/* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state */
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
length = pci_resource_len(pdev, 0);
priv->hw_len = length;
base = ioremap_nocache(pci_resource_start(pdev, 0), length);
if (!base) {
err = -ENODEV;
goto out_pci_release_regions;
}
priv->hw_base = base;
IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
err = ipw_setup_deferred_work(priv);
if (err) {
IPW_ERROR("Unable to setup deferred work\n");
goto out_iounmap;
}
/* Initialize module parameter values here */
if (ifname)
strncpy(net_dev->name, ifname, IFNAMSIZ);
if (associate)
priv->config |= CFG_ASSOCIATE;
else
IPW_DEBUG_INFO("Auto associate disabled.\n");
if (auto_create)
priv->config |= CFG_ADHOC_CREATE;
else
IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
if (disable) {
priv->status |= STATUS_RF_KILL_SW;
IPW_DEBUG_INFO("Radio disabled.\n");
}
if (channel != 0) {
priv->config |= CFG_STATIC_CHANNEL;
priv->channel = channel;
IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
/* TODO: Validate that provided channel is in range */
}
switch (mode) {
case 1:
priv->ieee->iw_mode = IW_MODE_ADHOC;
break;
#ifdef CONFIG_IPW_PROMISC
case 2:
priv->ieee->iw_mode = IW_MODE_MONITOR;
break;
#endif
default:
case 0:
priv->ieee->iw_mode = IW_MODE_INFRA;
break;
}
if ((priv->pci_dev->device == 0x4223) ||
(priv->pci_dev->device == 0x4224)) {
printk(KERN_INFO DRV_NAME
": Detected Intel PRO/Wireless 2915ABG Network "
"Connection\n");
priv->ieee->abg_ture = 1;
band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
modulation = IEEE80211_OFDM_MODULATION |
IEEE80211_CCK_MODULATION;
priv->adapter = IPW_2915ABG;
priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
} else {
if (priv->pci_dev->device == 0x4221)
printk(KERN_INFO DRV_NAME
": Detected Intel PRO/Wireless 2225BG Network "
"Connection\n");
else
printk(KERN_INFO DRV_NAME
": Detected Intel PRO/Wireless 2200BG Network "
"Connection\n");
priv->ieee->abg_ture = 0;
band = IEEE80211_24GHZ_BAND;
modulation = IEEE80211_OFDM_MODULATION |
IEEE80211_CCK_MODULATION;
priv->adapter = IPW_2200BG;
priv->ieee->mode = IEEE_G | IEEE_B;
}
priv->ieee->freq_band = band;
priv->ieee->modulation = modulation;
priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
/* If power management is turned on, default to AC mode */
priv->power_mode = IPW_POWER_AC;
priv->tx_power = IPW_DEFAULT_TX_POWER;
err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
if (err) {
IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
goto out_destroy_workqueue;
}
SET_MODULE_OWNER(net_dev);
SET_NETDEV_DEV(net_dev, &pdev->dev);
priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
priv->ieee->set_security = shim__set_security;
net_dev->open = ipw_net_open;
net_dev->stop = ipw_net_stop;
net_dev->init = ipw_net_init;
net_dev->get_stats = ipw_net_get_stats;
net_dev->set_multicast_list = ipw_net_set_multicast_list;
net_dev->set_mac_address = ipw_net_set_mac_address;
net_dev->get_wireless_stats = ipw_get_wireless_stats;
net_dev->wireless_handlers = &ipw_wx_handler_def;
net_dev->ethtool_ops = &ipw_ethtool_ops;
net_dev->irq = pdev->irq;
net_dev->base_addr = (unsigned long)priv->hw_base;
net_dev->mem_start = pci_resource_start(pdev, 0);
net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
if (err) {
IPW_ERROR("failed to create sysfs device attributes\n");
goto out_release_irq;
}
err = register_netdev(net_dev);
if (err) {
IPW_ERROR("failed to register network device\n");
goto out_remove_group;
}
return 0;
out_remove_group:
sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
out_release_irq:
free_irq(pdev->irq, priv);
out_destroy_workqueue:
destroy_workqueue(priv->workqueue);
priv->workqueue = NULL;
out_iounmap:
iounmap(priv->hw_base);
out_pci_release_regions:
pci_release_regions(pdev);
out_pci_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
out_free_ieee80211:
free_ieee80211(priv->net_dev);
out:
return err;
}
static void ipw_pci_remove(struct pci_dev *pdev)
{
struct ipw_priv *priv = pci_get_drvdata(pdev);
if (!priv)
return;
priv->status |= STATUS_EXIT_PENDING;
sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
ipw_down(priv);
unregister_netdev(priv->net_dev);
if (priv->rxq) {
ipw_rx_queue_free(priv, priv->rxq);
priv->rxq = NULL;
}
ipw_tx_queue_free(priv);
/* ipw_down will ensure that there is no more pending work
* in the workqueue's, so we can safely remove them now. */
if (priv->workqueue) {
cancel_delayed_work(&priv->adhoc_check);
cancel_delayed_work(&priv->gather_stats);
cancel_delayed_work(&priv->request_scan);
cancel_delayed_work(&priv->rf_kill);
cancel_delayed_work(&priv->scan_check);
destroy_workqueue(priv->workqueue);
priv->workqueue = NULL;
}
free_irq(pdev->irq, priv);
iounmap(priv->hw_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_ieee80211(priv->net_dev);
#ifdef CONFIG_PM
if (fw_loaded) {
release_firmware(bootfw);
release_firmware(ucode);
release_firmware(firmware);
fw_loaded = 0;
}
#endif
}
#ifdef CONFIG_PM
static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct ipw_priv *priv = pci_get_drvdata(pdev);
struct net_device *dev = priv->net_dev;
printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
/* Take down the device; powers it off, etc. */
ipw_down(priv);
/* Remove the PRESENT state of the device */
netif_device_detach(dev);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int ipw_pci_resume(struct pci_dev *pdev)
{
struct ipw_priv *priv = pci_get_drvdata(pdev);
struct net_device *dev = priv->net_dev;
u32 val;
printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
pci_set_power_state(pdev, 0);
pci_enable_device(pdev);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
pci_restore_state(pdev, priv->pm_state);
#else
pci_restore_state(pdev);
#endif
/*
* Suspend/Resume resets the PCI configuration space, so we have to
* re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
* from interfering with C3 CPU state. pci_restore_state won't help
* here since it only restores the first 64 bytes pci config header.
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
/* Set the device back into the PRESENT state; this will also wake
* the queue of needed */
netif_device_attach(dev);
/* Bring the device back up */
queue_work(priv->workqueue, &priv->up);
return 0;
}
#endif
/* driver initialization stuff */
static struct pci_driver ipw_driver = {
.name = DRV_NAME,
.id_table = card_ids,
.probe = ipw_pci_probe,
.remove = __devexit_p(ipw_pci_remove),
#ifdef CONFIG_PM
.suspend = ipw_pci_suspend,
.resume = ipw_pci_resume,
#endif
};
static int __init ipw_init(void)
{
int ret;
printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
ret = pci_module_init(&ipw_driver);
if (ret) {
IPW_ERROR("Unable to initialize PCI module\n");
return ret;
}
ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
if (ret) {
IPW_ERROR("Unable to create driver sysfs file\n");
pci_unregister_driver(&ipw_driver);
return ret;
}
return ret;
}
static void __exit ipw_exit(void)
{
driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
pci_unregister_driver(&ipw_driver);
}
module_param(disable, int, 0444);
MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
module_param(associate, int, 0444);
MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
module_param(auto_create, int, 0444);
MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "debug output mask");
module_param(channel, int, 0444);
MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
module_param(ifname, charp, 0444);
MODULE_PARM_DESC(ifname, "network device name (default eth%d)");
#ifdef CONFIG_IPW_PROMISC
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
#else
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
#endif
module_exit(ipw_exit);
module_init(ipw_init);