/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Implementation of beacon processing. */
#include "core.h"
/*
* Configure parameters for the beacon queue
*
* This function will modify certain transmit queue properties depending on
* the operating mode of the station (AP or AdHoc). Parameters are AIFS
* settings and channel width min/max
*/
static int ath_beaconq_config(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath9k_tx_queue_info qi;
ath9k_hw_get_txq_props(ah, sc->sc_bhalq, &qi);
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
/* Always burst out beacon and CAB traffic. */
qi.tqi_aifs = 1;
qi.tqi_cwmin = 0;
qi.tqi_cwmax = 0;
} else {
/* Adhoc mode; important thing is to use 2x cwmin. */
qi.tqi_aifs = sc->sc_beacon_qi.tqi_aifs;
qi.tqi_cwmin = 2*sc->sc_beacon_qi.tqi_cwmin;
qi.tqi_cwmax = sc->sc_beacon_qi.tqi_cwmax;
}
if (!ath9k_hw_set_txq_props(ah, sc->sc_bhalq, &qi)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to update h/w beacon queue parameters\n",
__func__);
return 0;
} else {
ath9k_hw_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
return 1;
}
}
/*
* Setup the beacon frame for transmit.
*
* Associates the beacon frame buffer with a transmit descriptor. Will set
* up all required antenna switch parameters, rate codes, and channel flags.
* Beacons are always sent out at the lowest rate, and are not retried.
*/
static void ath_beacon_setup(struct ath_softc *sc,
struct ath_vap *avp, struct ath_buf *bf)
{
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct ath9k_11n_rate_series series[4];
const struct ath9k_rate_table *rt;
int flags, antenna;
u8 rix, rate;
int ctsrate = 0;
int ctsduration = 0;
DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n",
__func__, skb, skb->len);
/* setup descriptors */
ds = bf->bf_desc;
flags = ATH9K_TXDESC_NOACK;
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS &&
(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) {
ds->ds_link = bf->bf_daddr; /* self-linked */
flags |= ATH9K_TXDESC_VEOL;
/* Let hardware handle antenna switching. */
antenna = 0;
} else {
ds->ds_link = 0;
/*
* Switch antenna every beacon.
* Should only switch every beacon period, not for every
* SWBA's
* XXX assumes two antenna
*/
antenna = ((sc->ast_be_xmit / sc->sc_nbcnvaps) & 1 ? 2 : 1);
}
ds->ds_data = bf->bf_buf_addr;
/*
* Calculate rate code.
* XXX everything at min xmit rate
*/
rix = 0;
rt = sc->sc_currates;
rate = rt->info[rix].rateCode;
if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
rate |= rt->info[rix].shortPreamble;
ath9k_hw_set11n_txdesc(ah, ds,
skb->len + FCS_LEN, /* frame length */
ATH9K_PKT_TYPE_BEACON, /* Atheros packet type */
avp->av_btxctl.txpower, /* txpower XXX */
ATH9K_TXKEYIX_INVALID, /* no encryption */
ATH9K_KEY_TYPE_CLEAR, /* no encryption */
flags /* no ack,
veol for beacons */
);
/* NB: beacon's BufLen must be a multiple of 4 bytes */
ath9k_hw_filltxdesc(ah, ds,
roundup(skb->len, 4), /* buffer length */
true, /* first segment */
true, /* last segment */
ds /* first descriptor */
);
memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
series[0].Tries = 1;
series[0].Rate = rate;
series[0].ChSel = sc->sc_tx_chainmask;
series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0;
ath9k_hw_set11n_ratescenario(ah, ds, ds, 0,
ctsrate, ctsduration, series, 4, 0);
}
/*
* Generate beacon frame and queue cab data for a vap.
*
* Updates the contents of the beacon frame. It is assumed that the buffer for
* the beacon frame has been allocated in the ATH object, and simply needs to
* be filled for this cycle. Also, any CAB (crap after beacon?) traffic will
* be added to the beacon frame at this point.
*/
static struct ath_buf *ath_beacon_generate(struct ath_softc *sc, int if_id)
{
struct ath_buf *bf;
struct ath_vap *avp;
struct sk_buff *skb;
struct ath_txq *cabq;
struct ieee80211_tx_info *info;
int cabq_depth;
avp = sc->sc_vaps[if_id];
ASSERT(avp);
cabq = sc->sc_cabq;
if (avp->av_bcbuf == NULL) {
DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n",
__func__, avp, avp->av_bcbuf);
return NULL;
}
bf = avp->av_bcbuf;
skb = (struct sk_buff *)bf->bf_mpdu;
if (skb) {
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
skb_end_pointer(skb) - skb->head,
PCI_DMA_TODEVICE);
}
skb = ieee80211_beacon_get(sc->hw, avp->av_if_data);
bf->bf_mpdu = skb;
if (skb == NULL)
return NULL;
info = IEEE80211_SKB_CB(skb);
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
/*
* TODO: make sure the seq# gets assigned properly (vs. other
* TX frames)
*/
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
sc->seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
}
bf->bf_buf_addr = bf->bf_dmacontext =
pci_map_single(sc->pdev, skb->data,
skb_end_pointer(skb) - skb->head,
PCI_DMA_TODEVICE);
skb = ieee80211_get_buffered_bc(sc->hw, avp->av_if_data);
/*
* if the CABQ traffic from previous DTIM is pending and the current
* beacon is also a DTIM.
* 1) if there is only one vap let the cab traffic continue.
* 2) if there are more than one vap and we are using staggered
* beacons, then drain the cabq by dropping all the frames in
* the cabq so that the current vaps cab traffic can be scheduled.
*/
spin_lock_bh(&cabq->axq_lock);
cabq_depth = cabq->axq_depth;
spin_unlock_bh(&cabq->axq_lock);
if (skb && cabq_depth) {
/*
* Unlock the cabq lock as ath_tx_draintxq acquires
* the lock again which is a common function and that
* acquires txq lock inside.
*/
if (sc->sc_nvaps > 1) {
ath_tx_draintxq(sc, cabq, false);
DPRINTF(sc, ATH_DBG_BEACON,
"%s: flush previous cabq traffic\n", __func__);
}
}
/* Construct tx descriptor. */
ath_beacon_setup(sc, avp, bf);
/*
* Enable the CAB queue before the beacon queue to
* insure cab frames are triggered by this beacon.
*/
while (skb) {
ath_tx_cabq(sc, skb);
skb = ieee80211_get_buffered_bc(sc->hw, avp->av_if_data);
}
return bf;
}
/*
* Startup beacon transmission for adhoc mode when they are sent entirely
* by the hardware using the self-linked descriptor + veol trick.
*/
static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ath_vap *avp;
struct sk_buff *skb;
avp = sc->sc_vaps[if_id];
ASSERT(avp);
if (avp->av_bcbuf == NULL) {
DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n",
__func__, avp, avp != NULL ? avp->av_bcbuf : NULL);
return;
}
bf = avp->av_bcbuf;
skb = (struct sk_buff *) bf->bf_mpdu;
/* Construct tx descriptor. */
ath_beacon_setup(sc, avp, bf);
/* NB: caller is known to have already stopped tx dma */
ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
ath9k_hw_txstart(ah, sc->sc_bhalq);
DPRINTF(sc, ATH_DBG_BEACON, "%s: TXDP%u = %llx (%p)\n", __func__,
sc->sc_bhalq, ito64(bf->bf_daddr), bf->bf_desc);
}
/*
* Setup a h/w transmit queue for beacons.
*
* This function allocates an information structure (struct ath9k_txq_info)
* on the stack, sets some specific parameters (zero out channel width
* min/max, and enable aifs). The info structure does not need to be
* persistant.
*/
int ath_beaconq_setup(struct ath_hal *ah)
{
struct ath9k_tx_queue_info qi;
memset(&qi, 0, sizeof(qi));
qi.tqi_aifs = 1;
qi.tqi_cwmin = 0;
qi.tqi_cwmax = 0;
/* NB: don't enable any interrupts */
return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
}
/*
* Allocate and setup an initial beacon frame.
*
* Allocate a beacon state variable for a specific VAP instance created on
* the ATH interface. This routine also calculates the beacon "slot" for
* staggared beacons in the mBSSID case.
*/
int ath_beacon_alloc(struct ath_softc *sc, int if_id)
{
struct ath_vap *avp;
struct ieee80211_hdr *hdr;
struct ath_buf *bf;
struct sk_buff *skb;
__le64 tstamp;
avp = sc->sc_vaps[if_id];
ASSERT(avp);
/* Allocate a beacon descriptor if we haven't done so. */
if (!avp->av_bcbuf) {
/* Allocate beacon state for hostap/ibss. We know
* a buffer is available. */
avp->av_bcbuf = list_first_entry(&sc->sc_bbuf,
struct ath_buf, list);
list_del(&avp->av_bcbuf->list);
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP ||
!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) {
int slot;
/*
* Assign the vap to a beacon xmit slot. As
* above, this cannot fail to find one.
*/
avp->av_bslot = 0;
for (slot = 0; slot < ATH_BCBUF; slot++)
if (sc->sc_bslot[slot] == ATH_IF_ID_ANY) {
/*
* XXX hack, space out slots to better
* deal with misses
*/
if (slot+1 < ATH_BCBUF &&
sc->sc_bslot[slot+1] ==
ATH_IF_ID_ANY) {
avp->av_bslot = slot+1;
break;
}
avp->av_bslot = slot;
/* NB: keep looking for a double slot */
}
BUG_ON(sc->sc_bslot[avp->av_bslot] != ATH_IF_ID_ANY);
sc->sc_bslot[avp->av_bslot] = if_id;
sc->sc_nbcnvaps++;
}
}
/* release the previous beacon frame , if it already exists. */
bf = avp->av_bcbuf;
if (bf->bf_mpdu != NULL) {
skb = (struct sk_buff *)bf->bf_mpdu;
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
skb_end_pointer(skb) - skb->head,
PCI_DMA_TODEVICE);
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
}
/*
* NB: the beacon data buffer must be 32-bit aligned.
* FIXME: Fill avp->av_btxctl.txpower and
* avp->av_btxctl.shortPreamble
*/
skb = ieee80211_beacon_get(sc->hw, avp->av_if_data);
if (skb == NULL) {
DPRINTF(sc, ATH_DBG_BEACON, "%s: cannot get skb\n",
__func__);
return -ENOMEM;
}
tstamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
sc->bc_tstamp = le64_to_cpu(tstamp);
/*
* Calculate a TSF adjustment factor required for
* staggered beacons. Note that we assume the format
* of the beacon frame leaves the tstamp field immediately
* following the header.
*/
if (avp->av_bslot > 0) {
u64 tsfadjust;
__le64 val;
int intval;
intval = sc->hw->conf.beacon_int ?
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
/*
* The beacon interval is in TU's; the TSF in usecs.
* We figure out how many TU's to add to align the
* timestamp then convert to TSF units and handle
* byte swapping before writing it in the frame.
* The hardware will then add this each time a beacon
* frame is sent. Note that we align vap's 1..N
* and leave vap 0 untouched. This means vap 0
* has a timestamp in one beacon interval while the
* others get a timestamp aligned to the next interval.
*/
tsfadjust = (intval * (ATH_BCBUF - avp->av_bslot)) / ATH_BCBUF;
val = cpu_to_le64(tsfadjust << 10); /* TU->TSF */
DPRINTF(sc, ATH_DBG_BEACON,
"%s: %s beacons, bslot %d intval %u tsfadjust %llu\n",
__func__, "stagger",
avp->av_bslot, intval, (unsigned long long)tsfadjust);
hdr = (struct ieee80211_hdr *)skb->data;
memcpy(&hdr[1], &val, sizeof(val));
}
bf->bf_buf_addr = bf->bf_dmacontext =
pci_map_single(sc->pdev, skb->data,
skb_end_pointer(skb) - skb->head,
PCI_DMA_TODEVICE);
bf->bf_mpdu = skb;
return 0;
}
/*
* Reclaim beacon resources and return buffer to the pool.
*
* Checks the VAP to put the beacon frame buffer back to the ATH object
* queue, and de-allocates any skbs that were sent as CAB traffic.
*/
void ath_beacon_return(struct ath_softc *sc, struct ath_vap *avp)
{
if (avp->av_bcbuf != NULL) {
struct ath_buf *bf;
if (avp->av_bslot != -1) {
sc->sc_bslot[avp->av_bslot] = ATH_IF_ID_ANY;
sc->sc_nbcnvaps--;
}
bf = avp->av_bcbuf;
if (bf->bf_mpdu != NULL) {
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
skb_end_pointer(skb) - skb->head,
PCI_DMA_TODEVICE);
dev_kfree_skb_any(skb);
bf->bf_mpdu = NULL;
}
list_add_tail(&bf->list, &sc->sc_bbuf);
avp->av_bcbuf = NULL;
}
}
/*
* Tasklet for Sending Beacons
*
* Transmit one or more beacon frames at SWBA. Dynamic updates to the frame
* contents are done as needed and the slot time is also adjusted based on
* current state.
*/
void ath9k_beacon_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf = NULL;
int slot, if_id;
u32 bfaddr;
u32 rx_clear = 0, rx_frame = 0, tx_frame = 0;
u32 show_cycles = 0;
u32 bc = 0; /* beacon count */
u64 tsf;
u32 tsftu;
u16 intval;
if (sc->sc_flags & SC_OP_NO_RESET) {
show_cycles = ath9k_hw_GetMibCycleCountsPct(ah,
&rx_clear,
&rx_frame,
&tx_frame);
}
/*
* Check if the previous beacon has gone out. If
* not don't try to post another, skip this period
* and wait for the next. Missed beacons indicate
* a problem and should not occur. If we miss too
* many consecutive beacons reset the device.
*
* FIXME: Clean up this mess !!
*/
if (ath9k_hw_numtxpending(ah, sc->sc_bhalq) != 0) {
sc->sc_bmisscount++;
/* XXX: doth needs the chanchange IE countdown decremented.
* We should consider adding a mac80211 call to indicate
* a beacon miss so appropriate action could be taken
* (in that layer).
*/
if (sc->sc_bmisscount < BSTUCK_THRESH) {
if (sc->sc_flags & SC_OP_NO_RESET) {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: missed %u consecutive beacons\n",
__func__, sc->sc_bmisscount);
if (show_cycles) {
/*
* Display cycle counter stats from HW
* to aide in debug of stickiness.
*/
DPRINTF(sc, ATH_DBG_BEACON,
"%s: busy times: rx_clear=%d, "
"rx_frame=%d, tx_frame=%d\n",
__func__, rx_clear, rx_frame,
tx_frame);
} else {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: unable to obtain "
"busy times\n", __func__);
}
} else {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: missed %u consecutive beacons\n",
__func__, sc->sc_bmisscount);
}
} else if (sc->sc_bmisscount >= BSTUCK_THRESH) {
if (sc->sc_flags & SC_OP_NO_RESET) {
if (sc->sc_bmisscount == BSTUCK_THRESH) {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: beacon is officially "
"stuck\n", __func__);
ath9k_hw_dmaRegDump(ah);
}
} else {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: beacon is officially stuck\n",
__func__);
ath_bstuck_process(sc);
}
}
return;
}
if (sc->sc_bmisscount != 0) {
if (sc->sc_flags & SC_OP_NO_RESET) {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: resume beacon xmit after %u misses\n",
__func__, sc->sc_bmisscount);
} else {
DPRINTF(sc, ATH_DBG_BEACON,
"%s: resume beacon xmit after %u misses\n",
__func__, sc->sc_bmisscount);
}
sc->sc_bmisscount = 0;
}
/*
* Generate beacon frames. we are sending frames
* staggered so calculate the slot for this frame based
* on the tsf to safeguard against missing an swba.
*/
intval = sc->hw->conf.beacon_int ?
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
tsf = ath9k_hw_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf);
slot = ((tsftu % intval) * ATH_BCBUF) / intval;
if_id = sc->sc_bslot[(slot + 1) % ATH_BCBUF];
DPRINTF(sc, ATH_DBG_BEACON,
"%s: slot %d [tsf %llu tsftu %u intval %u] if_id %d\n",
__func__, slot, (unsigned long long)tsf, tsftu,
intval, if_id);
bfaddr = 0;
if (if_id != ATH_IF_ID_ANY) {
bf = ath_beacon_generate(sc, if_id);
if (bf != NULL) {
bfaddr = bf->bf_daddr;
bc = 1;
}
}
/*
* Handle slot time change when a non-ERP station joins/leaves
* an 11g network. The 802.11 layer notifies us via callback,
* we mark updateslot, then wait one beacon before effecting
* the change. This gives associated stations at least one
* beacon interval to note the state change.
*
* NB: The slot time change state machine is clocked according
* to whether we are bursting or staggering beacons. We
* recognize the request to update and record the current
* slot then don't transition until that slot is reached
* again. If we miss a beacon for that slot then we'll be
* slow to transition but we'll be sure at least one beacon
* interval has passed. When bursting slot is always left
* set to ATH_BCBUF so this check is a noop.
*/
/* XXX locking */
if (sc->sc_updateslot == UPDATE) {
sc->sc_updateslot = COMMIT; /* commit next beacon */
sc->sc_slotupdate = slot;
} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
ath_setslottime(sc); /* commit change to hardware */
if (bfaddr != 0) {
/*
* Stop any current dma and put the new frame(s) on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (!ath9k_hw_stoptxdma(ah, sc->sc_bhalq)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: beacon queue %u did not stop?\n",
__func__, sc->sc_bhalq);
/* NB: the HAL still stops DMA, so proceed */
}
/* NB: cabq traffic should already be queued and primed */
ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bfaddr);
ath9k_hw_txstart(ah, sc->sc_bhalq);
sc->ast_be_xmit += bc; /* XXX per-vap? */
}
}
/*
* Tasklet for Beacon Stuck processing
*
* Processing for Beacon Stuck.
* Basically resets the chip.
*/
void ath_bstuck_process(struct ath_softc *sc)
{
DPRINTF(sc, ATH_DBG_BEACON,
"%s: stuck beacon; resetting (bmiss count %u)\n",
__func__, sc->sc_bmisscount);
ath_reset(sc, false);
}
/*
* Configure the beacon and sleep timers.
*
* When operating as an AP this resets the TSF and sets
* up the hardware to notify us when we need to issue beacons.
*
* When operating in station mode this sets up the beacon
* timers according to the timestamp of the last received
* beacon and the current TSF, configures PCF and DTIM
* handling, programs the sleep registers so the hardware
* will wakeup in time to receive beacons, and configures
* the beacon miss handling so we'll receive a BMISS
* interrupt when we stop seeing beacons from the AP
* we've associated with.
*/
void ath_beacon_config(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_beacon_config conf;
enum ath9k_opmode av_opmode;
u32 nexttbtt, intval;
if (if_id != ATH_IF_ID_ANY)
av_opmode = sc->sc_vaps[if_id]->av_opmode;
else
av_opmode = sc->sc_ah->ah_opmode;
memset(&conf, 0, sizeof(struct ath_beacon_config));
conf.beacon_interval = sc->hw->conf.beacon_int ?
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
conf.listen_interval = 1;
conf.dtim_period = conf.beacon_interval;
conf.dtim_count = 1;
conf.bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf.beacon_interval;
/* extract tstamp from last beacon and convert to TU */
nexttbtt = TSF_TO_TU(sc->bc_tstamp >> 32, sc->bc_tstamp);
/* XXX conditionalize multi-bss support? */
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
/*
* For multi-bss ap support beacons are either staggered
* evenly over N slots or burst together. For the former
* arrange for the SWBA to be delivered for each slot.
* Slots that are not occupied will generate nothing.
*/
/* NB: the beacon interval is kept internally in TU's */
intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
intval /= ATH_BCBUF; /* for staggered beacons */
} else {
intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
}
if (nexttbtt == 0) /* e.g. for ap mode */
nexttbtt = intval;
else if (intval) /* NB: can be 0 for monitor mode */
nexttbtt = roundup(nexttbtt, intval);
DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt, intval, conf.beacon_interval);
/* Check for ATH9K_M_HOSTAP and sc_nostabeacons for WDS client */
if (sc->sc_ah->ah_opmode == ATH9K_M_STA) {
struct ath9k_beacon_state bs;
u64 tsf;
u32 tsftu;
int dtimperiod, dtimcount, sleepduration;
int cfpperiod, cfpcount;
/*
* Setup dtim and cfp parameters according to
* last beacon we received (which may be none).
*/
dtimperiod = conf.dtim_period;
if (dtimperiod <= 0) /* NB: 0 if not known */
dtimperiod = 1;
dtimcount = conf.dtim_count;
if (dtimcount >= dtimperiod) /* NB: sanity check */
dtimcount = 0;
cfpperiod = 1; /* NB: no PCF support yet */
cfpcount = 0;
sleepduration = conf.listen_interval * intval;
if (sleepduration <= 0)
sleepduration = intval;
#define FUDGE 2
/*
* Pull nexttbtt forward to reflect the current
* TSF and calculate dtim+cfp state for the result.
*/
tsf = ath9k_hw_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
do {
nexttbtt += intval;
if (--dtimcount < 0) {
dtimcount = dtimperiod - 1;
if (--cfpcount < 0)
cfpcount = cfpperiod - 1;
}
} while (nexttbtt < tsftu);
#undef FUDGE
memset(&bs, 0, sizeof(bs));
bs.bs_intval = intval;
bs.bs_nexttbtt = nexttbtt;
bs.bs_dtimperiod = dtimperiod*intval;
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
bs.bs_cfpmaxduration = 0;
/*
* Calculate the number of consecutive beacons to miss
* before taking a BMISS interrupt. The configuration
* is specified in TU so we only need calculate based
* on the beacon interval. Note that we clamp the
* result to at most 15 beacons.
*/
if (sleepduration > intval) {
bs.bs_bmissthreshold = conf.listen_interval *
ATH_DEFAULT_BMISS_LIMIT / 2;
} else {
bs.bs_bmissthreshold =
DIV_ROUND_UP(conf.bmiss_timeout, intval);
if (bs.bs_bmissthreshold > 15)
bs.bs_bmissthreshold = 15;
else if (bs.bs_bmissthreshold <= 0)
bs.bs_bmissthreshold = 1;
}
/*
* Calculate sleep duration. The configuration is
* given in ms. We insure a multiple of the beacon
* period is used. Also, if the sleep duration is
* greater than the DTIM period then it makes senses
* to make it a multiple of that.
*
* XXX fixed at 100ms
*/
bs.bs_sleepduration = roundup(IEEE80211_MS_TO_TU(100),
sleepduration);
if (bs.bs_sleepduration > bs.bs_dtimperiod)
bs.bs_sleepduration = bs.bs_dtimperiod;
DPRINTF(sc, ATH_DBG_BEACON,
"%s: tsf %llu "
"tsf:tu %u "
"intval %u "
"nexttbtt %u "
"dtim %u "
"nextdtim %u "
"bmiss %u "
"sleep %u "
"cfp:period %u "
"maxdur %u "
"next %u "
"timoffset %u\n",
__func__,
(unsigned long long)tsf, tsftu,
bs.bs_intval,
bs.bs_nexttbtt,
bs.bs_dtimperiod,
bs.bs_nextdtim,
bs.bs_bmissthreshold,
bs.bs_sleepduration,
bs.bs_cfpperiod,
bs.bs_cfpmaxduration,
bs.bs_cfpnext,
bs.bs_timoffset
);
ath9k_hw_set_interrupts(ah, 0);
ath9k_hw_set_sta_beacon_timers(ah, &bs);
sc->sc_imask |= ATH9K_INT_BMISS;
ath9k_hw_set_interrupts(ah, sc->sc_imask);
} else {
u64 tsf;
u32 tsftu;
ath9k_hw_set_interrupts(ah, 0);
if (nexttbtt == intval)
intval |= ATH9K_BEACON_RESET_TSF;
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS) {
/*
* Pull nexttbtt forward to reflect the current
* TSF
*/
#define FUDGE 2
if (!(intval & ATH9K_BEACON_RESET_TSF)) {
tsf = ath9k_hw_gettsf64(ah);
tsftu = TSF_TO_TU((u32)(tsf>>32),
(u32)tsf) + FUDGE;
do {
nexttbtt += intval;
} while (nexttbtt < tsftu);
}
#undef FUDGE
DPRINTF(sc, ATH_DBG_BEACON,
"%s: IBSS nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt,
intval & ~ATH9K_BEACON_RESET_TSF,
conf.beacon_interval);
/*
* In IBSS mode enable the beacon timers but only
* enable SWBA interrupts if we need to manually
* prepare beacon frames. Otherwise we use a
* self-linked tx descriptor and let the hardware
* deal with things.
*/
intval |= ATH9K_BEACON_ENA;
if (!(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL))
sc->sc_imask |= ATH9K_INT_SWBA;
ath_beaconq_config(sc);
} else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
/*
* In AP mode we enable the beacon timers and
* SWBA interrupts to prepare beacon frames.
*/
intval |= ATH9K_BEACON_ENA;
sc->sc_imask |= ATH9K_INT_SWBA; /* beacon prepare */
ath_beaconq_config(sc);
}
ath9k_hw_beaconinit(ah, nexttbtt, intval);
sc->sc_bmisscount = 0;
ath9k_hw_set_interrupts(ah, sc->sc_imask);
/*
* When using a self-linked beacon descriptor in
* ibss mode load it once here.
*/
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS &&
(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL))
ath_beacon_start_adhoc(sc, 0);
}
}
/* Function to collect beacon rssi data and resync beacon if necessary */
void ath_beacon_sync(struct ath_softc *sc, int if_id)
{
/*
* Resync beacon timers using the tsf of the
* beacon frame we just received.
*/
ath_beacon_config(sc, if_id);
sc->sc_flags |= SC_OP_BEACONS;
}