/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#define _ATH5K_RESET
/*****************************\
Reset functions and helpers
\*****************************/
#include <linux/pci.h> /* To determine if a card is pci-e */
#include <linux/bitops.h> /* For get_bitmask_order */
#include "ath5k.h"
#include "reg.h"
#include "base.h"
#include "debug.h"
/**
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
*
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
*
* Since delta slope is floating point we split it on its exponent and
* mantissa and provide these values on hw.
*
* For more infos i think this patent is related
* http://www.freepatentsonline.com/7184495.html
*/
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/* Get exponent and mantissa and set it */
u32 coef_scaled, coef_exp, coef_man,
ds_coef_exp, ds_coef_man, clock;
if (!(ah->ah_version == AR5K_AR5212) ||
!(channel->hw_value & CHANNEL_OFDM))
BUG();
/* Get coefficient
* ALGO: coef = (5 * clock * carrier_freq) / 2)
* we scale coef by shifting clock value by 24 for
* better precision since we use integers */
/* TODO: Half/quarter rate */
clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
/* Get exponent
* ALGO: coef_exp = 14 - highest set bit position */
coef_exp = get_bitmask_order(coef_scaled);
/* Doesn't make sense if it's zero*/
if (!coef_exp)
return -EINVAL;
/* Note: we've shifted coef_scaled by 24 */
coef_exp = 14 - (coef_exp - 24);
/* Get mantissa (significant digits)
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
coef_man = coef_scaled +
(1 << (24 - coef_exp - 1));
/* Calculate delta slope coefficient exponent
* and mantissa (remove scaling) and set them on hw */
ds_coef_man = coef_man >> (24 - coef_exp);
ds_coef_exp = coef_exp - 16;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0;
}
/*
* index into rates for control rates, we can set it up like this because
* this is only used for AR5212 and we know it supports G mode
*/
static const unsigned int control_rates[] =
{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
/**
* ath5k_hw_write_rate_duration - fill rate code to duration table
*
* @ah: the &struct ath5k_hw
* @mode: one of enum ath5k_driver_mode
*
* Write the rate code to duration table upon hw reset. This is a helper for
* ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
* the hardware, based on current mode, for each rate. The rates which are
* capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
* different rate code so we write their value twice (one for long preample
* and one for short).
*
* Note: Band doesn't matter here, if we set the values for OFDM it works
* on both a and g modes. So all we have to do is set values for all g rates
* that include all OFDM and CCK rates. If we operate in turbo or xr/half/
* quarter rate mode, we need to use another set of bitrates (that's why we
* need the mode parameter) but we don't handle these proprietary modes yet.
*/
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
unsigned int mode)
{
struct ath5k_softc *sc = ah->ah_sc;
struct ieee80211_rate *rate;
unsigned int i;
/* Write rate duration table */
for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
u32 reg;
u16 tx_time;
rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
/* Set ACK timeout */
reg = AR5K_RATE_DUR(rate->hw_value);
/* An ACK frame consists of 10 bytes. If you add the FCS,
* which ieee80211_generic_frame_duration() adds,
* its 14 bytes. Note we use the control rate and not the
* actual rate for this rate. See mac80211 tx.c
* ieee80211_duration() for a brief description of
* what rate we should choose to TX ACKs. */
tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
sc->vif, 10, rate));
ath5k_hw_reg_write(ah, tx_time, reg);
if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
continue;
/*
* We're not distinguishing short preamble here,
* This is true, all we'll get is a longer value here
* which is not necessarilly bad. We could use
* export ieee80211_frame_duration() but that needs to be
* fixed first to be properly used by mac802111 drivers:
*
* - remove erp stuff and let the routine figure ofdm
* erp rates
* - remove passing argument ieee80211_local as
* drivers don't have access to it
* - move drivers using ieee80211_generic_frame_duration()
* to this
*/
ath5k_hw_reg_write(ah, tx_time,
reg + (AR5K_SET_SHORT_PREAMBLE << 2));
}
}
/*
* Reset chipset
*/
static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
{
int ret;
u32 mask = val ? val : ~0U;
ATH5K_TRACE(ah->ah_sc);
/* Read-and-clear RX Descriptor Pointer*/
ath5k_hw_reg_read(ah, AR5K_RXDP);
/*
* Reset the device and wait until success
*/
ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
/* Wait at least 128 PCI clocks */
udelay(15);
if (ah->ah_version == AR5K_AR5210) {
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
} else {
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
}
ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
/*
* Reset configuration register (for hw byte-swap). Note that this
* is only set for big endian. We do the necessary magic in
* AR5K_INIT_CFG.
*/
if ((val & AR5K_RESET_CTL_PCU) == 0)
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
return ret;
}
/*
* Sleep control
*/
int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
bool set_chip, u16 sleep_duration)
{
unsigned int i;
u32 staid, data;
ATH5K_TRACE(ah->ah_sc);
staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
switch (mode) {
case AR5K_PM_AUTO:
staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
/* fallthrough */
case AR5K_PM_NETWORK_SLEEP:
if (set_chip)
ath5k_hw_reg_write(ah,
AR5K_SLEEP_CTL_SLE_ALLOW |
sleep_duration,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_FULL_SLEEP:
if (set_chip)
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
AR5K_SLEEP_CTL);
staid |= AR5K_STA_ID1_PWR_SV;
break;
case AR5K_PM_AWAKE:
staid &= ~AR5K_STA_ID1_PWR_SV;
if (!set_chip)
goto commit;
/* Preserve sleep duration */
data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
if (data & 0xffc00000)
data = 0;
else
data = data & 0xfffcffff;
ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
udelay(15);
for (i = 50; i > 0; i--) {
/* Check if the chip did wake up */
if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
AR5K_PCICFG_SPWR_DN) == 0)
break;
/* Wait a bit and retry */
udelay(200);
ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
}
/* Fail if the chip didn't wake up */
if (i <= 0)
return -EIO;
break;
default:
return -EINVAL;
}
commit:
ah->ah_power_mode = mode;
ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
return 0;
}
/*
* Bring up MAC + PHY Chips and program PLL
* TODO: Half/Quarter rate support
*/
int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
{
struct pci_dev *pdev = ah->ah_sc->pdev;
u32 turbo, mode, clock, bus_flags;
int ret;
turbo = 0;
mode = 0;
clock = 0;
ATH5K_TRACE(ah->ah_sc);
/* Wakeup the device */
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
return ret;
}
if (ah->ah_version != AR5K_AR5210) {
/*
* Get channel mode flags
*/
if (ah->ah_radio >= AR5K_RF5112) {
mode = AR5K_PHY_MODE_RAD_RF5112;
clock = AR5K_PHY_PLL_RF5112;
} else {
mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
clock = AR5K_PHY_PLL_RF5111; /*Zero*/
}
if (flags & CHANNEL_2GHZ) {
mode |= AR5K_PHY_MODE_FREQ_2GHZ;
clock |= AR5K_PHY_PLL_44MHZ;
if (flags & CHANNEL_CCK) {
mode |= AR5K_PHY_MODE_MOD_CCK;
} else if (flags & CHANNEL_OFDM) {
/* XXX Dynamic OFDM/CCK is not supported by the
* AR5211 so we set MOD_OFDM for plain g (no
* CCK headers) operation. We need to test
* this, 5211 might support ofdm-only g after
* all, there are also initial register values
* in the code for g mode (see initvals.c). */
if (ah->ah_version == AR5K_AR5211)
mode |= AR5K_PHY_MODE_MOD_OFDM;
else
mode |= AR5K_PHY_MODE_MOD_DYN;
} else {
ATH5K_ERR(ah->ah_sc,
"invalid radio modulation mode\n");
return -EINVAL;
}
} else if (flags & CHANNEL_5GHZ) {
mode |= AR5K_PHY_MODE_FREQ_5GHZ;
if (ah->ah_radio == AR5K_RF5413)
clock |= AR5K_PHY_PLL_40MHZ_5413;
else
clock |= AR5K_PHY_PLL_40MHZ;
if (flags & CHANNEL_OFDM)
mode |= AR5K_PHY_MODE_MOD_OFDM;
else {
ATH5K_ERR(ah->ah_sc,
"invalid radio modulation mode\n");
return -EINVAL;
}
} else {
ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
return -EINVAL;
}
if (flags & CHANNEL_TURBO)
turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
} else { /* Reset the device */
/* ...enable Atheros turbo mode if requested */
if (flags & CHANNEL_TURBO)
ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
AR5K_PHY_TURBO);
}
/* reseting PCI on PCI-E cards results card to hang
* and always return 0xffff... so we ingore that flag
* for PCI-E cards */
bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
/* Reset chipset */
if (ah->ah_version == AR5K_AR5210) {
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
mdelay(2);
} else {
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
AR5K_RESET_CTL_BASEBAND | bus_flags);
}
if (ret) {
ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
return -EIO;
}
/* ...wakeup again!*/
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
if (ret) {
ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
return ret;
}
/* ...final warm reset */
if (ath5k_hw_nic_reset(ah, 0)) {
ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
return -EIO;
}
if (ah->ah_version != AR5K_AR5210) {
/* ...update PLL if needed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
udelay(300);
}
/* ...set the PHY operating mode */
ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
}
return 0;
}
/*
* If there is an external 32KHz crystal available, use it
* as ref. clock instead of 32/40MHz clock and baseband clocks
* to save power during sleep or restore normal 32/40MHz
* operation.
*
* XXX: When operating on 32KHz certain PHY registers (27 - 31,
* 123 - 127) require delay on access.
*/
static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 scal, spending, usec32;
/* Only set 32KHz settings if we have an external
* 32KHz crystal present */
if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
enable) {
/* 1 usec/cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
/* Set up tsf increment on each cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
/* Set baseband sleep control registers
* and sleep control rate */
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
} else {
ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
}
/* Enable sleep clock operation */
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
} else {
/* Disable sleep clock operation and
* restore default parameters */
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
scal = AR5K_PHY_SCAL_32MHZ_2417;
else if (ath5k_eeprom_is_hb63(ah))
scal = AR5K_PHY_SCAL_32MHZ_HB63;
else
scal = AR5K_PHY_SCAL_32MHZ;
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413))
usec32 = 39;
else
usec32 = 31;
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
}
return;
}
static bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u8 refclk_freq;
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
refclk_freq = 40;
else
refclk_freq = 32;
if ((channel->center_freq % refclk_freq != 0) &&
((channel->center_freq % refclk_freq < 10) ||
(channel->center_freq % refclk_freq > 22)))
return true;
else
return false;
}
/* TODO: Half/Quarter rate */
static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
if (ah->ah_version == AR5K_AR5212 &&
ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
/* Setup ADC control */
ath5k_hw_reg_write(ah,
(AR5K_REG_SM(2,
AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
AR5K_REG_SM(2,
AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
AR5K_PHY_ADC_CTL);
/* Disable barker RSSI threshold */
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
/* Set the mute mask */
ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
}
/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
/* Enable DCU double buffering */
if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_DCU_DBL_BUF_DIS);
/* Set DAC/ADC delays */
if (ah->ah_version == AR5K_AR5212) {
u32 scal;
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
scal = AR5K_PHY_SCAL_32MHZ_2417;
else if (ath5k_eeprom_is_hb63(ah))
scal = AR5K_PHY_SCAL_32MHZ_HB63;
else
scal = AR5K_PHY_SCAL_32MHZ;
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
}
/* Set fast ADC */
if ((ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
u32 fast_adc = true;
if (channel->center_freq == 2462 ||
channel->center_freq == 2467)
fast_adc = 0;
/* Only update if needed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
ath5k_hw_reg_write(ah, fast_adc,
AR5K_PHY_FAST_ADC);
}
/* Fix for first revision of the RF5112 RF chipset */
if (ah->ah_radio == AR5K_RF5112 &&
ah->ah_radio_5ghz_revision <
AR5K_SREV_RAD_5112A) {
u32 data;
ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
AR5K_PHY_CCKTXCTL);
if (channel->hw_value & CHANNEL_5GHZ)
data = 0xffb81020;
else
data = 0xffb80d20;
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
}
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
u32 usec_reg;
/* 5311 has different tx/rx latency masks
* from 5211, since we deal 5311 the same
* as 5211 when setting initvals, shift
* values here to their proper locations */
usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
AR5K_USEC_32 |
AR5K_USEC_TX_LATENCY_5211 |
AR5K_REG_SM(29,
AR5K_USEC_RX_LATENCY_5210)),
AR5K_USEC_5211);
/* Clear QCU/DCU clock gating register */
ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
/* Set DAC/ADC delays */
ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
/* Enable PCU FIFO corruption ECO */
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_ECO_ENABLE);
}
}
static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
s16 cck_ofdm_pwr_delta;
/* Adjust power delta for channel 14 */
if (channel->center_freq == 2484)
cck_ofdm_pwr_delta =
((ee->ee_cck_ofdm_power_delta -
ee->ee_scaled_cck_delta) * 2) / 10;
else
cck_ofdm_pwr_delta =
(ee->ee_cck_ofdm_power_delta * 2) / 10;
/* Set CCK to OFDM power delta on tx power
* adjustment register */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
if (channel->hw_value == CHANNEL_G)
ath5k_hw_reg_write(ah,
AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
AR5K_PHY_TX_PWR_ADJ);
else
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
} else {
/* For older revs we scale power on sw during tx power
* setup */
ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
ah->ah_txpower.txp_cck_ofdm_gainf_delta =
ee->ee_cck_ofdm_gain_delta;
}
/* Set antenna idle switch table */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
(ah->ah_antenna[ee_mode][0] |
AR5K_PHY_ANT_CTL_TXRX_EN));
/* Set antenna switch table */
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
AR5K_PHY_ANT_SWITCH_TABLE_0);
ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
AR5K_PHY_ANT_SWITCH_TABLE_1);
/* Noise floor threshold */
ath5k_hw_reg_write(ah,
AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
AR5K_PHY_NFTHRES);
if ((channel->hw_value & CHANNEL_TURBO) &&
(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
/* Switch settling time (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_SWITCH,
ee->ee_switch_settling_turbo[ee_mode]);
/* Tx/Rx attenuation (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
AR5K_PHY_GAIN_TXRX_ATTEN,
ee->ee_atn_tx_rx_turbo[ee_mode]);
/* ADC/PGA desired size (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_ADC,
ee->ee_adc_desired_size_turbo[ee_mode]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_PGA,
ee->ee_pga_desired_size_turbo[ee_mode]);
/* Tx/Rx margin (Turbo) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
ee->ee_margin_tx_rx_turbo[ee_mode]);
} else {
/* Switch settling time */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
AR5K_PHY_SETTLING_SWITCH,
ee->ee_switch_settling[ee_mode]);
/* Tx/Rx attenuation */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
AR5K_PHY_GAIN_TXRX_ATTEN,
ee->ee_atn_tx_rx[ee_mode]);
/* ADC/PGA desired size */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_ADC,
ee->ee_adc_desired_size[ee_mode]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_PGA,
ee->ee_pga_desired_size[ee_mode]);
/* Tx/Rx margin */
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
ee->ee_margin_tx_rx[ee_mode]);
}
/* XPA delays */
ath5k_hw_reg_write(ah,
(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
/* XLNA delay */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
ee->ee_tx_end2xlna_enable[ee_mode]);
/* Thresh64 (ANI) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
AR5K_PHY_NF_THRESH62,
ee->ee_thr_62[ee_mode]);
/* False detect backoff for channels
* that have spur noise. Write the new
* cyclic power RSSI threshold. */
if (ath5k_hw_chan_has_spur_noise(ah, channel))
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
AR5K_INIT_CYCRSSI_THR1 +
ee->ee_false_detect[ee_mode]);
else
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
AR5K_INIT_CYCRSSI_THR1);
/* I/Q correction
* TODO: Per channel i/q infos ? */
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CORR_ENABLE |
(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
ee->ee_q_cal[ee_mode]);
/* Heavy clipping -disable for now */
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
return;
}
/*
* Main reset function
*/
int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
struct ieee80211_channel *channel, bool change_channel)
{
u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
u32 phy_tst1;
u8 mode, freq, ee_mode, ant[2];
int i, ret;
ATH5K_TRACE(ah->ah_sc);
s_ant = 0;
ee_mode = 0;
staid1_flags = 0;
tsf_up = 0;
tsf_lo = 0;
freq = 0;
mode = 0;
/*
* Save some registers before a reset
*/
/*DCU/Antenna selection not available on 5210*/
if (ah->ah_version != AR5K_AR5210) {
switch (channel->hw_value & CHANNEL_MODES) {
case CHANNEL_A:
mode = AR5K_MODE_11A;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
break;
case CHANNEL_G:
mode = AR5K_MODE_11G;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11G;
break;
case CHANNEL_B:
mode = AR5K_MODE_11B;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11B;
break;
case CHANNEL_T:
mode = AR5K_MODE_11A_TURBO;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
break;
case CHANNEL_TG:
if (ah->ah_version == AR5K_AR5211) {
ATH5K_ERR(ah->ah_sc,
"TurboG mode not available on 5211");
return -EINVAL;
}
mode = AR5K_MODE_11G_TURBO;
freq = AR5K_INI_RFGAIN_2GHZ;
ee_mode = AR5K_EEPROM_MODE_11G;
break;
case CHANNEL_XR:
if (ah->ah_version == AR5K_AR5211) {
ATH5K_ERR(ah->ah_sc,
"XR mode not available on 5211");
return -EINVAL;
}
mode = AR5K_MODE_XR;
freq = AR5K_INI_RFGAIN_5GHZ;
ee_mode = AR5K_EEPROM_MODE_11A;
break;
default:
ATH5K_ERR(ah->ah_sc,
"invalid channel: %d\n", channel->center_freq);
return -EINVAL;
}
if (change_channel) {
/*
* Save frame sequence count
* For revs. after Oahu, only save
* seq num for DCU 0 (Global seq num)
*/
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
for (i = 0; i < 10; i++)
s_seq[i] = ath5k_hw_reg_read(ah,
AR5K_QUEUE_DCU_SEQNUM(i));
} else {
s_seq[0] = ath5k_hw_reg_read(ah,
AR5K_QUEUE_DCU_SEQNUM(0));
}
/* TSF accelerates on AR5211 durring reset
* As a workaround save it here and restore
* it later so that it's back in time after
* reset. This way it'll get re-synced on the
* next beacon without breaking ad-hoc.
*
* On AR5212 TSF is almost preserved across a
* reset so it stays back in time anyway and
* we don't have to save/restore it.
*
* XXX: Since this breaks power saving we have
* to disable power saving until we receive the
* next beacon, so we can resync beacon timers */
if (ah->ah_version == AR5K_AR5211) {
tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
}
}
/* Save default antenna */
s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
if (ah->ah_version == AR5K_AR5212) {
/* Restore normal 32/40MHz clock operation
* to avoid register access delay on certain
* PHY registers */
ath5k_hw_set_sleep_clock(ah, false);
/* Since we are going to write rf buffer
* check if we have any pending gain_F
* optimization settings */
if (change_channel && ah->ah_rf_banks != NULL)
ath5k_hw_gainf_calibrate(ah);
}
}
/*GPIOs*/
s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
AR5K_PCICFG_LEDSTATE;
s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
/* AR5K_STA_ID1 flags, only preserve antenna
* settings and ack/cts rate mode */
staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
(AR5K_STA_ID1_DEFAULT_ANTENNA |
AR5K_STA_ID1_DESC_ANTENNA |
AR5K_STA_ID1_RTS_DEF_ANTENNA |
AR5K_STA_ID1_ACKCTS_6MB |
AR5K_STA_ID1_BASE_RATE_11B |
AR5K_STA_ID1_SELFGEN_DEF_ANT);
/* Wakeup the device */
ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
if (ret)
return ret;
/*
* Initialize operating mode
*/
ah->ah_op_mode = op_mode;
/* PHY access enable */
if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
else
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
AR5K_PHY(0));
/* Write initial settings */
ret = ath5k_hw_write_initvals(ah, mode, change_channel);
if (ret)
return ret;
/*
* 5211/5212 Specific
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain_init(ah, freq);
if (ret)
return ret;
mdelay(1);
/*
* Tweak initval settings for revised
* chipsets and add some more config
* bits
*/
ath5k_hw_tweak_initval_settings(ah, channel);
/*
* Set TX power (FIXME)
*/
ret = ath5k_hw_txpower(ah, channel, ee_mode,
AR5K_TUNE_DEFAULT_TXPOWER);
if (ret)
return ret;
/* Write rate duration table only on AR5212 and if
* virtual interface has already been brought up
* XXX: rethink this after new mode changes to
* mac80211 are integrated */
if (ah->ah_version == AR5K_AR5212 &&
ah->ah_sc->vif != NULL)
ath5k_hw_write_rate_duration(ah, mode);
/*
* Write RF buffer
*/
ret = ath5k_hw_rfregs_init(ah, channel, mode);
if (ret)
return ret;
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->hw_value & CHANNEL_OFDM) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
}
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (mode == AR5K_MODE_11B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
/*
* In case a fixed antenna was set as default
* write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
* registers.
*/
if (s_ant != 0) {
if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
ant[0] = ant[1] = AR5K_ANT_FIXED_A;
else /* 2 - Aux */
ant[0] = ant[1] = AR5K_ANT_FIXED_B;
} else {
ant[0] = AR5K_ANT_FIXED_A;
ant[1] = AR5K_ANT_FIXED_B;
}
/* Commit values from EEPROM */
ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
} else {
/*
* For 5210 we do all initialization using
* initvals, so we don't have to modify
* any settings (5210 also only supports
* a/aturbo modes)
*/
mdelay(1);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
mdelay(1);
}
/*
* Restore saved values
*/
/*DCU/Antenna selection not available on 5210*/
if (ah->ah_version != AR5K_AR5210) {
if (change_channel) {
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
for (i = 0; i < 10; i++)
ath5k_hw_reg_write(ah, s_seq[i],
AR5K_QUEUE_DCU_SEQNUM(i));
} else {
ath5k_hw_reg_write(ah, s_seq[0],
AR5K_QUEUE_DCU_SEQNUM(0));
}
if (ah->ah_version == AR5K_AR5211) {
ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
}
}
ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
}
/* Ledstate */
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
/* Gpio settings */
ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
/* Restore sta_id flags and preserve our mac address*/
ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
AR5K_STA_ID0);
ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
AR5K_STA_ID1);
/*
* Configure PCU
*/
/* Restore bssid and bssid mask */
/* XXX: add ah->aid once mac80211 gives this to us */
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
/* Set PCU config */
ath5k_hw_set_opmode(ah);
/* Clear any pending interrupts
* PISR/SISR Not available on 5210 */
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
/* Set RSSI/BRSSI thresholds
*
* Note: If we decide to set this value
* dynamicaly, have in mind that when AR5K_RSSI_THR
* register is read it might return 0x40 if we haven't
* wrote anything to it plus BMISS RSSI threshold is zeroed.
* So doing a save/restore procedure here isn't the right
* choice. Instead store it on ath5k_hw */
ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
AR5K_TUNE_BMISS_THRES <<
AR5K_RSSI_THR_BMISS_S),
AR5K_RSSI_THR);
/* MIC QoS support */
if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
}
/* QoS NOACK Policy */
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah,
AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
AR5K_QOS_NOACK);
}
/*
* Configure PHY
*/
/* Set channel on PHY */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
/*
* Enable the PHY and wait until completion
* This includes BaseBand and Synthesizer
* activation.
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
/*
* On 5211+ read activation -> rx delay
* and use it.
*
* TODO: Half/quarter rate support
*/
if (ah->ah_version != AR5K_AR5210) {
u32 delay;
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
delay = (channel->hw_value & CHANNEL_CCK) ?
((delay << 2) / 22) : (delay / 10);
udelay(100 + (2 * delay));
} else {
mdelay(1);
}
/*
* Perform ADC test to see if baseband is ready
* Set tx hold and check adc test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
for (i = 0; i <= 20; i++) {
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
break;
udelay(200);
}
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
/*
* Start automatic gain control calibration
*
* During AGC calibration RX path is re-routed to
* a power detector so we don't receive anything.
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
* one performed via ath5k_hw_phy_calibrate), that doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
* start a noise floor calibration, to measure the
* card's noise floor (the noise we measure when we are not
* transmiting or receiving anything).
*
* If we are in a noisy environment AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL);
/* At the same time start I/Q calibration for QAM constellation
* -no need for CCK- */
ah->ah_calibration = false;
if (!(mode == AR5K_MODE_11B)) {
ah->ah_calibration = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/* Wait for gain calibration to finish (we check for I/Q calibration
* during ath5k_phy_calibrate) */
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
channel->center_freq);
}
/*
* If we run NF calibration before AGC, it always times out.
* Binary HAL starts NF and AGC calibration at the same time
* and only waits for AGC to finish. Also if AGC or NF cal.
* times out, reset doesn't fail on binary HAL. I believe
* that's wrong because since rx path is routed to a detector,
* if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
* enables noise floor calibration after offset calibration and if noise
* floor calibration fails, reset fails. I believe that's
* a better approach, we just need to find a polling interval
* that suits best, even if reset continues we need to make
* sure that rx path is ready.
*/
ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
/*
* Configure QCUs/DCUs
*/
/* TODO: HW Compression support for data queues */
/* TODO: Burst prefetch for data queues */
/*
* Reset queues and start beacon timers at the end of the reset routine
* This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
* Note: If we want we can assign multiple qcus on one dcu.
*/
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
ret = ath5k_hw_reset_tx_queue(ah, i);
if (ret) {
ATH5K_ERR(ah->ah_sc,
"failed to reset TX queue #%d\n", i);
return ret;
}
}
/*
* Configure DMA/Interrupts
*/
/*
* Set Rx/Tx DMA Configuration
*
* Set standard DMA size (128). Note that
* a DMA size of 512 causes rx overruns and tx errors
* on pci-e cards (tested on 5424 but since rx overruns
* also occur on 5416/5418 with madwifi we set 128
* for all PCI-E cards to be safe).
*
* XXX: need to check 5210 for this
* TODO: Check out tx triger level, it's always 64 on dumps but I
* guess we can tweak it and see how it goes ;-)
*/
if (ah->ah_version != AR5K_AR5210) {
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_imr(ah, ah->ah_imr);
/*
* Setup RFKill interrupt if rfkill flag is set on eeprom.
* TODO: Use gpio pin and polarity infos from eeprom
* TODO: Handle this in ath5k_intr because it'll result
* a nasty interrupt storm.
*/
#if 0
if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
ath5k_hw_set_gpio_input(ah, 0);
ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
if (ah->ah_gpio[0] == 0)
ath5k_hw_set_gpio_intr(ah, 0, 1);
else
ath5k_hw_set_gpio_intr(ah, 0, 0);
}
#endif
/* Enable 32KHz clock function for AR5212+ chips
* Set clocks to 32KHz operation and use an
* external 32KHz crystal when sleeping if one
* exists */
if (ah->ah_version == AR5K_AR5212)
ath5k_hw_set_sleep_clock(ah, true);
/*
* Disable beacons and reset the register
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
AR5K_BEACON_RESET_TSF);
return 0;
}
#undef _ATH5K_RESET