aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/net/wan/pc300_drv.c
blob: a3e65d1bc19bbcddda71bd74f2ec707a6a0bf5f1 (plain) (tree)
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859




































































































































































































































































































                                                                                
                                             

















































































































































                                                                                                       
                                                        























                                                                                           
                                                                          







































                                                                                     
                                                                    























































                                                                                             
                                               









                                                              
                                               









                                                              
                                                























                                                                      
                                                              













                                                                      
                                                    
















































                                                                                        
                                                                    














                                                                                     
                                                                     














                                                                                     
                                                            




















                                                             
                                                           






























                                                             
                                                      
















                                                                 
                                                    














                                                                             
                                                     












                                                                            
                                                







































































































































































                                                                                                
                                                


















































































































































































                                                                                               
                                                  
























                                                                    
                                             


























































                                                                                  
                                                                         


























































































































































                                                                                                                                                   
                                                     



















































                                                                              
                                                                 











































                                                                                      
                                                                

























                                                                              
                                                                  




















































                                                                                      
                                                



















                                                                              
                                                




















                                                                              
                                                              































                                                                              
                                                                




























                                                                              
                                                                            













































                                                                                           
                                                              






































                                                                       
                                                  


























                                                                              
                                                                      

















































































                                                                                            
                                              









































































































































































































































































































































































































































































































































                                                                                                             
                                                  


























































































                                                                                   
                                                   


























                                                                                
                                                              






                                                         
                                                                        



































































































































































































































































































































                                                                                                        
                                    


















































































































































                                                                                                              
                                    





























                                                              
                                    





























































                                                                                    
                                      
















                                                                               
                                       























































                                                                              
                                            




























































































































































































































































                                                                                        
                                     










                                    


                                                




                                                                  

                                     


                                         

                      


























































                                                                                   






                                                                         






                                                                   


                                     
























































































                                                                                                    







                                                                     


                                 
































                                                                                          
                                         



























                                                                    
#define	USE_PCI_CLOCK
static char rcsid[] = 
"Revision: 3.4.5 Date: 2002/03/07 ";

/*
 * pc300.c	Cyclades-PC300(tm) Driver.
 *
 * Author:	Ivan Passos <ivan@cyclades.com>
 * Maintainer:	PC300 Maintainer <pc300@cyclades.com>
 *
 * Copyright:	(c) 1999-2003 Cyclades Corp.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *	
 *	Using tabstop = 4.
 * 
 * $Log: pc300_drv.c,v $
 * Revision 3.23  2002/03/20 13:58:40  henrique
 * Fixed ortographic mistakes
 *
 * Revision 3.22  2002/03/13 16:56:56  henrique
 * Take out the debug messages
 *
 * Revision 3.21  2002/03/07 14:17:09  henrique
 * License data fixed
 *
 * Revision 3.20  2002/01/17 17:58:52  ivan
 * Support for PC300-TE/M (PMC).
 *
 * Revision 3.19  2002/01/03 17:08:47  daniela
 * Enables DMA reception when the SCA-II disables it improperly.
 *
 * Revision 3.18  2001/12/03 18:47:50  daniela
 * Esthetic changes.
 *
 * Revision 3.17  2001/10/19 16:50:13  henrique
 * Patch to kernel 2.4.12 and new generic hdlc.
 *
 * Revision 3.16  2001/10/16 15:12:31  regina
 * clear statistics
 *
 * Revision 3.11 to 3.15  2001/10/11 20:26:04  daniela
 * More DMA fixes for noisy lines.
 * Return the size of bad frames in dma_get_rx_frame_size, so that the Rx buffer
 * descriptors can be cleaned by dma_buf_read (called in cpc_net_rx).
 * Renamed dma_start routine to rx_dma_start. Improved Rx statistics.
 * Fixed BOF interrupt treatment. Created dma_start routine.
 * Changed min and max to cpc_min and cpc_max.
 *
 * Revision 3.10  2001/08/06 12:01:51  regina
 * Fixed problem in DSR_DE bit.
 *
 * Revision 3.9  2001/07/18 19:27:26  daniela
 * Added some history comments.
 *
 * Revision 3.8  2001/07/12 13:11:19  regina
 * bug fix - DCD-OFF in pc300 tty driver
 *
 * Revision 3.3 to 3.7  2001/07/06 15:00:20  daniela
 * Removing kernel 2.4.3 and previous support.
 * DMA transmission bug fix.
 * MTU check in cpc_net_rx fixed.
 * Boot messages reviewed.
 * New configuration parameters (line code, CRC calculation and clock).
 *
 * Revision 3.2 2001/06/22 13:13:02  regina
 * MLPPP implementation. Changed the header of message trace to include
 * the device name. New format : "hdlcX[R/T]: ".
 * Default configuration changed.
 *
 * Revision 3.1 2001/06/15 regina
 * in cpc_queue_xmit, netif_stop_queue is called if don't have free descriptor
 * upping major version number
 *
 * Revision 1.1.1.1  2001/06/13 20:25:04  daniela
 * PC300 initial CVS version (3.4.0-pre1)
 *
 * Revision 3.0.1.2 2001/06/08 daniela
 * Did some changes in the DMA programming implementation to avoid the 
 * occurrence of a SCA-II bug when CDA is accessed during a DMA transfer.
 *
 * Revision 3.0.1.1 2001/05/02 daniela
 * Added kernel 2.4.3 support.
 * 
 * Revision 3.0.1.0 2001/03/13 daniela, henrique
 * Added Frame Relay Support.
 * Driver now uses HDLC generic driver to provide protocol support.
 * 
 * Revision 3.0.0.8 2001/03/02 daniela
 * Fixed ram size detection. 
 * Changed SIOCGPC300CONF ioctl, to give hw information to pc300util.
 * 
 * Revision 3.0.0.7 2001/02/23 daniela
 * netif_stop_queue called before the SCA-II transmition commands in 
 * cpc_queue_xmit, and with interrupts disabled to avoid race conditions with 
 * transmition interrupts.
 * Fixed falc_check_status for Unframed E1.
 * 
 * Revision 3.0.0.6 2000/12/13 daniela
 * Implemented pc300util support: trace, statistics, status and loopback
 * tests for the PC300 TE boards.
 * 
 * Revision 3.0.0.5 2000/12/12 ivan
 * Added support for Unframed E1.
 * Implemented monitor mode.
 * Fixed DCD sensitivity on the second channel.
 * Driver now complies with new PCI kernel architecture.
 *
 * Revision 3.0.0.4 2000/09/28 ivan
 * Implemented DCD sensitivity.
 * Moved hardware-specific open to the end of cpc_open, to avoid race
 * conditions with early reception interrupts.
 * Included code for [request|release]_mem_region().
 * Changed location of pc300.h .
 * Minor code revision (contrib. of Jeff Garzik).
 *
 * Revision 3.0.0.3 2000/07/03 ivan
 * Previous bugfix for the framing errors with external clock made X21
 * boards stop working. This version fixes it.
 *
 * Revision 3.0.0.2 2000/06/23 ivan
 * Revisited cpc_queue_xmit to prevent race conditions on Tx DMA buffer
 * handling when Tx timeouts occur.
 * Revisited Rx statistics.
 * Fixed a bug in the SCA-II programming that would cause framing errors
 * when external clock was configured.
 *
 * Revision 3.0.0.1 2000/05/26 ivan
 * Added logic in the SCA interrupt handler so that no board can monopolize
 * the driver.
 * Request PLX I/O region, although driver doesn't use it, to avoid
 * problems with other drivers accessing it.
 *
 * Revision 3.0.0.0 2000/05/15 ivan
 * Did some changes in the DMA programming implementation to avoid the
 * occurrence of a SCA-II bug in the second channel.
 * Implemented workaround for PLX9050 bug that would cause a system lockup
 * in certain systems, depending on the MMIO addresses allocated to the
 * board.
 * Fixed the FALC chip programming to avoid synchronization problems in the
 * second channel (TE only).
 * Implemented a cleaner and faster Tx DMA descriptor cleanup procedure in
 * cpc_queue_xmit().
 * Changed the built-in driver implementation so that the driver can use the
 * general 'hdlcN' naming convention instead of proprietary device names.
 * Driver load messages are now device-centric, instead of board-centric.
 * Dynamic allocation of net_device structures.
 * Code is now compliant with the new module interface (module_[init|exit]).
 * Make use of the PCI helper functions to access PCI resources.
 *
 * Revision 2.0.0.0 2000/04/15 ivan
 * Added support for the PC300/TE boards (T1/FT1/E1/FE1).
 *
 * Revision 1.1.0.0 2000/02/28 ivan
 * Major changes in the driver architecture.
 * Softnet compliancy implemented.
 * Driver now reports physical instead of virtual memory addresses.
 * Added cpc_change_mtu function.
 *
 * Revision 1.0.0.0 1999/12/16 ivan
 * First official release.
 * Support for 1- and 2-channel boards (which use distinct PCI Device ID's).
 * Support for monolythic installation (i.e., drv built into the kernel).
 * X.25 additional checking when lapb_[dis]connect_request returns an error.
 * SCA programming now covers X.21 as well.
 *
 * Revision 0.3.1.0 1999/11/18 ivan
 * Made X.25 support configuration-dependent (as it depends on external 
 * modules to work).
 * Changed X.25-specific function names to comply with adopted convention.
 * Fixed typos in X.25 functions that would cause compile errors (Daniela).
 * Fixed bug in ch_config that would disable interrupts on a previously 
 * enabled channel if the other channel on the same board was enabled later.
 *
 * Revision 0.3.0.0 1999/11/16 daniela
 * X.25 support.
 *
 * Revision 0.2.3.0 1999/11/15 ivan
 * Function cpc_ch_status now provides more detailed information.
 * Added support for X.21 clock configuration.
 * Changed TNR1 setting in order to prevent Tx FIFO overaccesses by the SCA.
 * Now using PCI clock instead of internal oscillator clock for the SCA.
 *
 * Revision 0.2.2.0 1999/11/10 ivan
 * Changed the *_dma_buf_check functions so that they would print only 
 * the useful info instead of the whole buffer descriptor bank.
 * Fixed bug in cpc_queue_xmit that would eventually crash the system 
 * in case of a packet drop.
 * Implemented TX underrun handling.
 * Improved SCA fine tuning to boost up its performance.
 *
 * Revision 0.2.1.0 1999/11/03 ivan
 * Added functions *dma_buf_pt_init to allow independent initialization 
 * of the next-descr. and DMA buffer pointers on the DMA descriptors.
 * Kernel buffer release and tbusy clearing is now done in the interrupt 
 * handler.
 * Fixed bug in cpc_open that would cause an interface reopen to fail.
 * Added a protocol-specific code section in cpc_net_rx.
 * Removed printk level defs (they might be added back after the beta phase).
 *
 * Revision 0.2.0.0 1999/10/28 ivan
 * Revisited the code so that new protocols can be easily added / supported. 
 *
 * Revision 0.1.0.1 1999/10/20 ivan
 * Mostly "esthetic" changes.
 *
 * Revision 0.1.0.0 1999/10/11 ivan
 * Initial version.
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/if.h>

#include <net/syncppp.h>
#include <net/arp.h>

#include <asm/io.h>
#include <asm/uaccess.h>

#include "pc300.h"

#define	CPC_LOCK(card,flags)		\
		do {						\
		spin_lock_irqsave(&card->card_lock, flags);	\
		} while (0)

#define CPC_UNLOCK(card,flags)			\
		do {							\
		spin_unlock_irqrestore(&card->card_lock, flags);	\
		} while (0)

#undef	PC300_DEBUG_PCI
#undef	PC300_DEBUG_INTR
#undef	PC300_DEBUG_TX
#undef	PC300_DEBUG_RX
#undef	PC300_DEBUG_OTHER

static struct pci_device_id cpc_pci_dev_id[] __devinitdata = {
	/* PC300/RSV or PC300/X21, 2 chan */
	{0x120e, 0x300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x300},
	/* PC300/RSV or PC300/X21, 1 chan */
	{0x120e, 0x301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x301},
	/* PC300/TE, 2 chan */
	{0x120e, 0x310, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x310},
	/* PC300/TE, 1 chan */
	{0x120e, 0x311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x311},
	/* PC300/TE-M, 2 chan */
	{0x120e, 0x320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x320},
	/* PC300/TE-M, 1 chan */
	{0x120e, 0x321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x321},
	/* End of table */
	{0,},
};
MODULE_DEVICE_TABLE(pci, cpc_pci_dev_id);

#ifndef cpc_min
#define	cpc_min(a,b)	(((a)<(b))?(a):(b))
#endif
#ifndef cpc_max
#define	cpc_max(a,b)	(((a)>(b))?(a):(b))
#endif

/* prototypes */
static void tx_dma_buf_pt_init(pc300_t *, int);
static void tx_dma_buf_init(pc300_t *, int);
static void rx_dma_buf_pt_init(pc300_t *, int);
static void rx_dma_buf_init(pc300_t *, int);
static void tx_dma_buf_check(pc300_t *, int);
static void rx_dma_buf_check(pc300_t *, int);
static irqreturn_t cpc_intr(int, void *, struct pt_regs *);
static struct net_device_stats *cpc_get_stats(struct net_device *);
static int clock_rate_calc(uclong, uclong, int *);
static uclong detect_ram(pc300_t *);
static void plx_init(pc300_t *);
static void cpc_trace(struct net_device *, struct sk_buff *, char);
static int cpc_attach(struct net_device *, unsigned short, unsigned short);
static int cpc_close(struct net_device *dev);

#ifdef CONFIG_PC300_MLPPP
void cpc_tty_init(pc300dev_t * dev);
void cpc_tty_unregister_service(pc300dev_t * pc300dev);
void cpc_tty_receive(pc300dev_t * pc300dev);
void cpc_tty_trigger_poll(pc300dev_t * pc300dev);
void cpc_tty_reset_var(void);
#endif

/************************/
/***   DMA Routines   ***/
/************************/
static void tx_dma_buf_pt_init(pc300_t * card, int ch)
{
	int i;
	int ch_factor = ch * N_DMA_TX_BUF;
	volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
			               + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));

	for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
		cpc_writel(&ptdescr->next, (uclong) (DMA_TX_BD_BASE +
			(ch_factor + ((i + 1) & (N_DMA_TX_BUF - 1))) * sizeof(pcsca_bd_t)));
		cpc_writel(&ptdescr->ptbuf, 
						(uclong) (DMA_TX_BASE + (ch_factor + i) * BD_DEF_LEN));
	}
}

static void tx_dma_buf_init(pc300_t * card, int ch)
{
	int i;
	int ch_factor = ch * N_DMA_TX_BUF;
	volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
			       + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));

	for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
		memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
		cpc_writew(&ptdescr->len, 0);
		cpc_writeb(&ptdescr->status, DST_OSB);
	}
	tx_dma_buf_pt_init(card, ch);
}

static void rx_dma_buf_pt_init(pc300_t * card, int ch)
{
	int i;
	int ch_factor = ch * N_DMA_RX_BUF;
	volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
				       + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));

	for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
		cpc_writel(&ptdescr->next, (uclong) (DMA_RX_BD_BASE +
	     	(ch_factor + ((i + 1) & (N_DMA_RX_BUF - 1))) * sizeof(pcsca_bd_t)));
		cpc_writel(&ptdescr->ptbuf,
			   (uclong) (DMA_RX_BASE + (ch_factor + i) * BD_DEF_LEN));
	}
}

static void rx_dma_buf_init(pc300_t * card, int ch)
{
	int i;
	int ch_factor = ch * N_DMA_RX_BUF;
	volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
				       + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));

	for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
		memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
		cpc_writew(&ptdescr->len, 0);
		cpc_writeb(&ptdescr->status, 0);
	}
	rx_dma_buf_pt_init(card, ch);
}

static void tx_dma_buf_check(pc300_t * card, int ch)
{
	volatile pcsca_bd_t __iomem *ptdescr;
	int i;
	ucshort first_bd = card->chan[ch].tx_first_bd;
	ucshort next_bd = card->chan[ch].tx_next_bd;

	printk("#CH%d: f_bd = %d(0x%08zx), n_bd = %d(0x%08zx)\n", ch,
	       first_bd, TX_BD_ADDR(ch, first_bd),
	       next_bd, TX_BD_ADDR(ch, next_bd));
	for (i = first_bd,
	     ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, first_bd));
	     i != ((next_bd + 1) & (N_DMA_TX_BUF - 1));
	     i = (i + 1) & (N_DMA_TX_BUF - 1), 
		 ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i))) {
		printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
		       ch, i, cpc_readl(&ptdescr->next),
		       cpc_readl(&ptdescr->ptbuf),
		       cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
	}
	printk("\n");
}

#ifdef	PC300_DEBUG_OTHER
/* Show all TX buffer descriptors */
static void tx1_dma_buf_check(pc300_t * card, int ch)
{
	volatile pcsca_bd_t __iomem *ptdescr;
	int i;
	ucshort first_bd = card->chan[ch].tx_first_bd;
	ucshort next_bd = card->chan[ch].tx_next_bd;
	uclong scabase = card->hw.scabase;

	printk ("\nnfree_tx_bd = %d \n", card->chan[ch].nfree_tx_bd);
	printk("#CH%d: f_bd = %d(0x%08x), n_bd = %d(0x%08x)\n", ch,
	       first_bd, TX_BD_ADDR(ch, first_bd),
	       next_bd, TX_BD_ADDR(ch, next_bd));
	printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
	       cpc_readl(scabase + DTX_REG(CDAL, ch)),
	       cpc_readl(scabase + DTX_REG(EDAL, ch)));
	for (i = 0; i < N_DMA_TX_BUF; i++) {
		ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i));
		printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
		       ch, i, cpc_readl(&ptdescr->next),
		       cpc_readl(&ptdescr->ptbuf),
		       cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
	}
	printk("\n");
}
#endif
			 
static void rx_dma_buf_check(pc300_t * card, int ch)
{
	volatile pcsca_bd_t __iomem *ptdescr;
	int i;
	ucshort first_bd = card->chan[ch].rx_first_bd;
	ucshort last_bd = card->chan[ch].rx_last_bd;
	int ch_factor;

	ch_factor = ch * N_DMA_RX_BUF;
	printk("#CH%d: f_bd = %d, l_bd = %d\n", ch, first_bd, last_bd);
	for (i = 0, ptdescr = (card->hw.rambase +
					      DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
	     i < N_DMA_RX_BUF; i++, ptdescr++) {
		if (cpc_readb(&ptdescr->status) & DST_OSB)
			printk ("\n CH%d RX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
				 ch, i, cpc_readl(&ptdescr->next),
				 cpc_readl(&ptdescr->ptbuf),
				 cpc_readb(&ptdescr->status),
				 cpc_readw(&ptdescr->len));
	}
	printk("\n");
}

static int dma_get_rx_frame_size(pc300_t * card, int ch)
{
	volatile pcsca_bd_t __iomem *ptdescr;
	ucshort first_bd = card->chan[ch].rx_first_bd;
	int rcvd = 0;
	volatile ucchar status;

	ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, first_bd));
	while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
		rcvd += cpc_readw(&ptdescr->len);
		first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1);
		if ((status & DST_EOM) || (first_bd == card->chan[ch].rx_last_bd)) {
			/* Return the size of a good frame or incomplete bad frame 
			* (dma_buf_read will clean the buffer descriptors in this case). */
			return (rcvd);
		}
		ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
	}
	return (-1);
}

/*
 * dma_buf_write: writes a frame to the Tx DMA buffers
 * NOTE: this function writes one frame at a time.
 */
static int dma_buf_write(pc300_t * card, int ch, ucchar * ptdata, int len)
{
	int i, nchar;
	volatile pcsca_bd_t __iomem *ptdescr;
	int tosend = len;
	ucchar nbuf = ((len - 1) / BD_DEF_LEN) + 1;

	if (nbuf >= card->chan[ch].nfree_tx_bd) {
		return -ENOMEM;
	}

	for (i = 0; i < nbuf; i++) {
		ptdescr = (card->hw.rambase +
					  TX_BD_ADDR(ch, card->chan[ch].tx_next_bd));
		nchar = cpc_min(BD_DEF_LEN, tosend);
		if (cpc_readb(&ptdescr->status) & DST_OSB) {
			memcpy_toio((card->hw.rambase + cpc_readl(&ptdescr->ptbuf)),
				    &ptdata[len - tosend], nchar);
			cpc_writew(&ptdescr->len, nchar);
			card->chan[ch].nfree_tx_bd--;
			if ((i + 1) == nbuf) {
				/* This must be the last BD to be used */
				cpc_writeb(&ptdescr->status, DST_EOM);
			} else {
				cpc_writeb(&ptdescr->status, 0);
			}
		} else {
			return -ENOMEM;
		}
		tosend -= nchar;
		card->chan[ch].tx_next_bd =
			(card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1);
	}
	/* If it gets to here, it means we have sent the whole frame */
	return 0;
}

/*
 * dma_buf_read: reads a frame from the Rx DMA buffers
 * NOTE: this function reads one frame at a time.
 */
static int dma_buf_read(pc300_t * card, int ch, struct sk_buff *skb)
{
	int nchar;
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	volatile pcsca_bd_t __iomem *ptdescr;
	int rcvd = 0;
	volatile ucchar status;

	ptdescr = (card->hw.rambase +
				  RX_BD_ADDR(ch, chan->rx_first_bd));
	while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
		nchar = cpc_readw(&ptdescr->len);
		if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT))
		    || (nchar > BD_DEF_LEN)) {

			if (nchar > BD_DEF_LEN)
				status |= DST_RBIT;
			rcvd = -status;
			/* Discard remaining descriptors used by the bad frame */
			while (chan->rx_first_bd != chan->rx_last_bd) {
				cpc_writeb(&ptdescr->status, 0);
				chan->rx_first_bd = (chan->rx_first_bd+1) & (N_DMA_RX_BUF-1);
				if (status & DST_EOM)
					break;
				ptdescr = (card->hw.rambase +
							  cpc_readl(&ptdescr->next));
				status = cpc_readb(&ptdescr->status);
			}
			break;
		}
		if (nchar != 0) {
			if (skb) {
				memcpy_fromio(skb_put(skb, nchar),
				 (card->hw.rambase+cpc_readl(&ptdescr->ptbuf)),nchar);
			}
			rcvd += nchar;
		}
		cpc_writeb(&ptdescr->status, 0);
		cpc_writeb(&ptdescr->len, 0);
		chan->rx_first_bd = (chan->rx_first_bd + 1) & (N_DMA_RX_BUF - 1);

		if (status & DST_EOM)
			break;

		ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
	}

	if (rcvd != 0) {
		/* Update pointer */
		chan->rx_last_bd = (chan->rx_first_bd - 1) & (N_DMA_RX_BUF - 1);
		/* Update EDA */
		cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
			   RX_BD_ADDR(ch, chan->rx_last_bd));
	}
	return (rcvd);
}

static void tx_dma_stop(pc300_t * card, int ch)
{
	void __iomem *scabase = card->hw.scabase;
	ucchar drr_ena_bit = 1 << (5 + 2 * ch);
	ucchar drr_rst_bit = 1 << (1 + 2 * ch);

	/* Disable DMA */
	cpc_writeb(scabase + DRR, drr_ena_bit);
	cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}

static void rx_dma_stop(pc300_t * card, int ch)
{
	void __iomem *scabase = card->hw.scabase;
	ucchar drr_ena_bit = 1 << (4 + 2 * ch);
	ucchar drr_rst_bit = 1 << (2 * ch);

	/* Disable DMA */
	cpc_writeb(scabase + DRR, drr_ena_bit);
	cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}

static void rx_dma_start(pc300_t * card, int ch)
{
	void __iomem *scabase = card->hw.scabase;
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	
	/* Start DMA */
	cpc_writel(scabase + DRX_REG(CDAL, ch),
		   RX_BD_ADDR(ch, chan->rx_first_bd));
	if (cpc_readl(scabase + DRX_REG(CDAL,ch)) !=
				  RX_BD_ADDR(ch, chan->rx_first_bd)) {
		cpc_writel(scabase + DRX_REG(CDAL, ch),
				   RX_BD_ADDR(ch, chan->rx_first_bd));
	}
	cpc_writel(scabase + DRX_REG(EDAL, ch),
		   RX_BD_ADDR(ch, chan->rx_last_bd));
	cpc_writew(scabase + DRX_REG(BFLL, ch), BD_DEF_LEN);
	cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
	if (!(cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
	cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
	}
}

/*************************/
/***   FALC Routines   ***/
/*************************/
static void falc_issue_cmd(pc300_t * card, int ch, ucchar cmd)
{
	void __iomem *falcbase = card->hw.falcbase;
	unsigned long i = 0;

	while (cpc_readb(falcbase + F_REG(SIS, ch)) & SIS_CEC) {
		if (i++ >= PC300_FALC_MAXLOOP) {
			printk("%s: FALC command locked(cmd=0x%x).\n",
			       card->chan[ch].d.name, cmd);
			break;
		}
	}
	cpc_writeb(falcbase + F_REG(CMDR, ch), cmd);
}

static void falc_intr_enable(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	/* Interrupt pins are open-drain */
	cpc_writeb(falcbase + F_REG(IPC, ch),
		   cpc_readb(falcbase + F_REG(IPC, ch)) & ~IPC_IC0);
	/* Conters updated each second */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_ECM);
	/* Enable SEC and ES interrupts  */
	cpc_writeb(falcbase + F_REG(IMR3, ch),
		   cpc_readb(falcbase + F_REG(IMR3, ch)) & ~(IMR3_SEC | IMR3_ES));
	if (conf->fr_mode == PC300_FR_UNFRAMED) {
		cpc_writeb(falcbase + F_REG(IMR4, ch),
			   cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LOS));
	} else {
		cpc_writeb(falcbase + F_REG(IMR4, ch),
			   cpc_readb(falcbase + F_REG(IMR4, ch)) &
			   ~(IMR4_LFA | IMR4_AIS | IMR4_LOS | IMR4_SLIP));
	}
	if (conf->media == IF_IFACE_T1) {
		cpc_writeb(falcbase + F_REG(IMR3, ch),
			   cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
	} else {
		cpc_writeb(falcbase + F_REG(IPC, ch),
			   cpc_readb(falcbase + F_REG(IPC, ch)) | IPC_SCI);
		if (conf->fr_mode == PC300_FR_UNFRAMED) {
			cpc_writeb(falcbase + F_REG(IMR2, ch),
				   cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_LOS));
		} else {
			cpc_writeb(falcbase + F_REG(IMR2, ch),
				   cpc_readb(falcbase + F_REG(IMR2, ch)) &
				   ~(IMR2_FAR | IMR2_LFA | IMR2_AIS | IMR2_LOS));
			if (pfalc->multiframe_mode) {
				cpc_writeb(falcbase + F_REG(IMR2, ch),
					   cpc_readb(falcbase + F_REG(IMR2, ch)) & 
					   ~(IMR2_T400MS | IMR2_MFAR));
			} else {
				cpc_writeb(falcbase + F_REG(IMR2, ch),
					   cpc_readb(falcbase + F_REG(IMR2, ch)) | 
					   IMR2_T400MS | IMR2_MFAR);
			}
		}
	}
}

static void falc_open_timeslot(pc300_t * card, int ch, int timeslot)
{
	void __iomem *falcbase = card->hw.falcbase;
	ucchar tshf = card->chan[ch].falc.offset;

	cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
		   cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) & 
		   	~(0x80 >> ((timeslot - tshf) & 0x07)));
	cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
		   cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) | 
   			(0x80 >> (timeslot & 0x07)));
	cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
		   cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) | 
			(0x80 >> (timeslot & 0x07)));
}

static void falc_close_timeslot(pc300_t * card, int ch, int timeslot)
{
	void __iomem *falcbase = card->hw.falcbase;
	ucchar tshf = card->chan[ch].falc.offset;

	cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
		   cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) | 
		   (0x80 >> ((timeslot - tshf) & 0x07)));
	cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
		   cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) & 
		   ~(0x80 >> (timeslot & 0x07)));
	cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
		   cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) & 
		   ~(0x80 >> (timeslot & 0x07)));
}

static void falc_close_all_timeslots(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	void __iomem *falcbase = card->hw.falcbase;

	cpc_writeb(falcbase + F_REG(ICB1, ch), 0xff);
	cpc_writeb(falcbase + F_REG(TTR1, ch), 0);
	cpc_writeb(falcbase + F_REG(RTR1, ch), 0);
	cpc_writeb(falcbase + F_REG(ICB2, ch), 0xff);
	cpc_writeb(falcbase + F_REG(TTR2, ch), 0);
	cpc_writeb(falcbase + F_REG(RTR2, ch), 0);
	cpc_writeb(falcbase + F_REG(ICB3, ch), 0xff);
	cpc_writeb(falcbase + F_REG(TTR3, ch), 0);
	cpc_writeb(falcbase + F_REG(RTR3, ch), 0);
	if (conf->media == IF_IFACE_E1) {
		cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
		cpc_writeb(falcbase + F_REG(TTR4, ch), 0);
		cpc_writeb(falcbase + F_REG(RTR4, ch), 0);
	}
}

static void falc_open_all_timeslots(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	void __iomem *falcbase = card->hw.falcbase;

	cpc_writeb(falcbase + F_REG(ICB1, ch), 0);
	if (conf->fr_mode == PC300_FR_UNFRAMED) {
		cpc_writeb(falcbase + F_REG(TTR1, ch), 0xff);
		cpc_writeb(falcbase + F_REG(RTR1, ch), 0xff);
	} else {
		/* Timeslot 0 is never enabled */
		cpc_writeb(falcbase + F_REG(TTR1, ch), 0x7f);
		cpc_writeb(falcbase + F_REG(RTR1, ch), 0x7f);
	}
	cpc_writeb(falcbase + F_REG(ICB2, ch), 0);
	cpc_writeb(falcbase + F_REG(TTR2, ch), 0xff);
	cpc_writeb(falcbase + F_REG(RTR2, ch), 0xff);
	cpc_writeb(falcbase + F_REG(ICB3, ch), 0);
	cpc_writeb(falcbase + F_REG(TTR3, ch), 0xff);
	cpc_writeb(falcbase + F_REG(RTR3, ch), 0xff);
	if (conf->media == IF_IFACE_E1) {
		cpc_writeb(falcbase + F_REG(ICB4, ch), 0);
		cpc_writeb(falcbase + F_REG(TTR4, ch), 0xff);
		cpc_writeb(falcbase + F_REG(RTR4, ch), 0xff);
	} else {
		cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
		cpc_writeb(falcbase + F_REG(TTR4, ch), 0x80);
		cpc_writeb(falcbase + F_REG(RTR4, ch), 0x80);
	}
}

static void falc_init_timeslot(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	int tslot;

	for (tslot = 0; tslot < pfalc->num_channels; tslot++) {
		if (conf->tslot_bitmap & (1 << tslot)) {
			// Channel enabled
			falc_open_timeslot(card, ch, tslot + 1);
		} else {
			// Channel disabled
			falc_close_timeslot(card, ch, tslot + 1);
		}
	}
}

static void falc_enable_comm(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;

	if (pfalc->full_bandwidth) {
		falc_open_all_timeslots(card, ch);
	} else {
		falc_init_timeslot(card, ch);
	}
	// CTS/DCD ON
	cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
		   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
		   ~((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}

static void falc_disable_comm(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;

	if (pfalc->loop_active != 2) {
		falc_close_all_timeslots(card, ch);
	}
	// CTS/DCD OFF
	cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
		   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
		   ((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}

static void falc_init_t1(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucchar dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);

	/* Switch to T1 mode (PCM 24) */
	cpc_writeb(falcbase + F_REG(FMR1, ch), FMR1_PMOD);

	/* Wait 20 us for setup */
	udelay(20);

	/* Transmit Buffer Size (1 frame) */
	cpc_writeb(falcbase + F_REG(SIC1, ch), SIC1_XBS0);

	/* Clock mode */
	if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
	} else { /* Slave mode */
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
		cpc_writeb(falcbase + F_REG(LOOP, ch),
			   cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_RTM);
	}

	cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
	cpc_writeb(falcbase + F_REG(FMR0, ch),
		   cpc_readb(falcbase + F_REG(FMR0, ch)) &
		   ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));

	switch (conf->lcode) {
		case PC300_LC_AMI:
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) |
				   FMR0_XC1 | FMR0_RC1);
			/* Clear Channel register to ON for all channels */
			cpc_writeb(falcbase + F_REG(CCB1, ch), 0xff);
			cpc_writeb(falcbase + F_REG(CCB2, ch), 0xff);
			cpc_writeb(falcbase + F_REG(CCB3, ch), 0xff);
			break;

		case PC300_LC_B8ZS:
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) |
				   FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
			break;

		case PC300_LC_NRZ:
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) | 0x00);
			break;
	}

	cpc_writeb(falcbase + F_REG(LIM0, ch),
		   cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_ELOS);
	cpc_writeb(falcbase + F_REG(LIM0, ch),
		   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
	/* Set interface mode to 2 MBPS */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);

	switch (conf->fr_mode) {
		case PC300_FR_ESF:
			pfalc->multiframe_mode = 0;
			cpc_writeb(falcbase + F_REG(FMR4, ch),
				   cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_FM1);
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) | 
				   FMR1_CRC | FMR1_EDL);
			cpc_writeb(falcbase + F_REG(XDL1, ch), 0);
			cpc_writeb(falcbase + F_REG(XDL2, ch), 0);
			cpc_writeb(falcbase + F_REG(XDL3, ch), 0);
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) & ~FMR0_SRAF);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2,ch)) | FMR2_MCSP | FMR2_SSP);
			break;

		case PC300_FR_D4:
			pfalc->multiframe_mode = 1;
			cpc_writeb(falcbase + F_REG(FMR4, ch),
				   cpc_readb(falcbase + F_REG(FMR4, ch)) &
				   ~(FMR4_FM1 | FMR4_FM0));
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_SRAF);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_SSP);
			break;
	}

	/* Enable Automatic Resynchronization */
	cpc_writeb(falcbase + F_REG(FMR4, ch),
		   cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_AUTO);

	/* Transmit Automatic Remote Alarm */
	cpc_writeb(falcbase + F_REG(FMR2, ch),
		   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);

	/* Channel translation mode 1 : one to one */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CTM);

	/* No signaling */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_SIGM);
	cpc_writeb(falcbase + F_REG(FMR5, ch),
		   cpc_readb(falcbase + F_REG(FMR5, ch)) &
		   ~(FMR5_EIBR | FMR5_SRS));
	cpc_writeb(falcbase + F_REG(CCR1, ch), 0);

	cpc_writeb(falcbase + F_REG(LIM1, ch),
		   cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);

	switch (conf->lbo) {
			/* Provides proper Line Build Out */
		case PC300_LBO_0_DB:
			cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
			cpc_writeb(falcbase + F_REG(XPM0, ch), 0x5a);
			cpc_writeb(falcbase + F_REG(XPM1, ch), 0x8f);
			cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
			break;
		case PC300_LBO_7_5_DB:
			cpc_writeb(falcbase + F_REG(LIM2, ch), (0x40 | LIM2_LOS1 | dja));
			cpc_writeb(falcbase + F_REG(XPM0, ch), 0x11);
			cpc_writeb(falcbase + F_REG(XPM1, ch), 0x02);
			cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
			break;
		case PC300_LBO_15_DB:
			cpc_writeb(falcbase + F_REG(LIM2, ch), (0x80 | LIM2_LOS1 | dja));
			cpc_writeb(falcbase + F_REG(XPM0, ch), 0x8e);
			cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
			cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
			break;
		case PC300_LBO_22_5_DB:
			cpc_writeb(falcbase + F_REG(LIM2, ch), (0xc0 | LIM2_LOS1 | dja));
			cpc_writeb(falcbase + F_REG(XPM0, ch), 0x09);
			cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
			cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
			break;
	}

	/* Transmit Clock-Slot Offset */
	cpc_writeb(falcbase + F_REG(XC0, ch),
		   cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
	/* Transmit Time-slot Offset */
	cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
	/* Receive  Clock-Slot offset */
	cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
	/* Receive  Time-slot offset */
	cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);

	/* LOS Detection after 176 consecutive 0s */
	cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
	/* LOS Recovery after 22 ones in the time window of PCD */
	cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);

	cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);

	if (conf->fr_mode == PC300_FR_ESF_JAPAN) {
		cpc_writeb(falcbase + F_REG(RC1, ch),
			   cpc_readb(falcbase + F_REG(RC1, ch)) | 0x80);
	}

	falc_close_all_timeslots(card, ch);
}

static void falc_init_e1(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucchar dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);

	/* Switch to E1 mode (PCM 30) */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_PMOD);

	/* Clock mode */
	if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
	} else { /* Slave mode */
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
	}
	cpc_writeb(falcbase + F_REG(LOOP, ch),
		   cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_SFM);

	cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
	cpc_writeb(falcbase + F_REG(FMR0, ch),
		   cpc_readb(falcbase + F_REG(FMR0, ch)) &
		   ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));

	switch (conf->lcode) {
		case PC300_LC_AMI:
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) |
				   FMR0_XC1 | FMR0_RC1);
			break;

		case PC300_LC_HDB3:
			cpc_writeb(falcbase + F_REG(FMR0, ch),
				   cpc_readb(falcbase + F_REG(FMR0, ch)) |
				   FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
			break;

		case PC300_LC_NRZ:
			break;
	}

	cpc_writeb(falcbase + F_REG(LIM0, ch),
		   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
	/* Set interface mode to 2 MBPS */
	cpc_writeb(falcbase + F_REG(FMR1, ch),
		   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);

	cpc_writeb(falcbase + F_REG(XPM0, ch), 0x18);
	cpc_writeb(falcbase + F_REG(XPM1, ch), 0x03);
	cpc_writeb(falcbase + F_REG(XPM2, ch), 0x00);

	switch (conf->fr_mode) {
		case PC300_FR_MF_CRC4:
			pfalc->multiframe_mode = 1;
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_XFS);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_RFS1);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_RFS0);
			cpc_writeb(falcbase + F_REG(FMR3, ch),
				   cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_EXTIW);

			/* MultiFrame Resynchronization */
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_MFCS);

			/* Automatic Loss of Multiframe > 914 CRC errors */
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_ALMF);

			/* S1 and SI1/SI2 spare Bits set to 1 */
			cpc_writeb(falcbase + F_REG(XSP, ch),
				   cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS);
			cpc_writeb(falcbase + F_REG(XSP, ch),
				   cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_EBP);
			cpc_writeb(falcbase + F_REG(XSP, ch),
				   cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XS13 | XSP_XS15);

			/* Automatic Force Resynchronization */
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);

			/* Transmit Automatic Remote Alarm */
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);

			/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
			cpc_writeb(falcbase + F_REG(XSW, ch),
				   cpc_readb(falcbase + F_REG(XSW, ch)) |
				   XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
			break;

		case PC300_FR_MF_NON_CRC4:
		case PC300_FR_D4:
			pfalc->multiframe_mode = 0;
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) & 
				   ~(FMR2_RFS1 | FMR2_RFS0));
			cpc_writeb(falcbase + F_REG(XSW, ch),
				   cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XSIS);
			cpc_writeb(falcbase + F_REG(XSP, ch),
				   cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XSIF);

			/* Automatic Force Resynchronization */
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);

			/* Transmit Automatic Remote Alarm */
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);

			/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
			cpc_writeb(falcbase + F_REG(XSW, ch),
				   cpc_readb(falcbase + F_REG(XSW, ch)) |
				   XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
			break;

		case PC300_FR_UNFRAMED:
			pfalc->multiframe_mode = 0;
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) & 
				   ~(FMR2_RFS1 | FMR2_RFS0));
			cpc_writeb(falcbase + F_REG(XSP, ch),
				   cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_TT0);
			cpc_writeb(falcbase + F_REG(XSW, ch),
				   cpc_readb(falcbase + F_REG(XSW, ch)) & 
				   ~(XSW_XTM|XSW_XY0|XSW_XY1|XSW_XY2|XSW_XY3|XSW_XY4));
			cpc_writeb(falcbase + F_REG(TSWM, ch), 0xff);
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) |
				   (FMR2_RTM | FMR2_DAIS));
			cpc_writeb(falcbase + F_REG(FMR2, ch),
				   cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_AXRA);
			cpc_writeb(falcbase + F_REG(FMR1, ch),
				   cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_AFR);
			pfalc->sync = 1;
			cpc_writeb(falcbase + card->hw.cpld_reg2,
				   cpc_readb(falcbase + card->hw.cpld_reg2) |
				   (CPLD_REG2_FALC_LED2 << (2 * ch)));
			break;
	}

	/* No signaling */
	cpc_writeb(falcbase + F_REG(XSP, ch),
		   cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_CASEN);
	cpc_writeb(falcbase + F_REG(CCR1, ch), 0);

	cpc_writeb(falcbase + F_REG(LIM1, ch),
		   cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
	cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));

	/* Transmit Clock-Slot Offset */
	cpc_writeb(falcbase + F_REG(XC0, ch),
		   cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
	/* Transmit Time-slot Offset */
	cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
	/* Receive  Clock-Slot offset */
	cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
	/* Receive  Time-slot offset */
	cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);

	/* LOS Detection after 176 consecutive 0s */
	cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
	/* LOS Recovery after 22 ones in the time window of PCD */
	cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);

	cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);

	falc_close_all_timeslots(card, ch);
}

static void falc_init_hdlc(pc300_t * card, int ch)
{
	void __iomem *falcbase = card->hw.falcbase;
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;

	/* Enable transparent data transfer */
	if (conf->fr_mode == PC300_FR_UNFRAMED) {
		cpc_writeb(falcbase + F_REG(MODE, ch), 0);
	} else {
		cpc_writeb(falcbase + F_REG(MODE, ch),
			   cpc_readb(falcbase + F_REG(MODE, ch)) |
			   (MODE_HRAC | MODE_MDS2));
		cpc_writeb(falcbase + F_REG(RAH2, ch), 0xff);
		cpc_writeb(falcbase + F_REG(RAH1, ch), 0xff);
		cpc_writeb(falcbase + F_REG(RAL2, ch), 0xff);
		cpc_writeb(falcbase + F_REG(RAL1, ch), 0xff);
	}

	/* Tx/Rx reset  */
	falc_issue_cmd(card, ch, CMDR_RRES | CMDR_XRES | CMDR_SRES);

	/* Enable interrupt sources */
	falc_intr_enable(card, ch);
}

static void te_config(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucchar dummy;
	unsigned long flags;

	memset(pfalc, 0, sizeof(falc_t));
	switch (conf->media) {
		case IF_IFACE_T1:
			pfalc->num_channels = NUM_OF_T1_CHANNELS;
			pfalc->offset = 1;
			break;
		case IF_IFACE_E1:
			pfalc->num_channels = NUM_OF_E1_CHANNELS;
			pfalc->offset = 0;
			break;
	}
	if (conf->tslot_bitmap == 0xffffffffUL)
		pfalc->full_bandwidth = 1;
	else
		pfalc->full_bandwidth = 0;

	CPC_LOCK(card, flags);
	/* Reset the FALC chip */
	cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
		   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
		   (CPLD_REG1_FALC_RESET << (2 * ch)));
	udelay(10000);
	cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
		   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
		   ~(CPLD_REG1_FALC_RESET << (2 * ch)));

	if (conf->media == IF_IFACE_T1) {
		falc_init_t1(card, ch);
	} else {
		falc_init_e1(card, ch);
	}
	falc_init_hdlc(card, ch);
	if (conf->rx_sens == PC300_RX_SENS_SH) {
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_EQON);
	} else {
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_EQON);
	}
	cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
		   cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
		   ((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK) << (2 * ch)));

	/* Clear all interrupt registers */
	dummy = cpc_readb(falcbase + F_REG(FISR0, ch)) +
		cpc_readb(falcbase + F_REG(FISR1, ch)) +
		cpc_readb(falcbase + F_REG(FISR2, ch)) +
		cpc_readb(falcbase + F_REG(FISR3, ch));
	CPC_UNLOCK(card, flags);
}

static void falc_check_status(pc300_t * card, int ch, unsigned char frs0)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	/* Verify LOS */
	if (frs0 & FRS0_LOS) {
		if (!pfalc->red_alarm) {
			pfalc->red_alarm = 1;
			pfalc->los++;
			if (!pfalc->blue_alarm) {
				// EVENT_FALC_ABNORMAL
				if (conf->media == IF_IFACE_T1) {
					/* Disable this interrupt as it may otherwise interfere 
					 * with other working boards. */
					cpc_writeb(falcbase + F_REG(IMR0, ch), 
						   cpc_readb(falcbase + F_REG(IMR0, ch))
						   | IMR0_PDEN);
				}
				falc_disable_comm(card, ch);
				// EVENT_FALC_ABNORMAL
			}
		}
	} else {
		if (pfalc->red_alarm) {
			pfalc->red_alarm = 0;
			pfalc->losr++;
		}
	}

	if (conf->fr_mode != PC300_FR_UNFRAMED) {
		/* Verify AIS alarm */
		if (frs0 & FRS0_AIS) {
			if (!pfalc->blue_alarm) {
				pfalc->blue_alarm = 1;
				pfalc->ais++;
				// EVENT_AIS
				if (conf->media == IF_IFACE_T1) {
					/* Disable this interrupt as it may otherwise interfere with                       other working boards. */
					cpc_writeb(falcbase + F_REG(IMR0, ch),
						   cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
				}
				falc_disable_comm(card, ch);
				// EVENT_AIS
			}
		} else {
			pfalc->blue_alarm = 0;
		}

		/* Verify LFA */
		if (frs0 & FRS0_LFA) {
			if (!pfalc->loss_fa) {
				pfalc->loss_fa = 1;
				pfalc->lfa++;
				if (!pfalc->blue_alarm && !pfalc->red_alarm) {
					// EVENT_FALC_ABNORMAL
					if (conf->media == IF_IFACE_T1) {
						/* Disable this interrupt as it may otherwise 
						 * interfere with other working boards. */
						cpc_writeb(falcbase + F_REG(IMR0, ch),
							   cpc_readb(falcbase + F_REG(IMR0, ch))
							   | IMR0_PDEN);
					}
					falc_disable_comm(card, ch);
					// EVENT_FALC_ABNORMAL
				}
			}
		} else {
			if (pfalc->loss_fa) {
				pfalc->loss_fa = 0;
				pfalc->farec++;
			}
		}

		/* Verify LMFA */
		if (pfalc->multiframe_mode && (frs0 & FRS0_LMFA)) {
			/* D4 or CRC4 frame mode */
			if (!pfalc->loss_mfa) {
				pfalc->loss_mfa = 1;
				pfalc->lmfa++;
				if (!pfalc->blue_alarm && !pfalc->red_alarm &&
				    !pfalc->loss_fa) {
					// EVENT_FALC_ABNORMAL
					if (conf->media == IF_IFACE_T1) {
						/* Disable this interrupt as it may otherwise 
						 * interfere with other working boards. */
						cpc_writeb(falcbase + F_REG(IMR0, ch),
							   cpc_readb(falcbase + F_REG(IMR0, ch))
							   | IMR0_PDEN);
					}
					falc_disable_comm(card, ch);
					// EVENT_FALC_ABNORMAL
				}
			}
		} else {
			pfalc->loss_mfa = 0;
		}

		/* Verify Remote Alarm */
		if (frs0 & FRS0_RRA) {
			if (!pfalc->yellow_alarm) {
				pfalc->yellow_alarm = 1;
				pfalc->rai++;
				if (pfalc->sync) {
					// EVENT_RAI
					falc_disable_comm(card, ch);
					// EVENT_RAI
				}
			}
		} else {
			pfalc->yellow_alarm = 0;
		}
	} /* if !PC300_UNFRAMED */

	if (pfalc->red_alarm || pfalc->loss_fa ||
	    pfalc->loss_mfa || pfalc->blue_alarm) {
		if (pfalc->sync) {
			pfalc->sync = 0;
			chan->d.line_off++;
			cpc_writeb(falcbase + card->hw.cpld_reg2,
				   cpc_readb(falcbase + card->hw.cpld_reg2) &
				   ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
		}
	} else {
		if (!pfalc->sync) {
			pfalc->sync = 1;
			chan->d.line_on++;
			cpc_writeb(falcbase + card->hw.cpld_reg2,
				   cpc_readb(falcbase + card->hw.cpld_reg2) |
				   (CPLD_REG2_FALC_LED2 << (2 * ch)));
		}
	}

	if (pfalc->sync && !pfalc->yellow_alarm) {
		if (!pfalc->active) {
			// EVENT_FALC_NORMAL
			if (pfalc->loop_active) {
				return;
			}
			if (conf->media == IF_IFACE_T1) {
				cpc_writeb(falcbase + F_REG(IMR0, ch),
					   cpc_readb(falcbase + F_REG(IMR0, ch)) & ~IMR0_PDEN);
			}
			falc_enable_comm(card, ch);
			// EVENT_FALC_NORMAL
			pfalc->active = 1;
		}
	} else {
		if (pfalc->active) {
			pfalc->active = 0;
		}
	}
}

static void falc_update_stats(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucshort counter;

	counter = cpc_readb(falcbase + F_REG(FECL, ch));
	counter |= cpc_readb(falcbase + F_REG(FECH, ch)) << 8;
	pfalc->fec += counter;

	counter = cpc_readb(falcbase + F_REG(CVCL, ch));
	counter |= cpc_readb(falcbase + F_REG(CVCH, ch)) << 8;
	pfalc->cvc += counter;

	counter = cpc_readb(falcbase + F_REG(CECL, ch));
	counter |= cpc_readb(falcbase + F_REG(CECH, ch)) << 8;
	pfalc->cec += counter;

	counter = cpc_readb(falcbase + F_REG(EBCL, ch));
	counter |= cpc_readb(falcbase + F_REG(EBCH, ch)) << 8;
	pfalc->ebc += counter;

	if (cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) {
		mdelay(10);
		counter = cpc_readb(falcbase + F_REG(BECL, ch));
		counter |= cpc_readb(falcbase + F_REG(BECH, ch)) << 8;
		pfalc->bec += counter;

		if (((conf->media == IF_IFACE_T1) &&
		     (cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_LLBAD) &&
		     (!(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN)))
		    ||
		    ((conf->media == IF_IFACE_E1) &&
		     (cpc_readb(falcbase + F_REG(RSP, ch)) & RSP_LLBAD))) {
			pfalc->prbs = 2;
		} else {
			pfalc->prbs = 1;
		}
	}
}

/*----------------------------------------------------------------------------
 * falc_remote_loop
 *----------------------------------------------------------------------------
 * Description:	In the remote loopback mode the clock and data recovered
 *		from the line inputs RL1/2 or RDIP/RDIN are routed back
 *		to the line outputs XL1/2 or XDOP/XDON via the analog
 *		transmitter. As in normal mode they are processsed by
 *		the synchronizer and then sent to the system interface.
 *----------------------------------------------------------------------------
 */
static void falc_remote_loop(pc300_t * card, int ch, int loop_on)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (loop_on) {
		// EVENT_FALC_ABNORMAL
		if (conf->media == IF_IFACE_T1) {
			/* Disable this interrupt as it may otherwise interfere with 
			 * other working boards. */
			cpc_writeb(falcbase + F_REG(IMR0, ch),
				   cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
		}
		falc_disable_comm(card, ch);
		// EVENT_FALC_ABNORMAL
		cpc_writeb(falcbase + F_REG(LIM1, ch),
			   cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RL);
		pfalc->loop_active = 1;
	} else {
		cpc_writeb(falcbase + F_REG(LIM1, ch),
			   cpc_readb(falcbase + F_REG(LIM1, ch)) & ~LIM1_RL);
		pfalc->sync = 0;
		cpc_writeb(falcbase + card->hw.cpld_reg2,
			   cpc_readb(falcbase + card->hw.cpld_reg2) &
			   ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
		pfalc->active = 0;
		falc_issue_cmd(card, ch, CMDR_XRES);
		pfalc->loop_active = 0;
	}
}

/*----------------------------------------------------------------------------
 * falc_local_loop
 *----------------------------------------------------------------------------
 * Description: The local loopback mode disconnects the receive lines 
 *		RL1/RL2 resp. RDIP/RDIN from the receiver. Instead of the
 *		signals coming from the line the data provided by system
 *		interface are routed through the analog receiver back to
 *		the system interface. The unipolar bit stream will be
 *		undisturbed transmitted on the line. Receiver and transmitter
 *		coding must be identical.
 *----------------------------------------------------------------------------
 */
static void falc_local_loop(pc300_t * card, int ch, int loop_on)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (loop_on) {
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_LL);
		pfalc->loop_active = 1;
	} else {
		cpc_writeb(falcbase + F_REG(LIM0, ch),
			   cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_LL);
		pfalc->loop_active = 0;
	}
}

/*----------------------------------------------------------------------------
 * falc_payload_loop
 *----------------------------------------------------------------------------
 * Description: This routine allows to enable/disable payload loopback.
 *		When the payload loop is activated, the received 192 bits
 *		of payload data will be looped back to the transmit
 *		direction. The framing bits, CRC6 and DL bits are not 
 *		looped. They are originated by the FALC-LH transmitter.
 *----------------------------------------------------------------------------
 */
static void falc_payload_loop(pc300_t * card, int ch, int loop_on)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (loop_on) {
		// EVENT_FALC_ABNORMAL
		if (conf->media == IF_IFACE_T1) {
			/* Disable this interrupt as it may otherwise interfere with 
			 * other working boards. */
			cpc_writeb(falcbase + F_REG(IMR0, ch),
				   cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
		}
		falc_disable_comm(card, ch);
		// EVENT_FALC_ABNORMAL
		cpc_writeb(falcbase + F_REG(FMR2, ch),
			   cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_PLB);
		if (conf->media == IF_IFACE_T1) {
			cpc_writeb(falcbase + F_REG(FMR4, ch),
				   cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_TM);
		} else {
			cpc_writeb(falcbase + F_REG(FMR5, ch),
				   cpc_readb(falcbase + F_REG(FMR5, ch)) | XSP_TT0);
		}
		falc_open_all_timeslots(card, ch);
		pfalc->loop_active = 2;
	} else {
		cpc_writeb(falcbase + F_REG(FMR2, ch),
			   cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_PLB);
		if (conf->media == IF_IFACE_T1) {
			cpc_writeb(falcbase + F_REG(FMR4, ch),
				   cpc_readb(falcbase + F_REG(FMR4, ch)) & ~FMR4_TM);
		} else {
			cpc_writeb(falcbase + F_REG(FMR5, ch),
				   cpc_readb(falcbase + F_REG(FMR5, ch)) & ~XSP_TT0);
		}
		pfalc->sync = 0;
		cpc_writeb(falcbase + card->hw.cpld_reg2,
			   cpc_readb(falcbase + card->hw.cpld_reg2) &
			   ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
		pfalc->active = 0;
		falc_issue_cmd(card, ch, CMDR_XRES);
		pfalc->loop_active = 0;
	}
}

/*----------------------------------------------------------------------------
 * turn_off_xlu
 *----------------------------------------------------------------------------
 * Description:	Turns XLU bit off in the proper register
 *----------------------------------------------------------------------------
 */
static void turn_off_xlu(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	void __iomem *falcbase = card->hw.falcbase;

	if (conf->media == IF_IFACE_T1) {
		cpc_writeb(falcbase + F_REG(FMR5, ch),
			   cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLU);
	} else {
		cpc_writeb(falcbase + F_REG(FMR3, ch),
			   cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLU);
	}
}

/*----------------------------------------------------------------------------
 * turn_off_xld
 *----------------------------------------------------------------------------
 * Description: Turns XLD bit off in the proper register
 *----------------------------------------------------------------------------
 */
static void turn_off_xld(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	void __iomem *falcbase = card->hw.falcbase;

	if (conf->media == IF_IFACE_T1) {
		cpc_writeb(falcbase + F_REG(FMR5, ch),
			   cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLD);
	} else {
		cpc_writeb(falcbase + F_REG(FMR3, ch),
			   cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLD);
	}
}

/*----------------------------------------------------------------------------
 * falc_generate_loop_up_code
 *----------------------------------------------------------------------------
 * Description:	This routine writes the proper FALC chip register in order
 *		to generate a LOOP activation code over a T1/E1 line.
 *----------------------------------------------------------------------------
 */
static void falc_generate_loop_up_code(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (conf->media == IF_IFACE_T1) {
		cpc_writeb(falcbase + F_REG(FMR5, ch),
			   cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLU);
	} else {
		cpc_writeb(falcbase + F_REG(FMR3, ch),
			   cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLU);
	}
	// EVENT_FALC_ABNORMAL
	if (conf->media == IF_IFACE_T1) {
		/* Disable this interrupt as it may otherwise interfere with 
		 * other working boards. */
		cpc_writeb(falcbase + F_REG(IMR0, ch),
			   cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
	}
	falc_disable_comm(card, ch);
	// EVENT_FALC_ABNORMAL
	pfalc->loop_gen = 1;
}

/*----------------------------------------------------------------------------
 * falc_generate_loop_down_code
 *----------------------------------------------------------------------------
 * Description:	This routine writes the proper FALC chip register in order
 *		to generate a LOOP deactivation code over a T1/E1 line.
 *----------------------------------------------------------------------------
 */
static void falc_generate_loop_down_code(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (conf->media == IF_IFACE_T1) {
		cpc_writeb(falcbase + F_REG(FMR5, ch),
			   cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLD);
	} else {
		cpc_writeb(falcbase + F_REG(FMR3, ch),
			   cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLD);
	}
	pfalc->sync = 0;
	cpc_writeb(falcbase + card->hw.cpld_reg2,
		   cpc_readb(falcbase + card->hw.cpld_reg2) &
		   ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
	pfalc->active = 0;
//?    falc_issue_cmd(card, ch, CMDR_XRES);
	pfalc->loop_gen = 0;
}

/*----------------------------------------------------------------------------
 * falc_pattern_test
 *----------------------------------------------------------------------------
 * Description:	This routine generates a pattern code and checks
 *		it on the reception side.
 *----------------------------------------------------------------------------
 */
static void falc_pattern_test(pc300_t * card, int ch, unsigned int activate)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (activate) {
		pfalc->prbs = 1;
		pfalc->bec = 0;
		if (conf->media == IF_IFACE_T1) {
			/* Disable local loop activation/deactivation detect */
			cpc_writeb(falcbase + F_REG(IMR3, ch),
				   cpc_readb(falcbase + F_REG(IMR3, ch)) | IMR3_LLBSC);
		} else {
			/* Disable local loop activation/deactivation detect */
			cpc_writeb(falcbase + F_REG(IMR1, ch),
				   cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_LLBSC);
		}
		/* Activates generation and monitoring of PRBS 
		 * (Pseudo Random Bit Sequence) */
		cpc_writeb(falcbase + F_REG(LCR1, ch),
			   cpc_readb(falcbase + F_REG(LCR1, ch)) | LCR1_EPRM | LCR1_XPRBS);
	} else {
		pfalc->prbs = 0;
		/* Deactivates generation and monitoring of PRBS 
		 * (Pseudo Random Bit Sequence) */
		cpc_writeb(falcbase + F_REG(LCR1, ch),
			   cpc_readb(falcbase+F_REG(LCR1,ch)) & ~(LCR1_EPRM | LCR1_XPRBS));
		if (conf->media == IF_IFACE_T1) {
			/* Enable local loop activation/deactivation detect */
			cpc_writeb(falcbase + F_REG(IMR3, ch),
				   cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
		} else {
			/* Enable local loop activation/deactivation detect */
			cpc_writeb(falcbase + F_REG(IMR1, ch),
				   cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_LLBSC);
		}
	}
}

/*----------------------------------------------------------------------------
 * falc_pattern_test_error
 *----------------------------------------------------------------------------
 * Description:	This routine returns the bit error counter value
 *----------------------------------------------------------------------------
 */
static ucshort falc_pattern_test_error(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;

	return (pfalc->bec);
}

/**********************************/
/***   Net Interface Routines   ***/
/**********************************/

static void
cpc_trace(struct net_device *dev, struct sk_buff *skb_main, char rx_tx)
{
	struct sk_buff *skb;

	if ((skb = dev_alloc_skb(10 + skb_main->len)) == NULL) {
		printk("%s: out of memory\n", dev->name);
		return;
	}
	skb_put(skb, 10 + skb_main->len);

	skb->dev = dev;
	skb->protocol = htons(ETH_P_CUST);
	skb->mac.raw = skb->data;
	skb->pkt_type = PACKET_HOST;
	skb->len = 10 + skb_main->len;

	memcpy(skb->data, dev->name, 5);
	skb->data[5] = '[';
	skb->data[6] = rx_tx;
	skb->data[7] = ']';
	skb->data[8] = ':';
	skb->data[9] = ' ';
	memcpy(&skb->data[10], skb_main->data, skb_main->len);

	netif_rx(skb);
}

static void cpc_tx_timeout(struct net_device *dev)
{
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	struct net_device_stats *stats = hdlc_stats(dev);
	int ch = chan->channel;
	unsigned long flags;
	ucchar ilar;

	stats->tx_errors++;
	stats->tx_aborted_errors++;
	CPC_LOCK(card, flags);
	if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) {
		printk("%s: ILAR=0x%x\n", dev->name, ilar);
		cpc_writeb(card->hw.scabase + ILAR, ilar);
		cpc_writeb(card->hw.scabase + DMER, 0x80);
	}
	if (card->hw.type == PC300_TE) {
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
			   ~(CPLD_REG2_FALC_LED1 << (2 * ch)));
	}
	dev->trans_start = jiffies;
	CPC_UNLOCK(card, flags);
	netif_wake_queue(dev);
}

static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
{
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	struct net_device_stats *stats = hdlc_stats(dev);
	int ch = chan->channel;
	unsigned long flags;
#ifdef PC300_DEBUG_TX
	int i;
#endif

	if (chan->conf.monitor) {
		/* In monitor mode no Tx is done: ignore packet */
		dev_kfree_skb(skb);
		return 0;
	} else if (!netif_carrier_ok(dev)) {
		/* DCD must be OFF: drop packet */
		dev_kfree_skb(skb);
		stats->tx_errors++;
		stats->tx_carrier_errors++;
		return 0;
	} else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) {
		printk("%s: DCD is OFF. Going administrative down.\n", dev->name);
		stats->tx_errors++;
		stats->tx_carrier_errors++;
		dev_kfree_skb(skb);
		netif_carrier_off(dev);
		CPC_LOCK(card, flags);
		cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR);
		if (card->hw.type == PC300_TE) {
			cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
				   cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) & 
				   			~(CPLD_REG2_FALC_LED1 << (2 * ch)));
		}
		CPC_UNLOCK(card, flags);
		netif_wake_queue(dev);
		return 0;
	}

	/* Write buffer to DMA buffers */
	if (dma_buf_write(card, ch, (ucchar *) skb->data, skb->len) != 0) {
//		printk("%s: write error. Dropping TX packet.\n", dev->name);
		netif_stop_queue(dev);
		dev_kfree_skb(skb);
		stats->tx_errors++;
		stats->tx_dropped++;
		return 0;
	}
#ifdef PC300_DEBUG_TX
	printk("%s T:", dev->name);
	for (i = 0; i < skb->len; i++)
		printk(" %02x", *(skb->data + i));
	printk("\n");
#endif

	if (d->trace_on) {
		cpc_trace(dev, skb, 'T');
	}
	dev->trans_start = jiffies;

	/* Start transmission */
	CPC_LOCK(card, flags);
	/* verify if it has more than one free descriptor */
	if (card->chan[ch].nfree_tx_bd <= 1) {
		/* don't have so stop the queue */
		netif_stop_queue(dev);
	}
	cpc_writel(card->hw.scabase + DTX_REG(EDAL, ch),
		   TX_BD_ADDR(ch, chan->tx_next_bd));
	cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA);
	cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE);
	if (card->hw.type == PC300_TE) {
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
			   (CPLD_REG2_FALC_LED1 << (2 * ch)));
	}
	CPC_UNLOCK(card, flags);
	dev_kfree_skb(skb);

	return 0;
}

static void cpc_net_rx(struct net_device *dev)
{
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	struct net_device_stats *stats = hdlc_stats(dev);
	int ch = chan->channel;
#ifdef PC300_DEBUG_RX
	int i;
#endif
	int rxb;
	struct sk_buff *skb;

	while (1) {
		if ((rxb = dma_get_rx_frame_size(card, ch)) == -1)
			return;

		if (!netif_carrier_ok(dev)) {
			/* DCD must be OFF: drop packet */
		    printk("%s : DCD is OFF - drop %d rx bytes\n", dev->name, rxb); 
			skb = NULL;
		} else {
			if (rxb > (dev->mtu + 40)) { /* add headers */
				printk("%s : MTU exceeded %d\n", dev->name, rxb); 
				skb = NULL;
			} else {
				skb = dev_alloc_skb(rxb);
				if (skb == NULL) {
					printk("%s: Memory squeeze!!\n", dev->name);
					return;
				}
				skb->dev = dev;
			}
		}

		if (((rxb = dma_buf_read(card, ch, skb)) <= 0) || (skb == NULL)) {
#ifdef PC300_DEBUG_RX
			printk("%s: rxb = %x\n", dev->name, rxb);
#endif
			if ((skb == NULL) && (rxb > 0)) {
				/* rxb > dev->mtu */
				stats->rx_errors++;
				stats->rx_length_errors++;
				continue;
			}

			if (rxb < 0) {	/* Invalid frame */
				rxb = -rxb;
				if (rxb & DST_OVR) {
					stats->rx_errors++;
					stats->rx_fifo_errors++;
				}
				if (rxb & DST_CRC) {
					stats->rx_errors++;
					stats->rx_crc_errors++;
				}
				if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) {
					stats->rx_errors++;
					stats->rx_frame_errors++;
				}
			}
			if (skb) {
				dev_kfree_skb_irq(skb);
			}
			continue;
		}

		stats->rx_bytes += rxb;

#ifdef PC300_DEBUG_RX
		printk("%s R:", dev->name);
		for (i = 0; i < skb->len; i++)
			printk(" %02x", *(skb->data + i));
		printk("\n");
#endif
		if (d->trace_on) {
			cpc_trace(dev, skb, 'R');
		}
		stats->rx_packets++;
		skb->protocol = hdlc_type_trans(skb, dev);
		netif_rx(skb);
	}
}

/************************************/
/***   PC300 Interrupt Routines   ***/
/************************************/
static void sca_tx_intr(pc300dev_t *dev)
{
	pc300ch_t *chan = (pc300ch_t *)dev->chan; 
	pc300_t *card = (pc300_t *)chan->card; 
	int ch = chan->channel; 
	volatile pcsca_bd_t __iomem * ptdescr; 
	struct net_device_stats *stats = hdlc_stats(dev->dev);

    /* Clean up descriptors from previous transmission */
	ptdescr = (card->hw.rambase +
						TX_BD_ADDR(ch,chan->tx_first_bd));
	while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) != 
							TX_BD_ADDR(ch,chan->tx_first_bd)) && 
			(cpc_readb(&ptdescr->status) & DST_OSB)) {
		stats->tx_packets++;
		stats->tx_bytes += cpc_readw(&ptdescr->len);
		cpc_writeb(&ptdescr->status, DST_OSB);
		cpc_writew(&ptdescr->len, 0);
		chan->nfree_tx_bd++;
		chan->tx_first_bd = (chan->tx_first_bd + 1) & (N_DMA_TX_BUF - 1);
		ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd));
    }

#ifdef CONFIG_PC300_MLPPP
	if (chan->conf.proto == PC300_PROTO_MLPPP) {
			cpc_tty_trigger_poll(dev);
	} else {
#endif
	/* Tell the upper layer we are ready to transmit more packets */
		netif_wake_queue(dev->dev);
#ifdef CONFIG_PC300_MLPPP
	}
#endif
}

static void sca_intr(pc300_t * card)
{
	void __iomem *scabase = card->hw.scabase;
	volatile uclong status;
	int ch;
	int intr_count = 0;
	unsigned char dsr_rx;

	while ((status = cpc_readl(scabase + ISR0)) != 0) {
		for (ch = 0; ch < card->hw.nchan; ch++) {
			pc300ch_t *chan = &card->chan[ch];
			pc300dev_t *d = &chan->d;
			struct net_device *dev = d->dev;
			hdlc_device *hdlc = dev_to_hdlc(dev);

			spin_lock(&card->card_lock);

	    /**** Reception ****/
			if (status & IR0_DRX((IR0_DMIA | IR0_DMIB), ch)) {
				ucchar drx_stat = cpc_readb(scabase + DSR_RX(ch));

				/* Clear RX interrupts */
				cpc_writeb(scabase + DSR_RX(ch), drx_stat | DSR_DWE);

#ifdef PC300_DEBUG_INTR
				printk ("sca_intr: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
					 ch, status, drx_stat);
#endif
				if (status & IR0_DRX(IR0_DMIA, ch)) {
					if (drx_stat & DSR_BOF) {
#ifdef CONFIG_PC300_MLPPP
						if (chan->conf.proto == PC300_PROTO_MLPPP) {
							/* verify if driver is TTY */
							if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
								rx_dma_stop(card, ch);
							}
							cpc_tty_receive(d);
							rx_dma_start(card, ch);
						} else 
#endif
						{
							if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
								rx_dma_stop(card, ch);
							}
							cpc_net_rx(dev);
							/* Discard invalid frames */
							hdlc->stats.rx_errors++;
							hdlc->stats.rx_over_errors++;
							chan->rx_first_bd = 0;
							chan->rx_last_bd = N_DMA_RX_BUF - 1;
							rx_dma_start(card, ch);
						}
					}
				}
				if (status & IR0_DRX(IR0_DMIB, ch)) {
					if (drx_stat & DSR_EOM) {
						if (card->hw.type == PC300_TE) {
							cpc_writeb(card->hw.falcbase +
								   card->hw.cpld_reg2,
								   cpc_readb (card->hw.falcbase +
								    	card->hw.cpld_reg2) |
								   (CPLD_REG2_FALC_LED1 << (2 * ch)));
						}
#ifdef CONFIG_PC300_MLPPP
						if (chan->conf.proto == PC300_PROTO_MLPPP) {
							/* verify if driver is TTY */
							cpc_tty_receive(d);
						} else {
							cpc_net_rx(dev);
						}
#else
						cpc_net_rx(dev);
#endif
						if (card->hw.type == PC300_TE) {
							cpc_writeb(card->hw.falcbase +
								   card->hw.cpld_reg2,
								   cpc_readb (card->hw.falcbase +
								    		card->hw.cpld_reg2) &
								   ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
						}
					}
				}
				if (!(dsr_rx = cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
#ifdef PC300_DEBUG_INTR
		printk("%s: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x, dsr2=0x%02x)\n",
			dev->name, ch, status, drx_stat, dsr_rx);
#endif
					cpc_writeb(scabase + DSR_RX(ch), (dsr_rx | DSR_DE) & 0xfe);
				}
			}

	    /**** Transmission ****/
			if (status & IR0_DTX((IR0_EFT | IR0_DMIA | IR0_DMIB), ch)) {
				ucchar dtx_stat = cpc_readb(scabase + DSR_TX(ch));

				/* Clear TX interrupts */
				cpc_writeb(scabase + DSR_TX(ch), dtx_stat | DSR_DWE);

#ifdef PC300_DEBUG_INTR
				printk ("sca_intr: TX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
					 ch, status, dtx_stat);
#endif
				if (status & IR0_DTX(IR0_EFT, ch)) {
					if (dtx_stat & DSR_UDRF) {
						if (cpc_readb (scabase + M_REG(TBN, ch)) != 0) {
							cpc_writeb(scabase + M_REG(CMD,ch), CMD_TX_BUF_CLR);
						}
						if (card->hw.type == PC300_TE) {
							cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
								   cpc_readb (card->hw.falcbase + 
										   card->hw.cpld_reg2) &
								   ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
						}
						hdlc->stats.tx_errors++;
						hdlc->stats.tx_fifo_errors++;
						sca_tx_intr(d);
					}
				}
				if (status & IR0_DTX(IR0_DMIA, ch)) {
					if (dtx_stat & DSR_BOF) {
					}
				}
				if (status & IR0_DTX(IR0_DMIB, ch)) {
					if (dtx_stat & DSR_EOM) {
						if (card->hw.type == PC300_TE) {
							cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
								   cpc_readb (card->hw.falcbase +
								    			card->hw.cpld_reg2) &
								   ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
						}
						sca_tx_intr(d);
					}
				}
			}

	    /**** MSCI ****/
			if (status & IR0_M(IR0_RXINTA, ch)) {
				ucchar st1 = cpc_readb(scabase + M_REG(ST1, ch));

				/* Clear MSCI interrupts */
				cpc_writeb(scabase + M_REG(ST1, ch), st1);

#ifdef PC300_DEBUG_INTR
				printk("sca_intr: MSCI intr chan[%d] (st=0x%08lx, st1=0x%02x)\n",
					 ch, status, st1);
#endif
				if (st1 & ST1_CDCD) {	/* DCD changed */
					if (cpc_readb(scabase + M_REG(ST3, ch)) & ST3_DCD) {
						printk ("%s: DCD is OFF. Going administrative down.\n",
							 dev->name);
#ifdef CONFIG_PC300_MLPPP
						if (chan->conf.proto != PC300_PROTO_MLPPP) {
							netif_carrier_off(dev);
						}
#else
						netif_carrier_off(dev);

#endif
						card->chan[ch].d.line_off++;
					} else {	/* DCD = 1 */
						printk ("%s: DCD is ON. Going administrative up.\n",
							 dev->name);
#ifdef CONFIG_PC300_MLPPP
						if (chan->conf.proto != PC300_PROTO_MLPPP)
							/* verify if driver is not TTY */
#endif
							netif_carrier_on(dev);
						card->chan[ch].d.line_on++;
					}
				}
			}
			spin_unlock(&card->card_lock);
		}
		if (++intr_count == 10)
			/* Too much work at this board. Force exit */
			break;
	}
}

static void falc_t1_loop_detection(pc300_t * card, int ch, ucchar frs1)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
	    !pfalc->loop_gen) {
		if (frs1 & FRS1_LLBDD) {
			// A Line Loop Back Deactivation signal detected
			if (pfalc->loop_active) {
				falc_remote_loop(card, ch, 0);
			}
		} else {
			if ((frs1 & FRS1_LLBAD) &&
			    ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
				// A Line Loop Back Activation signal detected  
				if (!pfalc->loop_active) {
					falc_remote_loop(card, ch, 1);
				}
			}
		}
	}
}

static void falc_e1_loop_detection(pc300_t * card, int ch, ucchar rsp)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;

	if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
	    !pfalc->loop_gen) {
		if (rsp & RSP_LLBDD) {
			// A Line Loop Back Deactivation signal detected
			if (pfalc->loop_active) {
				falc_remote_loop(card, ch, 0);
			}
		} else {
			if ((rsp & RSP_LLBAD) &&
			    ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
				// A Line Loop Back Activation signal detected  
				if (!pfalc->loop_active) {
					falc_remote_loop(card, ch, 1);
				}
			}
		}
	}
}

static void falc_t1_intr(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucchar isr0, isr3, gis;
	ucchar dummy;

	while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
		if (gis & GIS_ISR0) {
			isr0 = cpc_readb(falcbase + F_REG(FISR0, ch));
			if (isr0 & FISR0_PDEN) {
				/* Read the bit to clear the situation */
				if (cpc_readb(falcbase + F_REG(FRS1, ch)) &
				    FRS1_PDEN) {
					pfalc->pden++;
				}
			}
		}

		if (gis & GIS_ISR1) {
			dummy = cpc_readb(falcbase + F_REG(FISR1, ch));
		}

		if (gis & GIS_ISR2) {
			dummy = cpc_readb(falcbase + F_REG(FISR2, ch));
		}

		if (gis & GIS_ISR3) {
			isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
			if (isr3 & FISR3_SEC) {
				pfalc->sec++;
				falc_update_stats(card, ch);
				falc_check_status(card, ch,
						  cpc_readb(falcbase + F_REG(FRS0, ch)));
			}
			if (isr3 & FISR3_ES) {
				pfalc->es++;
			}
			if (isr3 & FISR3_LLBSC) {
				falc_t1_loop_detection(card, ch,
						       cpc_readb(falcbase + F_REG(FRS1, ch)));
			}
		}
	}
}

static void falc_e1_intr(pc300_t * card, int ch)
{
	pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	void __iomem *falcbase = card->hw.falcbase;
	ucchar isr1, isr2, isr3, gis, rsp;
	ucchar dummy;

	while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
		rsp = cpc_readb(falcbase + F_REG(RSP, ch));

		if (gis & GIS_ISR0) {
			dummy = cpc_readb(falcbase + F_REG(FISR0, ch));
		}
		if (gis & GIS_ISR1) {
			isr1 = cpc_readb(falcbase + F_REG(FISR1, ch));
			if (isr1 & FISR1_XMB) {
				if ((pfalc->xmb_cause & 2)
				    && pfalc->multiframe_mode) {
					if (cpc_readb (falcbase + F_REG(FRS0, ch)) & 
									(FRS0_LOS | FRS0_AIS | FRS0_LFA)) {
						cpc_writeb(falcbase + F_REG(XSP, ch),
							   cpc_readb(falcbase + F_REG(XSP, ch))
							   & ~XSP_AXS);
					} else {
						cpc_writeb(falcbase + F_REG(XSP, ch),
							   cpc_readb(falcbase + F_REG(XSP, ch))
							   | XSP_AXS);
					}
				}
				pfalc->xmb_cause = 0;
				cpc_writeb(falcbase + F_REG(IMR1, ch),
					   cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_XMB);
			}
			if (isr1 & FISR1_LLBSC) {
				falc_e1_loop_detection(card, ch, rsp);
			}
		}
		if (gis & GIS_ISR2) {
			isr2 = cpc_readb(falcbase + F_REG(FISR2, ch));
			if (isr2 & FISR2_T400MS) {
				cpc_writeb(falcbase + F_REG(XSW, ch),
					   cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XRA);
			}
			if (isr2 & FISR2_MFAR) {
				cpc_writeb(falcbase + F_REG(XSW, ch),
					   cpc_readb(falcbase + F_REG(XSW, ch)) & ~XSW_XRA);
			}
			if (isr2 & (FISR2_FAR | FISR2_LFA | FISR2_AIS | FISR2_LOS)) {
				pfalc->xmb_cause |= 2;
				cpc_writeb(falcbase + F_REG(IMR1, ch),
					   cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_XMB);
			}
		}
		if (gis & GIS_ISR3) {
			isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
			if (isr3 & FISR3_SEC) {
				pfalc->sec++;
				falc_update_stats(card, ch);
				falc_check_status(card, ch,
						  cpc_readb(falcbase + F_REG(FRS0, ch)));
			}
			if (isr3 & FISR3_ES) {
				pfalc->es++;
			}
		}
	}
}

static void falc_intr(pc300_t * card)
{
	int ch;

	for (ch = 0; ch < card->hw.nchan; ch++) {
		pc300ch_t *chan = &card->chan[ch];
		pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;

		if (conf->media == IF_IFACE_T1) {
			falc_t1_intr(card, ch);
		} else {
			falc_e1_intr(card, ch);
		}
	}
}

static irqreturn_t cpc_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	pc300_t *card;
	volatile ucchar plx_status;

	if ((card = (pc300_t *) dev_id) == 0) {
#ifdef PC300_DEBUG_INTR
		printk("cpc_intr: spurious intr %d\n", irq);
#endif
		return IRQ_NONE;		/* spurious intr */
	}

	if (card->hw.rambase == 0) {
#ifdef PC300_DEBUG_INTR
		printk("cpc_intr: spurious intr2 %d\n", irq);
#endif
		return IRQ_NONE;		/* spurious intr */
	}

	switch (card->hw.type) {
		case PC300_RSV:
		case PC300_X21:
			sca_intr(card);
			break;

		case PC300_TE:
			while ( (plx_status = (cpc_readb(card->hw.plxbase + card->hw.intctl_reg) &
				 (PLX_9050_LINT1_STATUS | PLX_9050_LINT2_STATUS))) != 0) {
				if (plx_status & PLX_9050_LINT1_STATUS) {	/* SCA Interrupt */
					sca_intr(card);
				}
				if (plx_status & PLX_9050_LINT2_STATUS) {	/* FALC Interrupt */
					falc_intr(card);
				}
			}
			break;
	}
	return IRQ_HANDLED;
}

static void cpc_sca_status(pc300_t * card, int ch)
{
	ucchar ilar;
	void __iomem *scabase = card->hw.scabase;
	unsigned long flags;

	tx_dma_buf_check(card, ch);
	rx_dma_buf_check(card, ch);
	ilar = cpc_readb(scabase + ILAR);
	printk ("ILAR=0x%02x, WCRL=0x%02x, PCR=0x%02x, BTCR=0x%02x, BOLR=0x%02x\n",
		 ilar, cpc_readb(scabase + WCRL), cpc_readb(scabase + PCR),
		 cpc_readb(scabase + BTCR), cpc_readb(scabase + BOLR));
	printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
	       cpc_readl(scabase + DTX_REG(CDAL, ch)),
	       cpc_readl(scabase + DTX_REG(EDAL, ch)));
	printk("RX_CDA=0x%08x, RX_EDA=0x%08x, BFL=0x%04x\n",
	       cpc_readl(scabase + DRX_REG(CDAL, ch)),
	       cpc_readl(scabase + DRX_REG(EDAL, ch)),
	       cpc_readw(scabase + DRX_REG(BFLL, ch)));
	printk("DMER=0x%02x, DSR_TX=0x%02x, DSR_RX=0x%02x\n",
	       cpc_readb(scabase + DMER), cpc_readb(scabase + DSR_TX(ch)),
	       cpc_readb(scabase + DSR_RX(ch)));
	printk("DMR_TX=0x%02x, DMR_RX=0x%02x, DIR_TX=0x%02x, DIR_RX=0x%02x\n",
	       cpc_readb(scabase + DMR_TX(ch)), cpc_readb(scabase + DMR_RX(ch)),
	       cpc_readb(scabase + DIR_TX(ch)),
	       cpc_readb(scabase + DIR_RX(ch)));
	printk("DCR_TX=0x%02x, DCR_RX=0x%02x, FCT_TX=0x%02x, FCT_RX=0x%02x\n",
	       cpc_readb(scabase + DCR_TX(ch)), cpc_readb(scabase + DCR_RX(ch)),
	       cpc_readb(scabase + FCT_TX(ch)),
	       cpc_readb(scabase + FCT_RX(ch)));
	printk("MD0=0x%02x, MD1=0x%02x, MD2=0x%02x, MD3=0x%02x, IDL=0x%02x\n",
	       cpc_readb(scabase + M_REG(MD0, ch)),
	       cpc_readb(scabase + M_REG(MD1, ch)),
	       cpc_readb(scabase + M_REG(MD2, ch)),
	       cpc_readb(scabase + M_REG(MD3, ch)),
	       cpc_readb(scabase + M_REG(IDL, ch)));
	printk("CMD=0x%02x, SA0=0x%02x, SA1=0x%02x, TFN=0x%02x, CTL=0x%02x\n",
	       cpc_readb(scabase + M_REG(CMD, ch)),
	       cpc_readb(scabase + M_REG(SA0, ch)),
	       cpc_readb(scabase + M_REG(SA1, ch)),
	       cpc_readb(scabase + M_REG(TFN, ch)),
	       cpc_readb(scabase + M_REG(CTL, ch)));
	printk("ST0=0x%02x, ST1=0x%02x, ST2=0x%02x, ST3=0x%02x, ST4=0x%02x\n",
	       cpc_readb(scabase + M_REG(ST0, ch)),
	       cpc_readb(scabase + M_REG(ST1, ch)),
	       cpc_readb(scabase + M_REG(ST2, ch)),
	       cpc_readb(scabase + M_REG(ST3, ch)),
	       cpc_readb(scabase + M_REG(ST4, ch)));
	printk ("CST0=0x%02x, CST1=0x%02x, CST2=0x%02x, CST3=0x%02x, FST=0x%02x\n",
		 cpc_readb(scabase + M_REG(CST0, ch)),
		 cpc_readb(scabase + M_REG(CST1, ch)),
		 cpc_readb(scabase + M_REG(CST2, ch)),
		 cpc_readb(scabase + M_REG(CST3, ch)),
		 cpc_readb(scabase + M_REG(FST, ch)));
	printk("TRC0=0x%02x, TRC1=0x%02x, RRC=0x%02x, TBN=0x%02x, RBN=0x%02x\n",
	       cpc_readb(scabase + M_REG(TRC0, ch)),
	       cpc_readb(scabase + M_REG(TRC1, ch)),
	       cpc_readb(scabase + M_REG(RRC, ch)),
	       cpc_readb(scabase + M_REG(TBN, ch)),
	       cpc_readb(scabase + M_REG(RBN, ch)));
	printk("TFS=0x%02x, TNR0=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
	       cpc_readb(scabase + M_REG(TFS, ch)),
	       cpc_readb(scabase + M_REG(TNR0, ch)),
	       cpc_readb(scabase + M_REG(TNR1, ch)),
	       cpc_readb(scabase + M_REG(RNR, ch)));
	printk("TCR=0x%02x, RCR=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
	       cpc_readb(scabase + M_REG(TCR, ch)),
	       cpc_readb(scabase + M_REG(RCR, ch)),
	       cpc_readb(scabase + M_REG(TNR1, ch)),
	       cpc_readb(scabase + M_REG(RNR, ch)));
	printk("TXS=0x%02x, RXS=0x%02x, EXS=0x%02x, TMCT=0x%02x, TMCR=0x%02x\n",
	       cpc_readb(scabase + M_REG(TXS, ch)),
	       cpc_readb(scabase + M_REG(RXS, ch)),
	       cpc_readb(scabase + M_REG(EXS, ch)),
	       cpc_readb(scabase + M_REG(TMCT, ch)),
	       cpc_readb(scabase + M_REG(TMCR, ch)));
	printk("IE0=0x%02x, IE1=0x%02x, IE2=0x%02x, IE4=0x%02x, FIE=0x%02x\n",
	       cpc_readb(scabase + M_REG(IE0, ch)),
	       cpc_readb(scabase + M_REG(IE1, ch)),
	       cpc_readb(scabase + M_REG(IE2, ch)),
	       cpc_readb(scabase + M_REG(IE4, ch)),
	       cpc_readb(scabase + M_REG(FIE, ch)));
	printk("IER0=0x%08x\n", cpc_readl(scabase + IER0));

	if (ilar != 0) {
		CPC_LOCK(card, flags);
		cpc_writeb(scabase + ILAR, ilar);
		cpc_writeb(scabase + DMER, 0x80);
		CPC_UNLOCK(card, flags);
	}
}

static void cpc_falc_status(pc300_t * card, int ch)
{
	pc300ch_t *chan = &card->chan[ch];
	falc_t *pfalc = (falc_t *) & chan->falc;
	unsigned long flags;

	CPC_LOCK(card, flags);
	printk("CH%d:   %s %s  %d channels\n",
	       ch, (pfalc->sync ? "SYNC" : ""), (pfalc->active ? "ACTIVE" : ""),
	       pfalc->num_channels);

	printk("        pden=%d,  los=%d,  losr=%d,  lfa=%d,  farec=%d\n",
	       pfalc->pden, pfalc->los, pfalc->losr, pfalc->lfa, pfalc->farec);
	printk("        lmfa=%d,  ais=%d,  sec=%d,  es=%d,  rai=%d\n",
	       pfalc->lmfa, pfalc->ais, pfalc->sec, pfalc->es, pfalc->rai);
	printk("        bec=%d,  fec=%d,  cvc=%d,  cec=%d,  ebc=%d\n",
	       pfalc->bec, pfalc->fec, pfalc->cvc, pfalc->cec, pfalc->ebc);

	printk("\n");
	printk("        STATUS: %s  %s  %s  %s  %s  %s\n",
	       (pfalc->red_alarm ? "RED" : ""),
	       (pfalc->blue_alarm ? "BLU" : ""),
	       (pfalc->yellow_alarm ? "YEL" : ""),
	       (pfalc->loss_fa ? "LFA" : ""),
	       (pfalc->loss_mfa ? "LMF" : ""), (pfalc->prbs ? "PRB" : ""));
	CPC_UNLOCK(card, flags);
}

static int cpc_change_mtu(struct net_device *dev, int new_mtu)
{
	if ((new_mtu < 128) || (new_mtu > PC300_DEF_MTU))
		return -EINVAL;
	dev->mtu = new_mtu;
	return 0;
}

static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	pc300conf_t conf_aux;
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	int ch = chan->channel;
	void __user *arg = ifr->ifr_data;
	struct if_settings *settings = &ifr->ifr_settings;
	void __iomem *scabase = card->hw.scabase;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	switch (cmd) {
		case SIOCGPC300CONF:
#ifdef CONFIG_PC300_MLPPP
			if (conf->proto != PC300_PROTO_MLPPP) {
				conf->proto = hdlc->proto.id;
			}
#else
			conf->proto = hdlc->proto.id;
#endif
			memcpy(&conf_aux.conf, conf, sizeof(pc300chconf_t));
			memcpy(&conf_aux.hw, &card->hw, sizeof(pc300hw_t));
			if (!arg || 
				copy_to_user(arg, &conf_aux, sizeof(pc300conf_t))) 
				return -EINVAL;
			return 0;
		case SIOCSPC300CONF:
			if (!capable(CAP_NET_ADMIN))
				return -EPERM;
			if (!arg || 
				copy_from_user(&conf_aux.conf, arg, sizeof(pc300chconf_t)))
				return -EINVAL;
			if (card->hw.cpld_id < 0x02 &&
			    conf_aux.conf.fr_mode == PC300_FR_UNFRAMED) {
				/* CPLD_ID < 0x02 doesn't support Unframed E1 */
				return -EINVAL;
			}
#ifdef CONFIG_PC300_MLPPP
			if (conf_aux.conf.proto == PC300_PROTO_MLPPP) {
				if (conf->proto != PC300_PROTO_MLPPP) {
					memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
					cpc_tty_init(d);	/* init TTY driver */
				}
			} else {
				if (conf_aux.conf.proto == 0xffff) {
					if (conf->proto == PC300_PROTO_MLPPP){ 
						/* ifdown interface */
						cpc_close(dev);
					}
				} else {
					memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
					hdlc->proto.id = conf->proto;
				}
			}
#else
			memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
			hdlc->proto.id = conf->proto;
#endif
			return 0;
		case SIOCGPC300STATUS:
			cpc_sca_status(card, ch);
			return 0;
		case SIOCGPC300FALCSTATUS:
			cpc_falc_status(card, ch);
			return 0;

		case SIOCGPC300UTILSTATS:
			{
				if (!arg) {	/* clear statistics */
					memset(&hdlc->stats, 0, sizeof(struct net_device_stats));
					if (card->hw.type == PC300_TE) {
						memset(&chan->falc, 0, sizeof(falc_t));
					}
				} else {
					pc300stats_t pc300stats;

					memset(&pc300stats, 0, sizeof(pc300stats_t));
					pc300stats.hw_type = card->hw.type;
					pc300stats.line_on = card->chan[ch].d.line_on;
					pc300stats.line_off = card->chan[ch].d.line_off;
					memcpy(&pc300stats.gen_stats, &hdlc->stats,
					       sizeof(struct net_device_stats));
					if (card->hw.type == PC300_TE)
						memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t));
				    	if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t)))
						return -EFAULT;
				}
				return 0;
			}

		case SIOCGPC300UTILSTATUS:
			{
				struct pc300status pc300status;

				pc300status.hw_type = card->hw.type;
				if (card->hw.type == PC300_TE) {
					pc300status.te_status.sync = chan->falc.sync;
					pc300status.te_status.red_alarm = chan->falc.red_alarm;
					pc300status.te_status.blue_alarm = chan->falc.blue_alarm;
					pc300status.te_status.loss_fa = chan->falc.loss_fa;
					pc300status.te_status.yellow_alarm =chan->falc.yellow_alarm;
					pc300status.te_status.loss_mfa = chan->falc.loss_mfa;
					pc300status.te_status.prbs = chan->falc.prbs;
				} else {
					pc300status.gen_status.dcd =
						!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_DCD);
					pc300status.gen_status.cts =
						!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_CTS);
					pc300status.gen_status.rts =
						!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_RTS);
					pc300status.gen_status.dtr =
						!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_DTR);
					/* There is no DSR in HD64572 */
				}
				if (!arg
				    || copy_to_user(arg, &pc300status, sizeof(pc300status_t)))
						return -EINVAL;
				return 0;
			}

		case SIOCSPC300TRACE:
			/* Sets/resets a trace_flag for the respective device */
			if (!arg || copy_from_user(&d->trace_on, arg,sizeof(unsigned char)))
					return -EINVAL;
			return 0;

		case SIOCSPC300LOOPBACK:
			{
				struct pc300loopback pc300loop;

				/* TE boards only */
				if (card->hw.type != PC300_TE)
					return -EINVAL;

				if (!arg || 
					copy_from_user(&pc300loop, arg, sizeof(pc300loopback_t)))
						return -EINVAL;
				switch (pc300loop.loop_type) {
					case PC300LOCLOOP:	/* Turn the local loop on/off */
						falc_local_loop(card, ch, pc300loop.loop_on);
						return 0;

					case PC300REMLOOP:	/* Turn the remote loop on/off */
						falc_remote_loop(card, ch, pc300loop.loop_on);
						return 0;

					case PC300PAYLOADLOOP:	/* Turn the payload loop on/off */
						falc_payload_loop(card, ch, pc300loop.loop_on);
						return 0;

					case PC300GENLOOPUP:	/* Generate loop UP */
						if (pc300loop.loop_on) {
							falc_generate_loop_up_code (card, ch);
						} else {
							turn_off_xlu(card, ch);
						}
						return 0;

					case PC300GENLOOPDOWN:	/* Generate loop DOWN */
						if (pc300loop.loop_on) {
							falc_generate_loop_down_code (card, ch);
						} else {
							turn_off_xld(card, ch);
						}
						return 0;

					default:
						return -EINVAL;
				}
			}

		case SIOCSPC300PATTERNTEST:
			/* Turn the pattern test on/off and show the errors counter */
			{
				struct pc300patterntst pc300patrntst;

				/* TE boards only */
				if (card->hw.type != PC300_TE)
					return -EINVAL;

				if (card->hw.cpld_id < 0x02) {
					/* CPLD_ID < 0x02 doesn't support pattern test */
					return -EINVAL;
				}

				if (!arg || 
					copy_from_user(&pc300patrntst,arg,sizeof(pc300patterntst_t)))
						return -EINVAL;
				if (pc300patrntst.patrntst_on == 2) {
					if (chan->falc.prbs == 0) {
						falc_pattern_test(card, ch, 1);
					}
					pc300patrntst.num_errors =
						falc_pattern_test_error(card, ch);
					if (!arg
					    || copy_to_user(arg, &pc300patrntst,
							    sizeof (pc300patterntst_t)))
							return -EINVAL;
				} else {
					falc_pattern_test(card, ch, pc300patrntst.patrntst_on);
				}
				return 0;
			}

		case SIOCWANDEV:
			switch (ifr->ifr_settings.type) {
				case IF_GET_IFACE:
				{
					const size_t size = sizeof(sync_serial_settings);
					ifr->ifr_settings.type = conf->media;
					if (ifr->ifr_settings.size < size) {
						/* data size wanted */
						ifr->ifr_settings.size = size;
						return -ENOBUFS;
					}
	
					if (copy_to_user(settings->ifs_ifsu.sync,
							 &conf->phys_settings, size)) {
						return -EFAULT;
					}
					return 0;
				}

				case IF_IFACE_V35:
				case IF_IFACE_V24:
				case IF_IFACE_X21:
				{
					const size_t size = sizeof(sync_serial_settings);

					if (!capable(CAP_NET_ADMIN)) {
						return -EPERM;
					}
					/* incorrect data len? */
					if (ifr->ifr_settings.size != size) {
						return -ENOBUFS;
					}

					if (copy_from_user(&conf->phys_settings, 
							   settings->ifs_ifsu.sync, size)) {
						return -EFAULT;
					}

					if (conf->phys_settings.loopback) {
						cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
							cpc_readb(card->hw.scabase + M_REG(MD2, ch)) | 
							MD2_LOOP_MIR);
					}
					conf->media = ifr->ifr_settings.type;
					return 0;
				}

				case IF_IFACE_T1:
				case IF_IFACE_E1:
				{
					const size_t te_size = sizeof(te1_settings);
					const size_t size = sizeof(sync_serial_settings);

					if (!capable(CAP_NET_ADMIN)) {
						return -EPERM;
					}

					/* incorrect data len? */
					if (ifr->ifr_settings.size != te_size) {
						return -ENOBUFS;
					}

					if (copy_from_user(&conf->phys_settings, 
							   settings->ifs_ifsu.te1, size)) {
						return -EFAULT;
					}/* Ignoring HDLC slot_map for a while */
					
					if (conf->phys_settings.loopback) {
						cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
							cpc_readb(card->hw.scabase + M_REG(MD2, ch)) | 
							MD2_LOOP_MIR);
					}
					conf->media = ifr->ifr_settings.type;
					return 0;
				}
				default:
					return hdlc_ioctl(dev, ifr, cmd);
			}

		default:
			return hdlc_ioctl(dev, ifr, cmd);
	}
}

static struct net_device_stats *cpc_get_stats(struct net_device *dev)
{
	return hdlc_stats(dev);
}

static int clock_rate_calc(uclong rate, uclong clock, int *br_io)
{
	int br, tc;
	int br_pwr, error;

	if (rate == 0)
		return (0);

	for (br = 0, br_pwr = 1; br <= 9; br++, br_pwr <<= 1) {
		if ((tc = clock / br_pwr / rate) <= 0xff) {
			*br_io = br;
			break;
		}
	}

	if (tc <= 0xff) {
		error = ((rate - (clock / br_pwr / rate)) / rate) * 1000;
		/* Errors bigger than +/- 1% won't be tolerated */
		if (error < -10 || error > 10)
			return (-1);
		else
			return (tc);
	} else {
		return (-1);
	}
}

static int ch_config(pc300dev_t * d)
{
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
	pc300_t *card = (pc300_t *) chan->card;
	void __iomem *scabase = card->hw.scabase;
	void __iomem *plxbase = card->hw.plxbase;
	int ch = chan->channel;
	uclong clkrate = chan->conf.phys_settings.clock_rate;
	uclong clktype = chan->conf.phys_settings.clock_type;
	ucshort encoding = chan->conf.proto_settings.encoding;
	ucshort parity = chan->conf.proto_settings.parity;   
	int tmc, br;
	ucchar md0, md2;
    
	/* Reset the channel */
	cpc_writeb(scabase + M_REG(CMD, ch), CMD_CH_RST);

	/* Configure the SCA registers */
	switch (parity) {
		case PARITY_NONE:
			md0 = MD0_BIT_SYNC;
			break;
		case PARITY_CRC16_PR0:
			md0 = MD0_CRC16_0|MD0_CRCC0|MD0_BIT_SYNC;
			break;
		case PARITY_CRC16_PR1:
			md0 = MD0_CRC16_1|MD0_CRCC0|MD0_BIT_SYNC;
			break;
		case PARITY_CRC32_PR1_CCITT:
			md0 = MD0_CRC32|MD0_CRCC0|MD0_BIT_SYNC;
			break;
		case PARITY_CRC16_PR1_CCITT:
		default:
			md0 = MD0_CRC_CCITT|MD0_CRCC0|MD0_BIT_SYNC;
			break;
	}
	switch (encoding) {
		case ENCODING_NRZI:
			md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZI;
			break;
		case ENCODING_FM_MARK:	/* FM1 */
			md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM1;
			break;
		case ENCODING_FM_SPACE:	/* FM0 */
			md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM0;
			break;
		case ENCODING_MANCHESTER: /* It's not working... */
			md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_MANCH;
			break;
		case ENCODING_NRZ:
		default:
			md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZ;
			break;
	}
	cpc_writeb(scabase + M_REG(MD0, ch), md0);
	cpc_writeb(scabase + M_REG(MD1, ch), 0);
	cpc_writeb(scabase + M_REG(MD2, ch), md2);
 	cpc_writeb(scabase + M_REG(IDL, ch), 0x7e);
	cpc_writeb(scabase + M_REG(CTL, ch), CTL_URSKP | CTL_IDLC);

	/* Configure HW media */
	switch (card->hw.type) {
		case PC300_RSV:
			if (conf->media == IF_IFACE_V35) {
				cpc_writel((plxbase + card->hw.gpioc_reg),
					   cpc_readl(plxbase + card->hw.gpioc_reg) | PC300_CHMEDIA_MASK(ch));
			} else {
				cpc_writel((plxbase + card->hw.gpioc_reg),
					   cpc_readl(plxbase + card->hw.gpioc_reg) & ~PC300_CHMEDIA_MASK(ch));
			}
			break;

		case PC300_X21:
			break;

		case PC300_TE:
			te_config(card, ch);
			break;
	}

	switch (card->hw.type) {
		case PC300_RSV:
		case PC300_X21:
			if (clktype == CLOCK_INT || clktype == CLOCK_TXINT) {
				/* Calculate the clkrate parameters */
				tmc = clock_rate_calc(clkrate, card->hw.clock, &br);
				cpc_writeb(scabase + M_REG(TMCT, ch), tmc);
				cpc_writeb(scabase + M_REG(TXS, ch),
					   (TXS_DTRXC | TXS_IBRG | br));
				if (clktype == CLOCK_INT) {
					cpc_writeb(scabase + M_REG(TMCR, ch), tmc);
					cpc_writeb(scabase + M_REG(RXS, ch), 
						   (RXS_IBRG | br));
				} else {
					cpc_writeb(scabase + M_REG(TMCR, ch), 1);
					cpc_writeb(scabase + M_REG(RXS, ch), 0);
				}
	    			if (card->hw.type == PC300_X21) {
					cpc_writeb(scabase + M_REG(GPO, ch), 1);
					cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
				} else {
					cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
				}
			} else {
				cpc_writeb(scabase + M_REG(TMCT, ch), 1);
				if (clktype == CLOCK_EXT) {
					cpc_writeb(scabase + M_REG(TXS, ch), 
						   TXS_DTRXC);
				} else {
					cpc_writeb(scabase + M_REG(TXS, ch), 
						   TXS_DTRXC|TXS_RCLK);
				}
	    			cpc_writeb(scabase + M_REG(TMCR, ch), 1);
				cpc_writeb(scabase + M_REG(RXS, ch), 0);
				if (card->hw.type == PC300_X21) {
					cpc_writeb(scabase + M_REG(GPO, ch), 0);
					cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
				} else {
					cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
				}
			}
			break;

		case PC300_TE:
			/* SCA always receives clock from the FALC chip */
			cpc_writeb(scabase + M_REG(TMCT, ch), 1);
			cpc_writeb(scabase + M_REG(TXS, ch), 0);
			cpc_writeb(scabase + M_REG(TMCR, ch), 1);
			cpc_writeb(scabase + M_REG(RXS, ch), 0);
			cpc_writeb(scabase + M_REG(EXS, ch), 0);
			break;
	}

	/* Enable Interrupts */
	cpc_writel(scabase + IER0,
		   cpc_readl(scabase + IER0) |
		   IR0_M(IR0_RXINTA, ch) |
		   IR0_DRX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch) |
		   IR0_DTX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch));
	cpc_writeb(scabase + M_REG(IE0, ch),
		   cpc_readl(scabase + M_REG(IE0, ch)) | IE0_RXINTA);
	cpc_writeb(scabase + M_REG(IE1, ch),
		   cpc_readl(scabase + M_REG(IE1, ch)) | IE1_CDCD);

	return 0;
}

static int rx_config(pc300dev_t * d)
{
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	void __iomem *scabase = card->hw.scabase;
	int ch = chan->channel;

	cpc_writeb(scabase + DSR_RX(ch), 0);

	/* General RX settings */
	cpc_writeb(scabase + M_REG(RRC, ch), 0);
	cpc_writeb(scabase + M_REG(RNR, ch), 16);

	/* Enable reception */
	cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_CRC_INIT);
	cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_ENA);

	/* Initialize DMA stuff */
	chan->rx_first_bd = 0;
	chan->rx_last_bd = N_DMA_RX_BUF - 1;
	rx_dma_buf_init(card, ch);
	cpc_writeb(scabase + DCR_RX(ch), DCR_FCT_CLR);
	cpc_writeb(scabase + DMR_RX(ch), (DMR_TMOD | DMR_NF));
	cpc_writeb(scabase + DIR_RX(ch), (DIR_EOM | DIR_BOF));

	/* Start DMA */
	rx_dma_start(card, ch);

	return 0;
}

static int tx_config(pc300dev_t * d)
{
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	void __iomem *scabase = card->hw.scabase;
	int ch = chan->channel;

	cpc_writeb(scabase + DSR_TX(ch), 0);

	/* General TX settings */
	cpc_writeb(scabase + M_REG(TRC0, ch), 0);
	cpc_writeb(scabase + M_REG(TFS, ch), 32);
	cpc_writeb(scabase + M_REG(TNR0, ch), 20);
	cpc_writeb(scabase + M_REG(TNR1, ch), 48);
	cpc_writeb(scabase + M_REG(TCR, ch), 8);

	/* Enable transmission */
	cpc_writeb(scabase + M_REG(CMD, ch), CMD_TX_CRC_INIT);

	/* Initialize DMA stuff */
	chan->tx_first_bd = 0;
	chan->tx_next_bd = 0;
	tx_dma_buf_init(card, ch);
	cpc_writeb(scabase + DCR_TX(ch), DCR_FCT_CLR);
	cpc_writeb(scabase + DMR_TX(ch), (DMR_TMOD | DMR_NF));
	cpc_writeb(scabase + DIR_TX(ch), (DIR_EOM | DIR_BOF | DIR_UDRF));
	cpc_writel(scabase + DTX_REG(CDAL, ch), TX_BD_ADDR(ch, chan->tx_first_bd));
	cpc_writel(scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd));

	return 0;
}

static int cpc_attach(struct net_device *dev, unsigned short encoding,
		      unsigned short parity)
{
	pc300dev_t *d = (pc300dev_t *)dev->priv;
	pc300ch_t *chan = (pc300ch_t *)d->chan;
	pc300_t *card = (pc300_t *)chan->card;
	pc300chconf_t *conf = (pc300chconf_t *)&chan->conf;

	if (card->hw.type == PC300_TE) {
		if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) {
			return -EINVAL;
		}
	} else {
		if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI &&
		    encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE) {
			/* Driver doesn't support ENCODING_MANCHESTER yet */
			return -EINVAL;
		}
	}

	if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0 &&
	    parity != PARITY_CRC16_PR1 && parity != PARITY_CRC32_PR1_CCITT &&
	    parity != PARITY_CRC16_PR1_CCITT) {
		return -EINVAL;
	}

	conf->proto_settings.encoding = encoding;
	conf->proto_settings.parity = parity;
	return 0;
}

static void cpc_opench(pc300dev_t * d)
{
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	int ch = chan->channel;
	void __iomem *scabase = card->hw.scabase;

	ch_config(d);

	rx_config(d);

	tx_config(d);

	/* Assert RTS and DTR */
	cpc_writeb(scabase + M_REG(CTL, ch),
		   cpc_readb(scabase + M_REG(CTL, ch)) & ~(CTL_RTS | CTL_DTR));
}

static void cpc_closech(pc300dev_t * d)
{
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	falc_t *pfalc = (falc_t *) & chan->falc;
	int ch = chan->channel;

	cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_CH_RST);
	rx_dma_stop(card, ch);
	tx_dma_stop(card, ch);

	if (card->hw.type == PC300_TE) {
		memset(pfalc, 0, sizeof(falc_t));
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
			   ~((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK |
			      CPLD_REG2_FALC_LED2) << (2 * ch)));
		/* Reset the FALC chip */
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
			   (CPLD_REG1_FALC_RESET << (2 * ch)));
		udelay(10000);
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
			   ~(CPLD_REG1_FALC_RESET << (2 * ch)));
	}
}

int cpc_open(struct net_device *dev)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	struct ifreq ifr;
	int result;

#ifdef	PC300_DEBUG_OTHER
	printk("pc300: cpc_open");
#endif

	if (hdlc->proto.id == IF_PROTO_PPP) {
		d->if_ptr = &hdlc->state.ppp.pppdev;
	}

	result = hdlc_open(dev);
	if (hdlc->proto.id == IF_PROTO_PPP) {
		dev->priv = d;
	}
	if (result) {
		return result;
	}

	sprintf(ifr.ifr_name, "%s", dev->name);
	cpc_opench(d);
	netif_start_queue(dev);
	return 0;
}

static int cpc_close(struct net_device *dev)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	pc300dev_t *d = (pc300dev_t *) dev->priv;
	pc300ch_t *chan = (pc300ch_t *) d->chan;
	pc300_t *card = (pc300_t *) chan->card;
	unsigned long flags;

#ifdef	PC300_DEBUG_OTHER
	printk("pc300: cpc_close");
#endif

	netif_stop_queue(dev);

	CPC_LOCK(card, flags);
	cpc_closech(d);
	CPC_UNLOCK(card, flags);

	hdlc_close(dev);
	if (hdlc->proto.id == IF_PROTO_PPP) {
		d->if_ptr = NULL;
	}
#ifdef CONFIG_PC300_MLPPP
	if (chan->conf.proto == PC300_PROTO_MLPPP) {
		cpc_tty_unregister_service(d);
		chan->conf.proto = 0xffff;
	}
#endif

	return 0;
}

static uclong detect_ram(pc300_t * card)
{
	uclong i;
	ucchar data;
	void __iomem *rambase = card->hw.rambase;

	card->hw.ramsize = PC300_RAMSIZE;
	/* Let's find out how much RAM is present on this board */
	for (i = 0; i < card->hw.ramsize; i++) {
		data = (ucchar) (i & 0xff);
		cpc_writeb(rambase + i, data);
		if (cpc_readb(rambase + i) != data) {
			break;
		}
	}
	return (i);
}

static void plx_init(pc300_t * card)
{
	struct RUNTIME_9050 __iomem *plx_ctl = card->hw.plxbase;

	/* Reset PLX */
	cpc_writel(&plx_ctl->init_ctrl,
		   cpc_readl(&plx_ctl->init_ctrl) | 0x40000000);
	udelay(10000L);
	cpc_writel(&plx_ctl->init_ctrl,
		   cpc_readl(&plx_ctl->init_ctrl) & ~0x40000000);

	/* Reload Config. Registers from EEPROM */
	cpc_writel(&plx_ctl->init_ctrl,
		   cpc_readl(&plx_ctl->init_ctrl) | 0x20000000);
	udelay(10000L);
	cpc_writel(&plx_ctl->init_ctrl,
		   cpc_readl(&plx_ctl->init_ctrl) & ~0x20000000);

}

static inline void show_version(void)
{
	char *rcsvers, *rcsdate, *tmp;

	rcsvers = strchr(rcsid, ' ');
	rcsvers++;
	tmp = strchr(rcsvers, ' ');
	*tmp++ = '\0';
	rcsdate = strchr(tmp, ' ');
	rcsdate++;
	tmp = strrchr(rcsdate, ' ');
	*tmp = '\0';
	printk(KERN_INFO "Cyclades-PC300 driver %s %s (built %s %s)\n", 
		rcsvers, rcsdate, __DATE__, __TIME__);
}				/* show_version */

static void cpc_init_card(pc300_t * card)
{
	int i, devcount = 0;
	static int board_nbr = 1;

	/* Enable interrupts on the PCI bridge */
	plx_init(card);
	cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
		   cpc_readw(card->hw.plxbase + card->hw.intctl_reg) | 0x0040);

#ifdef USE_PCI_CLOCK
	/* Set board clock to PCI clock */
	cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
		   cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) | 0x00000004UL);
	card->hw.clock = PC300_PCI_CLOCK;
#else
	/* Set board clock to internal oscillator clock */
	cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
		   cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & ~0x00000004UL);
	card->hw.clock = PC300_OSC_CLOCK;
#endif

	/* Detect actual on-board RAM size */
	card->hw.ramsize = detect_ram(card);

	/* Set Global SCA-II registers */
	cpc_writeb(card->hw.scabase + PCR, PCR_PR2);
	cpc_writeb(card->hw.scabase + BTCR, 0x10);
	cpc_writeb(card->hw.scabase + WCRL, 0);
	cpc_writeb(card->hw.scabase + DMER, 0x80);

	if (card->hw.type == PC300_TE) {
		ucchar reg1;

		/* Check CPLD version */
		reg1 = cpc_readb(card->hw.falcbase + CPLD_REG1);
		cpc_writeb(card->hw.falcbase + CPLD_REG1, (reg1 + 0x5a));
		if (cpc_readb(card->hw.falcbase + CPLD_REG1) == reg1) {
			/* New CPLD */
			card->hw.cpld_id = cpc_readb(card->hw.falcbase + CPLD_ID_REG);
			card->hw.cpld_reg1 = CPLD_V2_REG1;
			card->hw.cpld_reg2 = CPLD_V2_REG2;
		} else {
			/* old CPLD */
			card->hw.cpld_id = 0;
			card->hw.cpld_reg1 = CPLD_REG1;
			card->hw.cpld_reg2 = CPLD_REG2;
			cpc_writeb(card->hw.falcbase + CPLD_REG1, reg1);
		}

		/* Enable the board's global clock */
		cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
			   cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
			   CPLD_REG1_GLOBAL_CLK);

	}

	for (i = 0; i < card->hw.nchan; i++) {
		pc300ch_t *chan = &card->chan[i];
		pc300dev_t *d = &chan->d;
		hdlc_device *hdlc;
		struct net_device *dev;

		chan->card = card;
		chan->channel = i;
		chan->conf.phys_settings.clock_rate = 0;
		chan->conf.phys_settings.clock_type = CLOCK_EXT;
		chan->conf.proto_settings.encoding = ENCODING_NRZ;
		chan->conf.proto_settings.parity = PARITY_CRC16_PR1_CCITT;
		switch (card->hw.type) {
			case PC300_TE:
				chan->conf.media = IF_IFACE_T1;
				chan->conf.lcode = PC300_LC_B8ZS;
				chan->conf.fr_mode = PC300_FR_ESF;
				chan->conf.lbo = PC300_LBO_0_DB;
				chan->conf.rx_sens = PC300_RX_SENS_SH;
				chan->conf.tslot_bitmap = 0xffffffffUL;
				break;

			case PC300_X21:
				chan->conf.media = IF_IFACE_X21;
				break;

			case PC300_RSV:
			default:
				chan->conf.media = IF_IFACE_V35;
				break;
		}
		chan->conf.proto = IF_PROTO_PPP;
		chan->tx_first_bd = 0;
		chan->tx_next_bd = 0;
		chan->rx_first_bd = 0;
		chan->rx_last_bd = N_DMA_RX_BUF - 1;
		chan->nfree_tx_bd = N_DMA_TX_BUF;

		d->chan = chan;
		d->tx_skb = NULL;
		d->trace_on = 0;
		d->line_on = 0;
		d->line_off = 0;

		dev = alloc_hdlcdev(NULL);
		if (dev == NULL)
			continue;

		hdlc = dev_to_hdlc(dev);
		hdlc->xmit = cpc_queue_xmit;
		hdlc->attach = cpc_attach;
		d->dev = dev;
		dev->mem_start = card->hw.ramphys;
		dev->mem_end = card->hw.ramphys + card->hw.ramsize - 1;
		dev->irq = card->hw.irq;
		dev->init = NULL;
		dev->tx_queue_len = PC300_TX_QUEUE_LEN;
		dev->mtu = PC300_DEF_MTU;

		dev->open = cpc_open;
		dev->stop = cpc_close;
		dev->tx_timeout = cpc_tx_timeout;
		dev->watchdog_timeo = PC300_TX_TIMEOUT;
		dev->get_stats = cpc_get_stats;
		dev->set_multicast_list = NULL;
		dev->set_mac_address = NULL;
		dev->change_mtu = cpc_change_mtu;
		dev->do_ioctl = cpc_ioctl;

		if (register_hdlc_device(dev) == 0) {
			dev->priv = d;	/* We need 'priv', hdlc doesn't */
			printk("%s: Cyclades-PC300/", dev->name);
			switch (card->hw.type) {
				case PC300_TE:
					if (card->hw.bus == PC300_PMC) {
						printk("TE-M");
					} else {
						printk("TE  ");
					}
					break;

				case PC300_X21:
					printk("X21 ");
					break;

				case PC300_RSV:
				default:
					printk("RSV ");
					break;
			}
			printk (" #%d, %dKB of RAM at 0x%08x, IRQ%d, channel %d.\n",
				 board_nbr, card->hw.ramsize / 1024,
				 card->hw.ramphys, card->hw.irq, i + 1);
			devcount++;
		} else {
			printk ("Dev%d on card(0x%08x): unable to allocate i/f name.\n",
				 i + 1, card->hw.ramphys);
			free_netdev(dev);
			continue;
		}
	}
	spin_lock_init(&card->card_lock);

	board_nbr++;
}

static int __devinit
cpc_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	static int first_time = 1;
	ucchar cpc_rev_id;
	int err, eeprom_outdated = 0;
	ucshort device_id;
	pc300_t *card;

	if (first_time) {
		first_time = 0;
		show_version();
#ifdef CONFIG_PC300_MLPPP
		cpc_tty_reset_var();
#endif
	}

	if ((err = pci_enable_device(pdev)) < 0)
		return err;

	card = (pc300_t *) kmalloc(sizeof(pc300_t), GFP_KERNEL);
	if (card == NULL) {
		printk("PC300 found at RAM 0x%08lx, "
		       "but could not allocate card structure.\n",
		       pci_resource_start(pdev, 3));
		err = -ENOMEM;
		goto err_disable_dev;
	}
	memset(card, 0, sizeof(pc300_t));

	err = -ENODEV;

	/* read PCI configuration area */
	device_id = ent->device;
	card->hw.irq = pdev->irq;
	card->hw.iophys = pci_resource_start(pdev, 1);
	card->hw.iosize = pci_resource_len(pdev, 1);
	card->hw.scaphys = pci_resource_start(pdev, 2);
	card->hw.scasize = pci_resource_len(pdev, 2);
	card->hw.ramphys = pci_resource_start(pdev, 3);
	card->hw.alloc_ramsize = pci_resource_len(pdev, 3);
	card->hw.falcphys = pci_resource_start(pdev, 4);
	card->hw.falcsize = pci_resource_len(pdev, 4);
	card->hw.plxphys = pci_resource_start(pdev, 5);
	card->hw.plxsize = pci_resource_len(pdev, 5);
	pci_read_config_byte(pdev, PCI_REVISION_ID, &cpc_rev_id);

	switch (device_id) {
		case PCI_DEVICE_ID_PC300_RX_1:
		case PCI_DEVICE_ID_PC300_TE_1:
		case PCI_DEVICE_ID_PC300_TE_M_1:
			card->hw.nchan = 1;
			break;

		case PCI_DEVICE_ID_PC300_RX_2:
		case PCI_DEVICE_ID_PC300_TE_2:
		case PCI_DEVICE_ID_PC300_TE_M_2:
		default:
			card->hw.nchan = PC300_MAXCHAN;
			break;
	}
#ifdef PC300_DEBUG_PCI
	printk("cpc (bus=0x0%x,pci_id=0x%x,", pdev->bus->number, pdev->devfn);
	printk("rev_id=%d) IRQ%d\n", cpc_rev_id, card->hw.irq);
	printk("cpc:found  ramaddr=0x%08lx plxaddr=0x%08lx "
	       "ctladdr=0x%08lx falcaddr=0x%08lx\n",
	       card->hw.ramphys, card->hw.plxphys, card->hw.scaphys,
	       card->hw.falcphys);
#endif
	/* Although we don't use this I/O region, we should
	 * request it from the kernel anyway, to avoid problems
	 * with other drivers accessing it. */
	if (!request_region(card->hw.iophys, card->hw.iosize, "PLX Registers")) {
		/* In case we can't allocate it, warn user */
		printk("WARNING: couldn't allocate I/O region for PC300 board "
		       "at 0x%08x!\n", card->hw.ramphys);
	}

	if (card->hw.plxphys) {
		pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, card->hw.plxphys);
	} else {
		eeprom_outdated = 1;
		card->hw.plxphys = pci_resource_start(pdev, 0);
		card->hw.plxsize = pci_resource_len(pdev, 0);
	}

	if (!request_mem_region(card->hw.plxphys, card->hw.plxsize,
				"PLX Registers")) {
		printk("PC300 found at RAM 0x%08x, "
		       "but could not allocate PLX mem region.\n",
		       card->hw.ramphys);
		goto err_release_io;
	}
	if (!request_mem_region(card->hw.ramphys, card->hw.alloc_ramsize,
				"On-board RAM")) {
		printk("PC300 found at RAM 0x%08x, "
		       "but could not allocate RAM mem region.\n",
		       card->hw.ramphys);
		goto err_release_plx;
	}
	if (!request_mem_region(card->hw.scaphys, card->hw.scasize,
				"SCA-II Registers")) {
		printk("PC300 found at RAM 0x%08x, "
		       "but could not allocate SCA mem region.\n",
		       card->hw.ramphys);
		goto err_release_ram;
	}

	card->hw.plxbase = ioremap(card->hw.plxphys, card->hw.plxsize);
	card->hw.rambase = ioremap(card->hw.ramphys, card->hw.alloc_ramsize);
	card->hw.scabase = ioremap(card->hw.scaphys, card->hw.scasize);
	switch (device_id) {
		case PCI_DEVICE_ID_PC300_TE_1:
		case PCI_DEVICE_ID_PC300_TE_2:
		case PCI_DEVICE_ID_PC300_TE_M_1:
		case PCI_DEVICE_ID_PC300_TE_M_2:
			request_mem_region(card->hw.falcphys, card->hw.falcsize,
					   "FALC Registers");
			card->hw.falcbase = ioremap(card->hw.falcphys, card->hw.falcsize);
			break;

		case PCI_DEVICE_ID_PC300_RX_1:
		case PCI_DEVICE_ID_PC300_RX_2:
		default:
			card->hw.falcbase = NULL;
			break;
	}

#ifdef PC300_DEBUG_PCI
	printk("cpc: relocate ramaddr=0x%08lx plxaddr=0x%08lx "
	       "ctladdr=0x%08lx falcaddr=0x%08lx\n",
	       card->hw.rambase, card->hw.plxbase, card->hw.scabase,
	       card->hw.falcbase);
#endif

	/* Set PCI drv pointer to the card structure */
	pci_set_drvdata(pdev, card);

	/* Set board type */
	switch (device_id) {
		case PCI_DEVICE_ID_PC300_TE_1:
		case PCI_DEVICE_ID_PC300_TE_2:
		case PCI_DEVICE_ID_PC300_TE_M_1:
		case PCI_DEVICE_ID_PC300_TE_M_2:
			card->hw.type = PC300_TE;

			if ((device_id == PCI_DEVICE_ID_PC300_TE_M_1) ||
			    (device_id == PCI_DEVICE_ID_PC300_TE_M_2)) {
				card->hw.bus = PC300_PMC;
				/* Set PLX register offsets */
				card->hw.gpioc_reg = 0x54;
				card->hw.intctl_reg = 0x4c;
			} else {
				card->hw.bus = PC300_PCI;
				/* Set PLX register offsets */
				card->hw.gpioc_reg = 0x50;
				card->hw.intctl_reg = 0x4c;
			}
			break;

		case PCI_DEVICE_ID_PC300_RX_1:
		case PCI_DEVICE_ID_PC300_RX_2:
		default:
			card->hw.bus = PC300_PCI;
			/* Set PLX register offsets */
			card->hw.gpioc_reg = 0x50;
			card->hw.intctl_reg = 0x4c;

			if ((cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & PC300_CTYPE_MASK)) {
				card->hw.type = PC300_X21;
			} else {
				card->hw.type = PC300_RSV;
			}
			break;
	}

	/* Allocate IRQ */
	if (request_irq(card->hw.irq, cpc_intr, SA_SHIRQ, "Cyclades-PC300", card)) {
		printk ("PC300 found at RAM 0x%08x, but could not allocate IRQ%d.\n",
			 card->hw.ramphys, card->hw.irq);
		goto err_io_unmap;
	}

	cpc_init_card(card);

	if (eeprom_outdated)
		printk("WARNING: PC300 with outdated EEPROM.\n");
	return 0;

err_io_unmap:
	iounmap(card->hw.plxbase);
	iounmap(card->hw.scabase);
	iounmap(card->hw.rambase);
	if (card->hw.type == PC300_TE) {
		iounmap(card->hw.falcbase);
		release_mem_region(card->hw.falcphys, card->hw.falcsize);
	}
	release_mem_region(card->hw.scaphys, card->hw.scasize);
err_release_ram:
	release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
err_release_plx:
	release_mem_region(card->hw.plxphys, card->hw.plxsize);
err_release_io:
	release_region(card->hw.iophys, card->hw.iosize);
	kfree(card);
err_disable_dev:
	pci_disable_device(pdev);
	return err;
}

static void __devexit cpc_remove_one(struct pci_dev *pdev)
{
	pc300_t *card = pci_get_drvdata(pdev);

	if (card->hw.rambase != 0) {
		int i;

		/* Disable interrupts on the PCI bridge */
		cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
			   cpc_readw(card->hw.plxbase + card->hw.intctl_reg) & ~(0x0040));

		for (i = 0; i < card->hw.nchan; i++) {
			unregister_hdlc_device(card->chan[i].d.dev);
		}
		iounmap(card->hw.plxbase);
		iounmap(card->hw.scabase);
		iounmap(card->hw.rambase);
		release_mem_region(card->hw.plxphys, card->hw.plxsize);
		release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
		release_mem_region(card->hw.scaphys, card->hw.scasize);
		release_region(card->hw.iophys, card->hw.iosize);
		if (card->hw.type == PC300_TE) {
			iounmap(card->hw.falcbase);
			release_mem_region(card->hw.falcphys, card->hw.falcsize);
		}
		for (i = 0; i < card->hw.nchan; i++)
			if (card->chan[i].d.dev)
				free_netdev(card->chan[i].d.dev);
		if (card->hw.irq)
			free_irq(card->hw.irq, card);
		kfree(card);
		pci_disable_device(pdev);
	}
}

static struct pci_driver cpc_driver = {
	.name           = "pc300",
	.id_table       = cpc_pci_dev_id,
	.probe          = cpc_init_one,
	.remove         = __devexit_p(cpc_remove_one),
};

static int __init cpc_init(void)
{
	return pci_module_init(&cpc_driver);
}

static void __exit cpc_cleanup_module(void)
{
	pci_unregister_driver(&cpc_driver);
}

module_init(cpc_init);
module_exit(cpc_cleanup_module);

MODULE_DESCRIPTION("Cyclades-PC300 cards driver");
MODULE_AUTHOR(  "Author: Ivan Passos <ivan@cyclades.com>\r\n"
                "Maintainer: PC300 Maintainer <pc300@cyclades.com");
MODULE_LICENSE("GPL");