/*
* madgemc.c: Driver for the Madge Smart 16/4 MC16 MCA token ring card.
*
* Written 2000 by Adam Fritzler
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* This driver module supports the following cards:
* - Madge Smart 16/4 Ringnode MC16
* - Madge Smart 16/4 Ringnode MC32 (??)
*
* Maintainer(s):
* AF Adam Fritzler
*
* Modification History:
* 16-Jan-00 AF Created
*
*/
static const char version[] = "madgemc.c: v0.91 23/01/2000 by Adam Fritzler\n";
#include <linux/module.h>
#include <linux/mca.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/trdevice.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "tms380tr.h"
#include "madgemc.h" /* Madge-specific constants */
#define MADGEMC_IO_EXTENT 32
#define MADGEMC_SIF_OFFSET 0x08
struct card_info {
/*
* These are read from the BIA ROM.
*/
unsigned int manid;
unsigned int cardtype;
unsigned int cardrev;
unsigned int ramsize;
/*
* These are read from the MCA POS registers.
*/
unsigned int burstmode:2;
unsigned int fairness:1; /* 0 = Fair, 1 = Unfair */
unsigned int arblevel:4;
unsigned int ringspeed:2; /* 0 = 4mb, 1 = 16, 2 = Auto/none */
unsigned int cabletype:1; /* 0 = RJ45, 1 = DB9 */
};
static int madgemc_open(struct net_device *dev);
static int madgemc_close(struct net_device *dev);
static int madgemc_chipset_init(struct net_device *dev);
static void madgemc_read_rom(struct net_device *dev, struct card_info *card);
static unsigned short madgemc_setnselout_pins(struct net_device *dev);
static void madgemc_setcabletype(struct net_device *dev, int type);
static int madgemc_mcaproc(char *buf, int slot, void *d);
static void madgemc_setregpage(struct net_device *dev, int page);
static void madgemc_setsifsel(struct net_device *dev, int val);
static void madgemc_setint(struct net_device *dev, int val);
static irqreturn_t madgemc_interrupt(int irq, void *dev_id);
/*
* These work around paging, however they don't guarentee you're on the
* right page.
*/
#define SIFREADB(reg) (inb(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
#define SIFWRITEB(val, reg) (outb(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
#define SIFREADW(reg) (inw(dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
#define SIFWRITEW(val, reg) (outw(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8)))
/*
* Read a byte-length value from the register.
*/
static unsigned short madgemc_sifreadb(struct net_device *dev, unsigned short reg)
{
unsigned short ret;
if (reg<0x8)
ret = SIFREADB(reg);
else {
madgemc_setregpage(dev, 1);
ret = SIFREADB(reg);
madgemc_setregpage(dev, 0);
}
return ret;
}
/*
* Write a byte-length value to a register.
*/
static void madgemc_sifwriteb(struct net_device *dev, unsigned short val, unsigned short reg)
{
if (reg<0x8)
SIFWRITEB(val, reg);
else {
madgemc_setregpage(dev, 1);
SIFWRITEB(val, reg);
madgemc_setregpage(dev, 0);
}
return;
}
/*
* Read a word-length value from a register
*/
static unsigned short madgemc_sifreadw(struct net_device *dev, unsigned short reg)
{
unsigned short ret;
if (reg<0x8)
ret = SIFREADW(reg);
else {
madgemc_setregpage(dev, 1);
ret = SIFREADW(reg);
madgemc_setregpage(dev, 0);
}
return ret;
}
/*
* Write a word-length value to a register.
*/
static void madgemc_sifwritew(struct net_device *dev, unsigned short val, unsigned short reg)
{
if (reg<0x8)
SIFWRITEW(val, reg);
else {
madgemc_setregpage(dev, 1);
SIFWRITEW(val, reg);
madgemc_setregpage(dev, 0);
}
return;
}
static struct net_device_ops madgemc_netdev_ops __read_mostly;
static int __devinit madgemc_probe(struct device *device)
{
static int versionprinted;
struct net_device *dev;
struct net_local *tp;
struct card_info *card;
struct mca_device *mdev = to_mca_device(device);
int ret = 0;
if (versionprinted++ == 0)
printk("%s", version);
if(mca_device_claimed(mdev))
return -EBUSY;
mca_device_set_claim(mdev, 1);
dev = alloc_trdev(sizeof(struct net_local));
if (!dev) {
printk("madgemc: unable to allocate dev space\n");
mca_device_set_claim(mdev, 0);
ret = -ENOMEM;
goto getout;
}
dev->netdev_ops = &madgemc_netdev_ops;
card = kmalloc(sizeof(struct card_info), GFP_KERNEL);
if (card==NULL) {
printk("madgemc: unable to allocate card struct\n");
ret = -ENOMEM;
goto getout1;
}
/*
* Parse configuration information. This all comes
* directly from the publicly available @002d.ADF.
* Get it from Madge or your local ADF library.
*/
/*
* Base address
*/
dev->base_addr = 0x0a20 +
((mdev->pos[2] & MC16_POS2_ADDR2)?0x0400:0) +
((mdev->pos[0] & MC16_POS0_ADDR1)?0x1000:0) +
((mdev->pos[3] & MC16_POS3_ADDR3)?0x2000:0);
/*
* Interrupt line
*/
switch(mdev->pos[0] >> 6) { /* upper two bits */
case 0x1: dev->irq = 3; break;
case 0x2: dev->irq = 9; break; /* IRQ 2 = IRQ 9 */
case 0x3: dev->irq = 10; break;
default: dev->irq = 0; break;
}
if (dev->irq == 0) {
printk("%s: invalid IRQ\n", dev->name);
ret = -EBUSY;
goto getout2;
}
if (!request_region(dev->base_addr, MADGEMC_IO_EXTENT,
"madgemc")) {
printk(KERN_INFO "madgemc: unable to setup Smart MC in slot %d because of I/O base conflict at 0x%04lx\n", mdev->slot, dev->base_addr);
dev->base_addr += MADGEMC_SIF_OFFSET;
ret = -EBUSY;
goto getout2;
}
dev->base_addr += MADGEMC_SIF_OFFSET;
/*
* Arbitration Level
*/
card->arblevel = ((mdev->pos[0] >> 1) & 0x7) + 8;
/*
* Burst mode and Fairness
*/
card->burstmode = ((mdev->pos[2] >> 6) & 0x3);
card->fairness = ((mdev->pos[2] >> 4) & 0x1);
/*
* Ring Speed
*/
if ((mdev->pos[1] >> 2)&0x1)
card->ringspeed = 2; /* not selected */
else if ((mdev->pos[2] >> 5) & 0x1)
card->ringspeed = 1; /* 16Mb */
else
card->ringspeed = 0; /* 4Mb */
/*
* Cable type
*/
if ((mdev->pos[1] >> 6)&0x1)
card->cabletype = 1; /* STP/DB9 */
else
card->cabletype = 0; /* UTP/RJ-45 */
/*
* ROM Info. This requires us to actually twiddle
* bits on the card, so we must ensure above that
* the base address is free of conflict (request_region above).
*/
madgemc_read_rom(dev, card);
if (card->manid != 0x4d) { /* something went wrong */
printk(KERN_INFO "%s: Madge MC ROM read failed (unknown manufacturer ID %02x)\n", dev->name, card->manid);
goto getout3;
}
if ((card->cardtype != 0x08) && (card->cardtype != 0x0d)) {
printk(KERN_INFO "%s: Madge MC ROM read failed (unknown card ID %02x)\n", dev->name, card->cardtype);
ret = -EIO;
goto getout3;
}
/* All cards except Rev 0 and 1 MC16's have 256kb of RAM */
if ((card->cardtype == 0x08) && (card->cardrev <= 0x01))
card->ramsize = 128;
else
card->ramsize = 256;
printk("%s: %s Rev %d at 0x%04lx IRQ %d\n",
dev->name,
(card->cardtype == 0x08)?MADGEMC16_CARDNAME:
MADGEMC32_CARDNAME, card->cardrev,
dev->base_addr, dev->irq);
if (card->cardtype == 0x0d)
printk("%s: Warning: MC32 support is experimental and highly untested\n", dev->name);
if (card->ringspeed==2) { /* Unknown */
printk("%s: Warning: Ring speed not set in POS -- Please run the reference disk and set it!\n", dev->name);
card->ringspeed = 1; /* default to 16mb */
}
printk("%s: RAM Size: %dKB\n", dev->name, card->ramsize);
printk("%s: Ring Speed: %dMb/sec on %s\n", dev->name,
(card->ringspeed)?16:4,
card->cabletype?"STP/DB9":"UTP/RJ-45");
printk("%s: Arbitration Level: %d\n", dev->name,
card->arblevel);
printk("%s: Burst Mode: ", dev->name);
switch(card->burstmode) {
case 0: printk("Cycle steal"); break;
case 1: printk("Limited burst"); break;
case 2: printk("Delayed release"); break;
case 3: printk("Immediate release"); break;
}
printk(" (%s)\n", (card->fairness)?"Unfair":"Fair");
/*
* Enable SIF before we assign the interrupt handler,
* just in case we get spurious interrupts that need
* handling.
*/
outb(0, dev->base_addr + MC_CONTROL_REG0); /* sanity */
madgemc_setsifsel(dev, 1);
if (request_irq(dev->irq, madgemc_interrupt, IRQF_SHARED,
"madgemc", dev)) {
ret = -EBUSY;
goto getout3;
}
madgemc_chipset_init(dev); /* enables interrupts! */
madgemc_setcabletype(dev, card->cabletype);
/* Setup MCA structures */
mca_device_set_name(mdev, (card->cardtype == 0x08)?MADGEMC16_CARDNAME:MADGEMC32_CARDNAME);
mca_set_adapter_procfn(mdev->slot, madgemc_mcaproc, dev);
printk("%s: Ring Station Address: %pM\n",
dev->name, dev->dev_addr);
if (tmsdev_init(dev, device)) {
printk("%s: unable to get memory for dev->priv.\n",
dev->name);
ret = -ENOMEM;
goto getout4;
}
tp = netdev_priv(dev);
/*
* The MC16 is physically a 32bit card. However, Madge
* insists on calling it 16bit, so I'll assume here that
* they know what they're talking about. Cut off DMA
* at 16mb.
*/
tp->setnselout = madgemc_setnselout_pins;
tp->sifwriteb = madgemc_sifwriteb;
tp->sifreadb = madgemc_sifreadb;
tp->sifwritew = madgemc_sifwritew;
tp->sifreadw = madgemc_sifreadw;
tp->DataRate = (card->ringspeed)?SPEED_16:SPEED_4;
memcpy(tp->ProductID, "Madge MCA 16/4 ", PROD_ID_SIZE + 1);
tp->tmspriv = card;
dev_set_drvdata(device, dev);
if (register_netdev(dev) == 0)
return 0;
dev_set_drvdata(device, NULL);
ret = -ENOMEM;
getout4:
free_irq(dev->irq, dev);
getout3:
release_region(dev->base_addr-MADGEMC_SIF_OFFSET,
MADGEMC_IO_EXTENT);
getout2:
kfree(card);
getout1:
free_netdev(dev);
getout:
mca_device_set_claim(mdev, 0);
return ret;
}
/*
* Handle interrupts generated by the card
*
* The MicroChannel Madge cards need slightly more handling
* after an interrupt than other TMS380 cards do.
*
* First we must make sure it was this card that generated the
* interrupt (since interrupt sharing is allowed). Then,
* because we're using level-triggered interrupts (as is
* standard on MCA), we must toggle the interrupt line
* on the card in order to claim and acknowledge the interrupt.
* Once that is done, the interrupt should be handlable in
* the normal tms380tr_interrupt() routine.
*
* There's two ways we can check to see if the interrupt is ours,
* both with their own disadvantages...
*
* 1) Read in the SIFSTS register from the TMS controller. This
* is guarenteed to be accurate, however, there's a fairly
* large performance penalty for doing so: the Madge chips
* must request the register from the Eagle, the Eagle must
* read them from its internal bus, and then take the route
* back out again, for a 16bit read.
*
* 2) Use the MC_CONTROL_REG0_SINTR bit from the Madge ASICs.
* The major disadvantage here is that the accuracy of the
* bit is in question. However, it cuts out the extra read
* cycles it takes to read the Eagle's SIF, as its only an
* 8bit read, and theoretically the Madge bit is directly
* connected to the interrupt latch coming out of the Eagle
* hardware (that statement is not verified).
*
* I can't determine which of these methods has the best win. For now,
* we make a compromise. Use the Madge way for the first interrupt,
* which should be the fast-path, and then once we hit the first
* interrupt, keep on trying using the SIF method until we've
* exhausted all contiguous interrupts.
*
*/
static irqreturn_t madgemc_interrupt(int irq, void *dev_id)
{
int pending,reg1;
struct net_device *dev;
if (!dev_id) {
printk("madgemc_interrupt: was not passed a dev_id!\n");
return IRQ_NONE;
}
dev = (struct net_device *)dev_id;
/* Make sure its really us. -- the Madge way */
pending = inb(dev->base_addr + MC_CONTROL_REG0);
if (!(pending & MC_CONTROL_REG0_SINTR))
return IRQ_NONE; /* not our interrupt */
/*
* Since we're level-triggered, we may miss the rising edge
* of the next interrupt while we're off handling this one,
* so keep checking until the SIF verifies that it has nothing
* left for us to do.
*/
pending = STS_SYSTEM_IRQ;
do {
if (pending & STS_SYSTEM_IRQ) {
/* Toggle the interrupt to reset the latch on card */
reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
dev->base_addr + MC_CONTROL_REG1);
outb(reg1, dev->base_addr + MC_CONTROL_REG1);
/* Continue handling as normal */
tms380tr_interrupt(irq, dev_id);
pending = SIFREADW(SIFSTS); /* restart - the SIF way */
} else
return IRQ_HANDLED;
} while (1);
return IRQ_HANDLED; /* not reachable */
}
/*
* Set the card to the prefered ring speed.
*
* Unlike newer cards, the MC16/32 have their speed selection
* circuit connected to the Madge ASICs and not to the TMS380
* NSELOUT pins. Set the ASIC bits correctly here, and return
* zero to leave the TMS NSELOUT bits unaffected.
*
*/
static unsigned short madgemc_setnselout_pins(struct net_device *dev)
{
unsigned char reg1;
struct net_local *tp = netdev_priv(dev);
reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
if(tp->DataRate == SPEED_16)
reg1 |= MC_CONTROL_REG1_SPEED_SEL; /* add for 16mb */
else if (reg1 & MC_CONTROL_REG1_SPEED_SEL)
reg1 ^= MC_CONTROL_REG1_SPEED_SEL; /* remove for 4mb */
outb(reg1, dev->base_addr + MC_CONTROL_REG1);
return 0; /* no change */
}
/*
* Set the register page. This equates to the SRSX line
* on the TMS380Cx6.
*
* Register selection is normally done via three contiguous
* bits. However, some boards (such as the MC16/32) use only
* two bits, plus a separate bit in the glue chip. This
* sets the SRSX bit (the top bit). See page 4-17 in the
* Yellow Book for which registers are affected.
*
*/
static void madgemc_setregpage(struct net_device *dev, int page)
{
static int reg1;
reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
if ((page == 0) && (reg1 & MC_CONTROL_REG1_SRSX)) {
outb(reg1 ^ MC_CONTROL_REG1_SRSX,
dev->base_addr + MC_CONTROL_REG1);
}
else if (page == 1) {
outb(reg1 | MC_CONTROL_REG1_SRSX,
dev->base_addr + MC_CONTROL_REG1);
}
reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
return;
}
/*
* The SIF registers are not mapped into register space by default
* Set this to 1 to map them, 0 to map the BIA ROM.
*
*/
static void madgemc_setsifsel(struct net_device *dev, int val)
{
unsigned int reg0;
reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
if ((val == 0) && (reg0 & MC_CONTROL_REG0_SIFSEL)) {
outb(reg0 ^ MC_CONTROL_REG0_SIFSEL,
dev->base_addr + MC_CONTROL_REG0);
} else if (val == 1) {
outb(reg0 | MC_CONTROL_REG0_SIFSEL,
dev->base_addr + MC_CONTROL_REG0);
}
reg0 = inb(dev->base_addr + MC_CONTROL_REG0);
return;
}
/*
* Enable SIF interrupts
*
* This does not enable interrupts in the SIF, but rather
* enables SIF interrupts to be passed onto the host.
*
*/
static void madgemc_setint(struct net_device *dev, int val)
{
unsigned int reg1;
reg1 = inb(dev->base_addr + MC_CONTROL_REG1);
if ((val == 0) && (reg1 & MC_CONTROL_REG1_SINTEN)) {
outb(reg1 ^ MC_CONTROL_REG1_SINTEN,
dev->base_addr + MC_CONTROL_REG1);
} else if (val == 1) {
outb(reg1 | MC_CONTROL_REG1_SINTEN,
dev->base_addr + MC_CONTROL_REG1);
}
return;
}
/*
* Cable type is set via control register 7. Bit zero high
* for UTP, low for STP.
*/
static void madgemc_setcabletype(struct net_device *dev, int type)
{
outb((type==0)?MC_CONTROL_REG7_CABLEUTP:MC_CONTROL_REG7_CABLESTP,
dev->base_addr + MC_CONTROL_REG7);
}
/*
* Enable the functions of the Madge chipset needed for
* full working order.
*/
static int madgemc_chipset_init(struct net_device *dev)
{
outb(0, dev->base_addr + MC_CONTROL_REG1); /* pull SRESET low */
tms380tr_wait(100); /* wait for card to reset */
/* bring back into normal operating mode */
outb(MC_CONTROL_REG1_NSRESET, dev->base_addr + MC_CONTROL_REG1);
/* map SIF registers */
madgemc_setsifsel(dev, 1);
/* enable SIF interrupts */
madgemc_setint(dev, 1);
return 0;
}
/*
* Disable the board, and put back into power-up state.
*/
static void madgemc_chipset_close(struct net_device *dev)
{
/* disable interrupts */
madgemc_setint(dev, 0);
/* unmap SIF registers */
madgemc_setsifsel(dev, 0);
return;
}
/*
* Read the card type (MC16 or MC32) from the card.
*
* The configuration registers are stored in two separate
* pages. Pages are flipped by clearing bit 3 of CONTROL_REG0 (PAGE)
* for page zero, or setting bit 3 for page one.
*
* Page zero contains the following data:
* Byte 0: Manufacturer ID (0x4D -- ASCII "M")
* Byte 1: Card type:
* 0x08 for MC16
* 0x0D for MC32
* Byte 2: Card revision
* Byte 3: Mirror of POS config register 0
* Byte 4: Mirror of POS 1
* Byte 5: Mirror of POS 2
*
* Page one contains the following data:
* Byte 0: Unused
* Byte 1-6: BIA, MSB to LSB.
*
* Note that to read the BIA, we must unmap the SIF registers
* by clearing bit 2 of CONTROL_REG0 (SIFSEL), as the data
* will reside in the same logical location. For this reason,
* _never_ read the BIA while the Eagle processor is running!
* The SIF will be completely inaccessible until the BIA operation
* is complete.
*
*/
static void madgemc_read_rom(struct net_device *dev, struct card_info *card)
{
unsigned long ioaddr;
unsigned char reg0, reg1, tmpreg0, i;
ioaddr = dev->base_addr;
reg0 = inb(ioaddr + MC_CONTROL_REG0);
reg1 = inb(ioaddr + MC_CONTROL_REG1);
/* Switch to page zero and unmap SIF */
tmpreg0 = reg0 & ~(MC_CONTROL_REG0_PAGE + MC_CONTROL_REG0_SIFSEL);
outb(tmpreg0, ioaddr + MC_CONTROL_REG0);
card->manid = inb(ioaddr + MC_ROM_MANUFACTURERID);
card->cardtype = inb(ioaddr + MC_ROM_ADAPTERID);
card->cardrev = inb(ioaddr + MC_ROM_REVISION);
/* Switch to rom page one */
outb(tmpreg0 | MC_CONTROL_REG0_PAGE, ioaddr + MC_CONTROL_REG0);
/* Read BIA */
dev->addr_len = 6;
for (i = 0; i < 6; i++)
dev->dev_addr[i] = inb(ioaddr + MC_ROM_BIA_START + i);
/* Restore original register values */
outb(reg0, ioaddr + MC_CONTROL_REG0);
outb(reg1, ioaddr + MC_CONTROL_REG1);
return;
}
static int madgemc_open(struct net_device *dev)
{
/*
* Go ahead and reinitialize the chipset again, just to
* make sure we didn't get left in a bad state.
*/
madgemc_chipset_init(dev);
tms380tr_open(dev);
return 0;
}
static int madgemc_close(struct net_device *dev)
{
tms380tr_close(dev);
madgemc_chipset_close(dev);
return 0;
}
/*
* Give some details available from /proc/mca/slotX
*/
static int madgemc_mcaproc(char *buf, int slot, void *d)
{
struct net_device *dev = (struct net_device *)d;
struct net_local *tp = netdev_priv(dev);
struct card_info *curcard = tp->tmspriv;
int len = 0;
len += sprintf(buf+len, "-------\n");
if (curcard) {
len += sprintf(buf+len, "Card Revision: %d\n", curcard->cardrev);
len += sprintf(buf+len, "RAM Size: %dkb\n", curcard->ramsize);
len += sprintf(buf+len, "Cable type: %s\n", (curcard->cabletype)?"STP/DB9":"UTP/RJ-45");
len += sprintf(buf+len, "Configured ring speed: %dMb/sec\n", (curcard->ringspeed)?16:4);
len += sprintf(buf+len, "Running ring speed: %dMb/sec\n", (tp->DataRate==SPEED_16)?16:4);
len += sprintf(buf+len, "Device: %s\n", dev->name);
len += sprintf(buf+len, "IO Port: 0x%04lx\n", dev->base_addr);
len += sprintf(buf+len, "IRQ: %d\n", dev->irq);
len += sprintf(buf+len, "Arbitration Level: %d\n", curcard->arblevel);
len += sprintf(buf+len, "Burst Mode: ");
switch(curcard->burstmode) {
case 0: len += sprintf(buf+len, "Cycle steal"); break;
case 1: len += sprintf(buf+len, "Limited burst"); break;
case 2: len += sprintf(buf+len, "Delayed release"); break;
case 3: len += sprintf(buf+len, "Immediate release"); break;
}
len += sprintf(buf+len, " (%s)\n", (curcard->fairness)?"Unfair":"Fair");
len += sprintf(buf+len, "Ring Station Address: %pM\n",
dev->dev_addr);
} else
len += sprintf(buf+len, "Card not configured\n");
return len;
}
static int __devexit madgemc_remove(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct net_local *tp;
struct card_info *card;
BUG_ON(!dev);
tp = netdev_priv(dev);
card = tp->tmspriv;
kfree(card);
tp->tmspriv = NULL;
unregister_netdev(dev);
release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT);
free_irq(dev->irq, dev);
tmsdev_term(dev);
free_netdev(dev);
dev_set_drvdata(device, NULL);
return 0;
}
static short madgemc_adapter_ids[] __initdata = {
0x002d,
0x0000
};
static struct mca_driver madgemc_driver = {
.id_table = madgemc_adapter_ids,
.driver = {
.name = "madgemc",
.bus = &mca_bus_type,
.probe = madgemc_probe,
.remove = __devexit_p(madgemc_remove),
},
};
static int __init madgemc_init (void)
{
madgemc_netdev_ops = tms380tr_netdev_ops;
madgemc_netdev_ops.ndo_open = madgemc_open;
madgemc_netdev_ops.ndo_stop = madgemc_close;
return mca_register_driver (&madgemc_driver);
}
static void __exit madgemc_exit (void)
{
mca_unregister_driver (&madgemc_driver);
}
module_init(madgemc_init);
module_exit(madgemc_exit);
MODULE_LICENSE("GPL");