aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/net/sonic.h
blob: 7db13e4a7ea55c70c8b31c9cd0c93dbbb6012d1f (plain) (tree)
1
2
3
4
5
6
7
8
9
  
                          






                                                                     
                                                  
  
                                                                       
  





                                                                         
   
 


               

































































                                    
 



























































































                                                               
  





                                             







                                      










                                      


                                                 



                                                   





                                                  
                              

                          






































                                                                             






                                                                  


                                                                          
 

                                         
 






                                                                       


                                                      


























                                                                                       
                            




                                                                          


                                      
                           




                                                                          
                                                          






                                                                        











































































































                                                                             



                                                        
/*
 * Header file for sonic.c
 *
 * (C) Waldorf Electronics, Germany
 * Written by Andreas Busse
 *
 * NOTE: most of the structure definitions here are endian dependent.
 * If you want to use this driver on big endian machines, the data
 * and pad structure members must be exchanged. Also, the structures
 * need to be changed accordingly to the bus size.
 *
 * 981229 MSch:	did just that for the 68k Mac port (32 bit, big endian)
 *
 * 990611 David Huggins-Daines <dhd@debian.org>: This machine abstraction
 * does not cope with 16-bit bus sizes very well.  Therefore I have
 * rewritten it with ugly macros and evil inlines.
 *
 * 050625 Finn Thain: introduced more 32-bit cards and dhd's support
 *        for 16-bit cards (from the mac68k project).
 */

#ifndef SONIC_H
#define SONIC_H


/*
 * SONIC register offsets
 */

#define SONIC_CMD              0x00
#define SONIC_DCR              0x01
#define SONIC_RCR              0x02
#define SONIC_TCR              0x03
#define SONIC_IMR              0x04
#define SONIC_ISR              0x05

#define SONIC_UTDA             0x06
#define SONIC_CTDA             0x07

#define SONIC_URDA             0x0d
#define SONIC_CRDA             0x0e
#define SONIC_EOBC             0x13
#define SONIC_URRA             0x14
#define SONIC_RSA              0x15
#define SONIC_REA              0x16
#define SONIC_RRP              0x17
#define SONIC_RWP              0x18
#define SONIC_RSC              0x2b

#define SONIC_CEP              0x21
#define SONIC_CAP2             0x22
#define SONIC_CAP1             0x23
#define SONIC_CAP0             0x24
#define SONIC_CE               0x25
#define SONIC_CDP              0x26
#define SONIC_CDC              0x27

#define SONIC_WT0              0x29
#define SONIC_WT1              0x2a

#define SONIC_SR               0x28


/* test-only registers */

#define SONIC_TPS		0x08
#define SONIC_TFC		0x09
#define SONIC_TSA0		0x0a
#define SONIC_TSA1		0x0b
#define SONIC_TFS		0x0c

#define SONIC_CRBA0		0x0f
#define SONIC_CRBA1		0x10
#define SONIC_RBWC0		0x11
#define SONIC_RBWC1		0x12
#define SONIC_TTDA		0x20
#define SONIC_MDT		0x2f

#define SONIC_TRBA0		0x19
#define SONIC_TRBA1		0x1a
#define SONIC_TBWC0		0x1b
#define SONIC_TBWC1		0x1c
#define SONIC_LLFA		0x1f

#define SONIC_ADDR0		0x1d
#define SONIC_ADDR1		0x1e

/*
 * Error counters
 */

#define SONIC_CRCT              0x2c
#define SONIC_FAET              0x2d
#define SONIC_MPT               0x2e

#define SONIC_DCR2              0x3f

/*
 * SONIC command bits
 */

#define SONIC_CR_LCAM           0x0200
#define SONIC_CR_RRRA           0x0100
#define SONIC_CR_RST            0x0080
#define SONIC_CR_ST             0x0020
#define SONIC_CR_STP            0x0010
#define SONIC_CR_RXEN           0x0008
#define SONIC_CR_RXDIS          0x0004
#define SONIC_CR_TXP            0x0002
#define SONIC_CR_HTX            0x0001

/*
 * SONIC data configuration bits
 */

#define SONIC_DCR_EXBUS         0x8000
#define SONIC_DCR_LBR           0x2000
#define SONIC_DCR_PO1           0x1000
#define SONIC_DCR_PO0           0x0800
#define SONIC_DCR_SBUS          0x0400
#define SONIC_DCR_USR1          0x0200
#define SONIC_DCR_USR0          0x0100
#define SONIC_DCR_WC1           0x0080
#define SONIC_DCR_WC0           0x0040
#define SONIC_DCR_DW            0x0020
#define SONIC_DCR_BMS           0x0010
#define SONIC_DCR_RFT1          0x0008
#define SONIC_DCR_RFT0          0x0004
#define SONIC_DCR_TFT1          0x0002
#define SONIC_DCR_TFT0          0x0001

/*
 * Constants for the SONIC receive control register.
 */

#define SONIC_RCR_ERR           0x8000
#define SONIC_RCR_RNT           0x4000
#define SONIC_RCR_BRD           0x2000
#define SONIC_RCR_PRO           0x1000
#define SONIC_RCR_AMC           0x0800
#define SONIC_RCR_LB1           0x0400
#define SONIC_RCR_LB0           0x0200

#define SONIC_RCR_MC            0x0100
#define SONIC_RCR_BC            0x0080
#define SONIC_RCR_LPKT          0x0040
#define SONIC_RCR_CRS           0x0020
#define SONIC_RCR_COL           0x0010
#define SONIC_RCR_CRCR          0x0008
#define SONIC_RCR_FAER          0x0004
#define SONIC_RCR_LBK           0x0002
#define SONIC_RCR_PRX           0x0001

#define SONIC_RCR_LB_OFF        0
#define SONIC_RCR_LB_MAC        SONIC_RCR_LB0
#define SONIC_RCR_LB_ENDEC      SONIC_RCR_LB1
#define SONIC_RCR_LB_TRANS      (SONIC_RCR_LB0 | SONIC_RCR_LB1)

/* default RCR setup */

#define SONIC_RCR_DEFAULT       (SONIC_RCR_BRD)


/*
 * SONIC Transmit Control register bits
 */

#define SONIC_TCR_PINTR         0x8000
#define SONIC_TCR_POWC          0x4000
#define SONIC_TCR_CRCI          0x2000
#define SONIC_TCR_EXDIS         0x1000
#define SONIC_TCR_EXD           0x0400
#define SONIC_TCR_DEF           0x0200
#define SONIC_TCR_NCRS          0x0100
#define SONIC_TCR_CRLS          0x0080
#define SONIC_TCR_EXC           0x0040
#define SONIC_TCR_PMB           0x0008
#define SONIC_TCR_FU            0x0004
#define SONIC_TCR_BCM           0x0002
#define SONIC_TCR_PTX           0x0001

#define SONIC_TCR_DEFAULT       0x0000

/*
 * Constants for the SONIC_INTERRUPT_MASK and
 * SONIC_INTERRUPT_STATUS registers.
 */

#define SONIC_INT_BR		0x4000
#define SONIC_INT_HBL		0x2000
#define SONIC_INT_LCD		0x1000
#define SONIC_INT_PINT		0x0800
#define SONIC_INT_PKTRX		0x0400
#define SONIC_INT_TXDN		0x0200
#define SONIC_INT_TXER		0x0100
#define SONIC_INT_TC		0x0080
#define SONIC_INT_RDE		0x0040
#define SONIC_INT_RBE		0x0020
#define SONIC_INT_RBAE		0x0010
#define SONIC_INT_CRC		0x0008
#define SONIC_INT_FAE		0x0004
#define SONIC_INT_MP		0x0002
#define SONIC_INT_RFO		0x0001


/*
 * The interrupts we allow.
 */

#define SONIC_IMR_DEFAULT     ( SONIC_INT_BR | \
                                SONIC_INT_LCD | \
                                SONIC_INT_RFO | \
                                SONIC_INT_PKTRX | \
                                SONIC_INT_TXDN | \
                                SONIC_INT_TXER | \
                                SONIC_INT_RDE | \
                                SONIC_INT_RBAE | \
                                SONIC_INT_CRC | \
                                SONIC_INT_FAE | \
                                SONIC_INT_MP)


#define SONIC_EOL       0x0001
#define CAM_DESCRIPTORS 16

/* Offsets in the various DMA buffers accessed by the SONIC */

#define SONIC_BITMODE16 0
#define SONIC_BITMODE32 1
#define SONIC_BUS_SCALE(bitmode) ((bitmode) ? 4 : 2)
/* Note!  These are all measured in bus-size units, so use SONIC_BUS_SCALE */
#define SIZEOF_SONIC_RR 4
#define SONIC_RR_BUFADR_L  0
#define SONIC_RR_BUFADR_H  1
#define SONIC_RR_BUFSIZE_L 2
#define SONIC_RR_BUFSIZE_H 3

#define SIZEOF_SONIC_RD 7
#define SONIC_RD_STATUS   0
#define SONIC_RD_PKTLEN   1
#define SONIC_RD_PKTPTR_L 2
#define SONIC_RD_PKTPTR_H 3
#define SONIC_RD_SEQNO    4
#define SONIC_RD_LINK     5
#define SONIC_RD_IN_USE   6

#define SIZEOF_SONIC_TD 8
#define SONIC_TD_STATUS       0
#define SONIC_TD_CONFIG       1
#define SONIC_TD_PKTSIZE      2
#define SONIC_TD_FRAG_COUNT   3
#define SONIC_TD_FRAG_PTR_L   4
#define SONIC_TD_FRAG_PTR_H   5
#define SONIC_TD_FRAG_SIZE    6
#define SONIC_TD_LINK         7

#define SIZEOF_SONIC_CD 4
#define SONIC_CD_ENTRY_POINTER 0
#define SONIC_CD_CAP0          1
#define SONIC_CD_CAP1          2
#define SONIC_CD_CAP2          3

#define SIZEOF_SONIC_CDA ((CAM_DESCRIPTORS * SIZEOF_SONIC_CD) + 1)
#define SONIC_CDA_CAM_ENABLE   (CAM_DESCRIPTORS * SIZEOF_SONIC_CD)

/*
 * Some tunables for the buffer areas. Power of 2 is required
 * the current driver uses one receive buffer for each descriptor.
 *
 * MSch: use more buffer space for the slow m68k Macs!
 */
#define SONIC_NUM_RRS   16            /* number of receive resources */
#define SONIC_NUM_RDS   SONIC_NUM_RRS /* number of receive descriptors */
#define SONIC_NUM_TDS   16            /* number of transmit descriptors */

#define SONIC_RDS_MASK  (SONIC_NUM_RDS-1)
#define SONIC_TDS_MASK  (SONIC_NUM_TDS-1)

#define SONIC_RBSIZE	1520          /* size of one resource buffer */

/* Again, measured in bus size units! */
#define SIZEOF_SONIC_DESC (SIZEOF_SONIC_CDA	\
	+ (SIZEOF_SONIC_TD * SONIC_NUM_TDS)	\
	+ (SIZEOF_SONIC_RD * SONIC_NUM_RDS)	\
	+ (SIZEOF_SONIC_RR * SONIC_NUM_RRS))

/* Information that need to be kept for each board. */
struct sonic_local {
	/* Bus size.  0 == 16 bits, 1 == 32 bits. */
	int dma_bitmode;
	/* Register offset within the longword (independent of endianness,
	   and varies from one type of Macintosh SONIC to another
	   (Aarrgh)) */
	int reg_offset;
	void *descriptors;
	/* Crud.  These areas have to be within the same 64K.  Therefore
       we allocate a desriptors page, and point these to places within it. */
	void *cda;  /* CAM descriptor area */
	void *tda;  /* Transmit descriptor area */
	void *rra;  /* Receive resource area */
	void *rda;  /* Receive descriptor area */
	struct sk_buff* volatile rx_skb[SONIC_NUM_RRS];	/* packets to be received */
	struct sk_buff* volatile tx_skb[SONIC_NUM_TDS];	/* packets to be transmitted */
	unsigned int tx_len[SONIC_NUM_TDS]; /* lengths of tx DMA mappings */
	/* Logical DMA addresses on MIPS, bus addresses on m68k
	 * (so "laddr" is a bit misleading) */
	dma_addr_t descriptors_laddr;
	u32 cda_laddr;              /* logical DMA address of CDA */
	u32 tda_laddr;              /* logical DMA address of TDA */
	u32 rra_laddr;              /* logical DMA address of RRA */
	u32 rda_laddr;              /* logical DMA address of RDA */
	dma_addr_t rx_laddr[SONIC_NUM_RRS]; /* logical DMA addresses of rx skbuffs */
	dma_addr_t tx_laddr[SONIC_NUM_TDS]; /* logical DMA addresses of tx skbuffs */
	unsigned int rra_end;
	unsigned int cur_rwp;
	unsigned int cur_rx;
	unsigned int cur_tx;           /* first unacked transmit packet */
	unsigned int eol_rx;
	unsigned int eol_tx;           /* last unacked transmit packet */
	unsigned int next_tx;          /* next free TD */
	struct device *device;         /* generic device */
	struct net_device_stats stats;
};

#define TX_TIMEOUT (3 * HZ)

/* Index to functions, as function prototypes. */

static int sonic_open(struct net_device *dev);
static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t sonic_interrupt(int irq, void *dev_id);
static void sonic_rx(struct net_device *dev);
static int sonic_close(struct net_device *dev);
static struct net_device_stats *sonic_get_stats(struct net_device *dev);
static void sonic_multicast_list(struct net_device *dev);
static int sonic_init(struct net_device *dev);
static void sonic_tx_timeout(struct net_device *dev);

/* Internal inlines for reading/writing DMA buffers.  Note that bus
   size and endianness matter here, whereas they don't for registers,
   as far as we can tell. */
/* OpenBSD calls this "SWO".  I'd like to think that sonic_buf_put()
   is a much better name. */
static inline void sonic_buf_put(void* base, int bitmode,
				 int offset, __u16 val)
{
	if (bitmode)
#ifdef __BIG_ENDIAN
		((__u16 *) base + (offset*2))[1] = val;
#else
		((__u16 *) base + (offset*2))[0] = val;
#endif
	else
	 	((__u16 *) base)[offset] = val;
}

static inline __u16 sonic_buf_get(void* base, int bitmode,
				  int offset)
{
	if (bitmode)
#ifdef __BIG_ENDIAN
		return ((volatile __u16 *) base + (offset*2))[1];
#else
		return ((volatile __u16 *) base + (offset*2))[0];
#endif
	else
		return ((volatile __u16 *) base)[offset];
}

/* Inlines that you should actually use for reading/writing DMA buffers */
static inline void sonic_cda_put(struct net_device* dev, int entry,
				 int offset, __u16 val)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	sonic_buf_put(lp->cda, lp->dma_bitmode,
		      (entry * SIZEOF_SONIC_CD) + offset, val);
}

static inline __u16 sonic_cda_get(struct net_device* dev, int entry,
				  int offset)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	return sonic_buf_get(lp->cda, lp->dma_bitmode,
			     (entry * SIZEOF_SONIC_CD) + offset);
}

static inline void sonic_set_cam_enable(struct net_device* dev, __u16 val)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	sonic_buf_put(lp->cda, lp->dma_bitmode, SONIC_CDA_CAM_ENABLE, val);
}

static inline __u16 sonic_get_cam_enable(struct net_device* dev)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	return sonic_buf_get(lp->cda, lp->dma_bitmode, SONIC_CDA_CAM_ENABLE);
}

static inline void sonic_tda_put(struct net_device* dev, int entry,
				 int offset, __u16 val)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	sonic_buf_put(lp->tda, lp->dma_bitmode,
		      (entry * SIZEOF_SONIC_TD) + offset, val);
}

static inline __u16 sonic_tda_get(struct net_device* dev, int entry,
				  int offset)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	return sonic_buf_get(lp->tda, lp->dma_bitmode,
			     (entry * SIZEOF_SONIC_TD) + offset);
}

static inline void sonic_rda_put(struct net_device* dev, int entry,
				 int offset, __u16 val)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	sonic_buf_put(lp->rda, lp->dma_bitmode,
		      (entry * SIZEOF_SONIC_RD) + offset, val);
}

static inline __u16 sonic_rda_get(struct net_device* dev, int entry,
				  int offset)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	return sonic_buf_get(lp->rda, lp->dma_bitmode,
			     (entry * SIZEOF_SONIC_RD) + offset);
}

static inline void sonic_rra_put(struct net_device* dev, int entry,
				 int offset, __u16 val)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	sonic_buf_put(lp->rra, lp->dma_bitmode,
		      (entry * SIZEOF_SONIC_RR) + offset, val);
}

static inline __u16 sonic_rra_get(struct net_device* dev, int entry,
				  int offset)
{
	struct sonic_local* lp = (struct sonic_local *) dev->priv;
	return sonic_buf_get(lp->rra, lp->dma_bitmode,
			     (entry * SIZEOF_SONIC_RR) + offset);
}

static const char *version =
    "sonic.c:v0.92 20.9.98 tsbogend@alpha.franken.de\n";

#endif /* SONIC_H */
ppc">#define DSB_TIMEOUT (7*HZ) /* time for the slowest command to finish */ #define UR_SIZE 4 /* uart receive buffer fifo size */ #define LINUX_BLOCK_SIZE 512 /* WHERE is this defined? */ #define RAW_SECTOR_SIZE 2352 /* ok, is also defined in cdrom.h */ #define ISO_SECTOR_SIZE 2048 #define BLOCKS_ISO (ISO_SECTOR_SIZE/LINUX_BLOCK_SIZE) /* 4 */ #define CD_SYNC_HEAD 16 /* CD_SYNC + CD_HEAD */ #ifdef STATISTICS /* keep track of errors in counters */ #define stats(i) { ++cd->stats[st_ ## i]; \ cd->last_stat[st_ ## i] = cd->stat_counter++; \ } #else #define stats(i) (void) 0; #endif #define Debug(a) {printk (KERN_DEBUG); printk a;} #ifdef DEBUG #define debug(a) Debug(a) #else #define debug(a) (void) 0; #endif typedef unsigned char uch; /* 8-bits */ typedef unsigned short ush; /* 16-bits */ struct toc_struct { /* private copy of Table of Contents */ uch track, fsm[3], q0; }; struct cm206_struct { volatile ush intr_ds; /* data status read on last interrupt */ volatile ush intr_ls; /* uart line status read on last interrupt */ volatile uch ur[UR_SIZE]; /* uart receive buffer fifo */ volatile uch ur_w, ur_r; /* write/read buffer index */ volatile uch dsb, cc; /* drive status byte and condition (error) code */ int command; /* command to be written to the uart */ int openfiles; ush sector[READ_AHEAD * RAW_SECTOR_SIZE / 2]; /* buffered cd-sector */ int sector_first, sector_last; /* range of these sectors */ wait_queue_head_t uart; /* wait queues for interrupt */ wait_queue_head_t data; struct timer_list timer; /* time-out */ char timed_out; signed char max_sectors; /* number of sectors that fit in adapter mem */ char wait_back; /* we're waiting for a background-read */ char background; /* is a read going on in the background? */ int adapter_first; /* if so, that's the starting sector */ int adapter_last; char fifo_overflowed; uch disc_status[7]; /* result of get_disc_status command */ #ifdef STATISTICS int stats[NR_STATS]; int last_stat[NR_STATS]; /* `time' at which stat was stat */ int stat_counter; #endif struct toc_struct toc[101]; /* The whole table of contents + lead-out */ uch q[10]; /* Last read q-channel info */ uch audio_status[5]; /* last read position on pause */ uch media_changed; /* record if media changed */ }; #define DISC_STATUS cd->disc_status[0] #define FIRST_TRACK cd->disc_status[1] #define LAST_TRACK cd->disc_status[2] #define PAUSED cd->audio_status[0] /* misuse this memory byte! */ #define PLAY_TO cd->toc[0] /* toc[0] records end-time in play */ static struct cm206_struct *cd; /* the main memory structure */ static struct request_queue *cm206_queue; static DEFINE_SPINLOCK(cm206_lock); /* First, we define some polling functions. These are actually only being used in the initialization. */ static void send_command_polled(int command) { int loop = POLLOOP; while (!(inw(r_line_status) & ls_transmitter_buffer_empty) && loop > 0) { mdelay(1); /* one millisec delay */ --loop; } outw(command, r_uart_transmit); } static uch receive_echo_polled(void) { int loop = POLLOOP; while (!(inw(r_line_status) & ls_receive_buffer_full) && loop > 0) { mdelay(1); --loop; } return ((uch) inw(r_uart_receive)); } static uch send_receive_polled(int command) { send_command_polled(command); return receive_echo_polled(); } static inline void clear_ur(void) { if (cd->ur_r != cd->ur_w) { debug(("Deleting bytes from fifo:")); for (; cd->ur_r != cd->ur_w; cd->ur_r++, cd->ur_r %= UR_SIZE) debug((" 0x%x", cd->ur[cd->ur_r])); debug(("\n")); } } static struct tasklet_struct cm206_tasklet; /* The interrupt handler. When the cm260 generates an interrupt, very much care has to be taken in reading out the registers in the right order; in case of a receive_buffer_full interrupt, first the uart_receive must be read, and then the line status again to de-assert the interrupt line. It took me a couple of hours to find this out:-( The function reset_cm206 appears to cause an interrupt, because pulling up the INIT line clears both the uart-write-buffer /and/ the uart-write-buffer-empty mask. We call this a `lost interrupt,' as there seems so reason for this to happen. */ static irqreturn_t cm206_interrupt(int sig, void *dev_id, struct pt_regs *regs) { volatile ush fool; cd->intr_ds = inw(r_data_status); /* resets data_ready, data_error, crc_error, sync_error, toc_ready interrupts */ cd->intr_ls = inw(r_line_status); /* resets overrun bit */ debug(("Intr, 0x%x 0x%x, %d\n", cd->intr_ds, cd->intr_ls, cd->background)); if (cd->intr_ls & ls_attention) stats(attention); /* receive buffer full? */ if (cd->intr_ls & ls_receive_buffer_full) { cd->ur[cd->ur_w] = inb(r_uart_receive); /* get order right! */ cd->intr_ls = inw(r_line_status); /* resets rbf interrupt */ debug(("receiving #%d: 0x%x\n", cd->ur_w, cd->ur[cd->ur_w])); cd->ur_w++; cd->ur_w %= UR_SIZE; if (cd->ur_w == cd->ur_r) debug(("cd->ur overflow!\n")); if (waitqueue_active(&cd->uart) && cd->background < 2) { del_timer(&cd->timer); wake_up_interruptible(&cd->uart); } } /* data ready in fifo? */ else if (cd->intr_ds & ds_data_ready) { if (cd->background) ++cd->adapter_last; if (waitqueue_active(&cd->data) && (cd->wait_back || !cd->background)) { del_timer(&cd->timer); wake_up_interruptible(&cd->data); } stats(data_ready); } /* ready to issue a write command? */ else if (cd->command && cd->intr_ls & ls_transmitter_buffer_empty) { outw(dc_normal | (inw(r_data_status) & 0x7f), r_data_control); outw(cd->command, r_uart_transmit); cd->command = 0; if (!cd->background) wake_up_interruptible(&cd->uart); } /* now treat errors (at least, identify them for debugging) */ else if (cd->intr_ds & ds_fifo_overflow) { debug(("Fifo overflow at sectors 0x%x\n", cd->sector_first)); fool = inw(r_fifo_output_buffer); /* de-assert the interrupt */ cd->fifo_overflowed = 1; /* signal one word less should be read */ stats(fifo_overflow); } else if (cd->intr_ds & ds_data_error) { debug(("Data error at sector 0x%x\n", cd->sector_first)); stats(data_error); } else if (cd->intr_ds & ds_crc_error) { debug(("CRC error at sector 0x%x\n", cd->sector_first)); stats(crc_error); } else if (cd->intr_ds & ds_sync_error) { debug(("Sync at sector 0x%x\n", cd->sector_first)); stats(sync_error); } else if (cd->intr_ds & ds_toc_ready) { /* do something appropriate */ } /* couldn't see why this interrupt, maybe due to init */ else { outw(dc_normal | READ_AHEAD, r_data_control); stats(lost_intr); } if (cd->background && (cd->adapter_last - cd->adapter_first == cd->max_sectors || cd->fifo_overflowed)) tasklet_schedule(&cm206_tasklet); /* issue a stop read command */ stats(interrupt); return IRQ_HANDLED; } /* we have put the address of the wait queue in who */ static void cm206_timeout(unsigned long who) { cd->timed_out = 1; debug(("Timing out\n")); wake_up_interruptible((wait_queue_head_t *) who); } /* This function returns 1 if a timeout occurred, 0 if an interrupt happened */ static int sleep_or_timeout(wait_queue_head_t * wait, int timeout) { cd->timed_out = 0; init_timer(&cd->timer); cd->timer.data = (unsigned long) wait; cd->timer.expires = jiffies + timeout; add_timer(&cd->timer); debug(("going to sleep\n")); interruptible_sleep_on(wait); del_timer(&cd->timer); if (cd->timed_out) { cd->timed_out = 0; return 1; } else return 0; } static void send_command(int command) { debug(("Sending 0x%x\n", command)); if (!(inw(r_line_status) & ls_transmitter_buffer_empty)) { cd->command = command; cli(); /* don't interrupt before sleep */ outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); /* interrupt routine sends command */ if (sleep_or_timeout(&cd->uart, UART_TIMEOUT)) { debug(("Time out on write-buffer\n")); stats(write_timeout); outw(command, r_uart_transmit); } debug(("Write commmand delayed\n")); } else outw(command, r_uart_transmit); } static uch receive_byte(int timeout) { uch ret; cli(); debug(("cli\n")); ret = cd->ur[cd->ur_r]; if (cd->ur_r != cd->ur_w) { sti(); debug(("returning #%d: 0x%x\n", cd->ur_r, cd->ur[cd->ur_r])); cd->ur_r++; cd->ur_r %= UR_SIZE; return ret; } else if (sleep_or_timeout(&cd->uart, timeout)) { /* does sti() */ debug(("Time out on receive-buffer\n")); #ifdef STATISTICS if (timeout == UART_TIMEOUT) stats(receive_timeout) /* no `;'! */ else stats(dsb_timeout); #endif return 0xda; } ret = cd->ur[cd->ur_r]; debug(("slept; returning #%d: 0x%x\n", cd->ur_r, cd->ur[cd->ur_r])); cd->ur_r++; cd->ur_r %= UR_SIZE; return ret; } static inline uch receive_echo(void) { return receive_byte(UART_TIMEOUT); } static inline uch send_receive(int command) { send_command(command); return receive_echo(); } static inline uch wait_dsb(void) { return receive_byte(DSB_TIMEOUT); } static int type_0_command(int command, int expect_dsb) { int e; clear_ur(); if (command != (e = send_receive(command))) { debug(("command 0x%x echoed as 0x%x\n", command, e)); stats(echo); return -1; } if (expect_dsb) { cd->dsb = wait_dsb(); /* wait for command to finish */ } return 0; } static int type_1_command(int command, int bytes, uch * status) { /* returns info */ int i; if (type_0_command(command, 0)) return -1; for (i = 0; i < bytes; i++) status[i] = send_receive(c_gimme); return 0; } /* This function resets the adapter card. We'd better not do this too * often, because it tends to generate `lost interrupts.' */ static void reset_cm260(void) { outw(dc_normal | dc_initialize | READ_AHEAD, r_data_control); udelay(10); /* 3.3 mu sec minimum */ outw(dc_normal | READ_AHEAD, r_data_control); } /* fsm: frame-sec-min from linear address; one of many */ static void fsm(int lba, uch * fsm) { fsm[0] = lba % 75; lba /= 75; lba += 2; fsm[1] = lba % 60; fsm[2] = lba / 60; } static inline int fsm2lba(uch * fsm) { return fsm[0] + 75 * (fsm[1] - 2 + 60 * fsm[2]); } static inline int f_s_m2lba(uch f, uch s, uch m) { return f + 75 * (s - 2 + 60 * m); } static int start_read(int start) { uch read_sector[4] = { c_read_data, }; int i, e; fsm(start, &read_sector[1]); clear_ur(); for (i = 0; i < 4; i++) if (read_sector[i] != (e = send_receive(read_sector[i]))) { debug(("read_sector: %x echoes %x\n", read_sector[i], e)); stats(echo); if (e == 0xff) { /* this seems to happen often */ e = receive_echo(); debug(("Second try %x\n", e)); if (e != read_sector[i]) return -1; } } return 0; } static int stop_read(void) { int e; type_0_command(c_stop, 0); if ((e = receive_echo()) != 0xff) { debug(("c_stop didn't send 0xff, but 0x%x\n", e)); stats(stop_0xff); return -1; } return 0; } /* This function starts to read sectors in adapter memory, the interrupt routine should stop the read. In fact, the bottom_half routine takes care of this. Set a flag `background' in the cd struct to indicate the process. */ static int read_background(int start, int reading) { if (cd->background) return -1; /* can't do twice */ outw(dc_normal | BACK_AHEAD, r_data_control); if (!reading && start_read(start)) return -2; cd->adapter_first = cd->adapter_last = start; cd->background = 1; /* flag a read is going on */ return 0; } #ifdef USE_INSW #define transport_data insw #else /* this routine implements insw(,,). There was a time i had the impression that there would be any difference in error-behaviour. */ void transport_data(int port, ush * dest, int count) { int i; ush *d; for (i = 0, d = dest; i < count; i++, d++) *d = inw(port); } #endif #define MAX_TRIES 100 static int read_sector(int start) { int tries = 0; if (cd->background) { cd->background = 0; cd->adapter_last = -1; /* invalidate adapter memory */ stop_read(); } cd->fifo_overflowed = 0; reset_cm260(); /* empty fifo etc. */ if (start_read(start)) return -1; do { if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Read timed out sector 0x%x\n", start)); stats(read_timeout); stop_read(); return -3; } tries++; } while (cd->intr_ds & ds_fifo_empty && tries < MAX_TRIES); if (tries > 1) debug(("Took me some tries\n")) else if (tries == MAX_TRIES) debug(("MAX_TRIES tries for read sector\n")); transport_data(r_fifo_output_buffer, cd->sector, READ_AHEAD * RAW_SECTOR_SIZE / 2); if (read_background(start + READ_AHEAD, 1)) stats(read_background); cd->sector_first = start; cd->sector_last = start + READ_AHEAD; stats(read_restarted); return 0; } /* The function of bottom-half is to send a stop command to the drive This isn't easy because the routine is not `owned' by any process; we can't go to sleep! The variable cd->background gives the status: 0 no read pending 1 a read is pending 2 c_stop waits for write_buffer_empty 3 c_stop waits for receive_buffer_full: echo 4 c_stop waits for receive_buffer_full: 0xff */ static void cm206_tasklet_func(unsigned long ignore) { debug(("bh: %d\n", cd->background)); switch (cd->background) { case 1: stats(bh); if (!(cd->intr_ls & ls_transmitter_buffer_empty)) { cd->command = c_stop; outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); cd->background = 2; break; /* we'd better not time-out here! */ } else outw(c_stop, r_uart_transmit); /* fall into case 2: */ case 2: /* the write has been satisfied by interrupt routine */ cd->background = 3; break; case 3: if (cd->ur_r != cd->ur_w) { if (cd->ur[cd->ur_r] != c_stop) { debug(("cm206_bh: c_stop echoed 0x%x\n", cd->ur[cd->ur_r])); stats(echo); } cd->ur_r++; cd->ur_r %= UR_SIZE; } cd->background++; break; case 4: if (cd->ur_r != cd->ur_w) { if (cd->ur[cd->ur_r] != 0xff) { debug(("cm206_bh: c_stop reacted with 0x%x\n", cd->ur[cd->ur_r])); stats(stop_0xff); } cd->ur_r++; cd->ur_r %= UR_SIZE; } cd->background = 0; } } static DECLARE_TASKLET(cm206_tasklet, cm206_tasklet_func, 0); /* This command clears the dsb_possible_media_change flag, so we must * retain it. */ static void get_drive_status(void) { uch status[2]; type_1_command(c_drive_status, 2, status); /* this might be done faster */ cd->dsb = status[0]; cd->cc = status[1]; cd->media_changed |= !!(cd->dsb & (dsb_possible_media_change | dsb_drive_not_ready | dsb_tray_not_closed)); } static void get_disc_status(void) { if (type_1_command(c_disc_status, 7, cd->disc_status)) { debug(("get_disc_status: error\n")); } } /* The new open. The real opening strategy is defined in cdrom.c. */ static int cm206_open(struct cdrom_device_info *cdi, int purpose) { if (!cd->openfiles) { /* reset only first time */ cd->background = 0; reset_cm260(); cd->adapter_last = -1; /* invalidate adapter memory */ cd->sector_last = -1; } ++cd->openfiles; stats(open); return 0; } static void cm206_release(struct cdrom_device_info *cdi) { if (cd->openfiles == 1) { if (cd->background) { cd->background = 0; stop_read(); } cd->sector_last = -1; /* Make our internal buffer invalid */ FIRST_TRACK = 0; /* No valid disc status */ } --cd->openfiles; } /* Empty buffer empties $sectors$ sectors of the adapter card buffer, * and then reads a sector in kernel memory. */ static void empty_buffer(int sectors) { while (sectors >= 0) { transport_data(r_fifo_output_buffer, cd->sector + cd->fifo_overflowed, RAW_SECTOR_SIZE / 2 - cd->fifo_overflowed); --sectors; ++cd->adapter_first; /* update the current adapter sector */ cd->fifo_overflowed = 0; /* reset overflow bit */ stats(sector_transferred); } cd->sector_first = cd->adapter_first - 1; cd->sector_last = cd->adapter_first; /* update the buffer sector */ } /* try_adapter. This function determines if the requested sector is in adapter memory, or will appear there soon. Returns 0 upon success */ static int try_adapter(int sector) { if (cd->adapter_first <= sector && sector < cd->adapter_last) { /* sector is in adapter memory */ empty_buffer(sector - cd->adapter_first); return 0; } else if (cd->background == 1 && cd->adapter_first <= sector && sector < cd->adapter_first + cd->max_sectors) { /* a read is going on, we can wait for it */ cd->wait_back = 1; while (sector >= cd->adapter_last) { if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Timed out during background wait: %d %d %d %d\n", sector, cd->adapter_last, cd->adapter_first, cd->background)); stats(back_read_timeout); cd->wait_back = 0; return -1; } } cd->wait_back = 0; empty_buffer(sector - cd->adapter_first); return 0; } else return -2; } /* This is not a very smart implementation. We could optimize for consecutive block numbers. I'm not convinced this would really bring down the processor load. */ static void do_cm206_request(request_queue_t * q) { long int i, cd_sec_no; int quarter, error; uch *source, *dest; struct request *req; while (1) { /* repeat until all requests have been satisfied */ req = elv_next_request(q); if (!req) return; if (req->cmd != READ) { debug(("Non-read command %d on cdrom\n", req->cmd)); end_request(req, 0); continue; } spin_unlock_irq(q->queue_lock); error = 0; for (i = 0; i < req->nr_sectors; i++) { int e1, e2; cd_sec_no = (req->sector + i) / BLOCKS_ISO; /* 4 times 512 bytes */ quarter = (req->sector + i) % BLOCKS_ISO; dest = req->buffer + i * LINUX_BLOCK_SIZE; /* is already in buffer memory? */ if (cd->sector_first <= cd_sec_no && cd_sec_no < cd->sector_last) { source = ((uch *) cd->sector) + 16 + quarter * LINUX_BLOCK_SIZE + (cd_sec_no - cd->sector_first) * RAW_SECTOR_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else if (!(e1 = try_adapter(cd_sec_no)) || !(e2 = read_sector(cd_sec_no))) { source = ((uch *) cd->sector) + 16 + quarter * LINUX_BLOCK_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else { error = 1; debug(("cm206_request: %d %d\n", e1, e2)); } } spin_lock_irq(q->queue_lock); end_request(req, !error); } } /* Audio support. I've tried very hard, but the cm206 drive doesn't seem to have a get_toc (table-of-contents) function, while i'm pretty sure it must read the toc upon disc insertion. Therefore this function has been implemented through a binary search strategy. All track starts that happen to be found are stored in cd->toc[], for future use. I've spent a whole day on a bug that only shows under Workman--- I don't get it. Tried everything, nothing works. If workman asks for track# 0xaa, it'll get the wrong time back. Any other program receives the correct value. I'm stymied. */ /* seek seeks to address lba. It does wait to arrive there. */ static void seek(int lba) { int i; uch seek_command[4] = { c_seek, }; fsm(lba, &seek_command[1]); for (i = 0; i < 4; i++) type_0_command(seek_command[i], 0); cd->dsb = wait_dsb(); } uch bcdbin(unsigned char bcd) { /* stolen from mcd.c! */ return (bcd >> 4) * 10 + (bcd & 0xf); } static inline uch normalize_track(uch track) { if (track < 1) return 1; if (track > LAST_TRACK) return LAST_TRACK + 1; return track; } /* This function does a binary search for track start. It records all * tracks seen in the process. Input $track$ must be between 1 and * #-of-tracks+1. Note that the start of the disc must be in toc[1].fsm. */ static int get_toc_lba(uch track) { int max = 74 * 60 * 75 - 150, min = fsm2lba(cd->toc[1].fsm); int i, lba, l, old_lba = 0; uch *q = cd->q; uch ct; /* current track */ int binary = 0; const int skip = 3 * 60 * 75; /* 3 minutes */ for (i = track; i > 0; i--) if (cd->toc[i].track) { min = fsm2lba(cd->toc[i].fsm); break; } lba = min + skip; do { seek(lba); type_1_command(c_read_current_q, 10, q); ct = normalize_track(q[1]); if (!cd->toc[ct].track) { l = q[9] - bcdbin(q[5]) + 75 * (q[8] - bcdbin(q[4]) - 2 + 60 * (q[7] - bcdbin(q [3]))); cd->toc[ct].track = q[1]; /* lead out still 0xaa */ fsm(l, cd->toc[ct].fsm); cd->toc[ct].q0 = q[0]; /* contains adr and ctrl info */ if (ct == track) return l; } old_lba = lba; if (binary) { if (ct < track) min = lba; else max = lba; lba = (min + max) / 2; } else { if (ct < track) lba += skip; else { binary = 1; max = lba; min = lba - skip; lba = (min + max) / 2; } } } while (lba != old_lba); return lba; } static void update_toc_entry(uch track) { track = normalize_track(track); if (!cd->toc[track].track) get_toc_lba(track); } /* return 0 upon success */ static int read_toc_header(struct cdrom_tochdr *hp) { if (!FIRST_TRACK) get_disc_status(); if (hp) { int i; hp->cdth_trk0 = FIRST_TRACK; hp->cdth_trk1 = LAST_TRACK; /* fill in first track position */ for (i = 0; i < 3; i++) cd->toc[1].fsm[i] = cd->disc_status[3 + i]; update_toc_entry(LAST_TRACK + 1); /* find most entries */ return 0; } return -1; } static void play_from_to_msf(struct cdrom_msf *msfp) { uch play_command[] = { c_play, msfp->cdmsf_frame0, msfp->cdmsf_sec0, msfp->cdmsf_min0, msfp->cdmsf_frame1, msfp->cdmsf_sec1, msfp->cdmsf_min1, 2, 2 }; int i; for (i = 0; i < 9; i++) type_0_command(play_command[i], 0); for (i = 0; i < 3; i++) PLAY_TO.fsm[i] = play_command[i + 4]; PLAY_TO.track = 0; /* say no track end */ cd->dsb = wait_dsb(); } static void play_from_to_track(int from, int to) { uch play_command[8] = { c_play, }; int i; if (from == 0) { /* continue paused play */ for (i = 0; i < 3; i++) { play_command[i + 1] = cd->audio_status[i + 2]; play_command[i + 4] = PLAY_TO.fsm[i]; } } else { update_toc_entry(from); update_toc_entry(to + 1); for (i = 0; i < 3; i++) { play_command[i + 1] = cd->toc[from].fsm[i]; PLAY_TO.fsm[i] = play_command[i + 4] = cd->toc[to + 1].fsm[i]; } PLAY_TO.track = to; } for (i = 0; i < 7; i++) type_0_command(play_command[i], 0); for (i = 0; i < 2; i++) type_0_command(0x2, 0); /* volume */ cd->dsb = wait_dsb(); } static int get_current_q(struct cdrom_subchnl *qp) { int i; uch *q = cd->q; if (type_1_command(c_read_current_q, 10, q)) return 0; /* q[0] = bcdbin(q[0]); Don't think so! */ for (i = 2; i < 6; i++) q[i] = bcdbin(q[i]); qp->cdsc_adr = q[0] & 0xf; qp->cdsc_ctrl = q[0] >> 4; /* from mcd.c */ qp->cdsc_trk = q[1]; qp->cdsc_ind = q[2]; if (qp->cdsc_format == CDROM_MSF) { qp->cdsc_reladdr.msf.minute = q[3]; qp->cdsc_reladdr.msf.second = q[4]; qp->cdsc_reladdr.msf.frame = q[5]; qp->cdsc_absaddr.msf.minute = q[7]; qp->cdsc_absaddr.msf.second = q[8]; qp->cdsc_absaddr.msf.frame = q[9]; } else { qp->cdsc_reladdr.lba = f_s_m2lba(q[5], q[4], q[3]); qp->cdsc_absaddr.lba = f_s_m2lba(q[9], q[8], q[7]); } get_drive_status(); if (cd->dsb & dsb_play_in_progress) qp->cdsc_audiostatus = CDROM_AUDIO_PLAY; else if (PAUSED) qp->cdsc_audiostatus = CDROM_AUDIO_PAUSED; else qp->cdsc_audiostatus = CDROM_AUDIO_NO_STATUS; return 0; } static void invalidate_toc(void) { memset(cd->toc, 0, sizeof(cd->toc)); memset(cd->disc_status, 0, sizeof(cd->disc_status)); } /* cdrom.c guarantees that cdte_format == CDROM_MSF */ static void get_toc_entry(struct cdrom_tocentry *ep) { uch track = normalize_track(ep->cdte_track); update_toc_entry(track); ep->cdte_addr.msf.frame = cd->toc[track].fsm[0]; ep->cdte_addr.msf.second = cd->toc[track].fsm[1]; ep->cdte_addr.msf.minute = cd->toc[track].fsm[2]; ep->cdte_adr = cd->toc[track].q0 & 0xf; ep->cdte_ctrl = cd->toc[track].q0 >> 4; ep->cdte_datamode = 0; } /* Audio ioctl. Ioctl commands connected to audio are in such an * idiosyncratic i/o format, that we leave these untouched. Return 0 * upon success. Memory checking has been done by cdrom_ioctl(), the * calling function, as well as LBA/MSF sanitization. */ static int cm206_audio_ioctl(struct cdrom_device_info *cdi, unsigned int cmd, void *arg) { switch (cmd) { case CDROMREADTOCHDR: return read_toc_header((struct cdrom_tochdr *) arg); case CDROMREADTOCENTRY: get_toc_entry((struct cdrom_tocentry *) arg); return 0; case CDROMPLAYMSF: play_from_to_msf((struct cdrom_msf *) arg); return 0; case CDROMPLAYTRKIND: /* admittedly, not particularly beautiful */ play_from_to_track(((struct cdrom_ti *) arg)->cdti_trk0, ((struct cdrom_ti *) arg)->cdti_trk1); return 0; case CDROMSTOP: PAUSED = 0; if (cd->dsb & dsb_play_in_progress) return type_0_command(c_stop, 1); else return 0; case CDROMPAUSE: get_drive_status(); if (cd->dsb & dsb_play_in_progress) { type_0_command(c_stop, 1); type_1_command(c_audio_status, 5, cd->audio_status); PAUSED = 1; /* say we're paused */ } return 0; case CDROMRESUME: if (PAUSED) play_from_to_track(0, 0); PAUSED = 0; return 0; case CDROMSTART: case CDROMVOLCTRL: return 0; case CDROMSUBCHNL: return get_current_q((struct cdrom_subchnl *) arg); default: return -EINVAL; } } static int cm206_media_changed(struct cdrom_device_info *cdi, int disc_nr) { if (cd != NULL) { int r; get_drive_status(); /* ensure cd->media_changed OK */ r = cd->media_changed; cd->media_changed = 0; /* clear bit */ return r; } else return -EIO; } /* The new generic cdrom support. Routines should be concise, most of the logic should be in cdrom.c */ /* controls tray movement */ static int cm206_tray_move(struct cdrom_device_info *cdi, int position) { if (position) { /* 1: eject */ type_0_command(c_open_tray, 1); invalidate_toc(); } else type_0_command(c_close_tray, 1); /* 0: close */ return 0; } /* gives current state of the drive */ static int cm206_drive_status(struct cdrom_device_info *cdi, int slot_nr) { get_drive_status(); if (cd->dsb & dsb_tray_not_closed) return CDS_TRAY_OPEN; if (!(cd->dsb & dsb_disc_present)) return CDS_NO_DISC; if (cd->dsb & dsb_drive_not_ready) return CDS_DRIVE_NOT_READY; return CDS_DISC_OK; } /* locks or unlocks door lock==1: lock; return 0 upon success */ static int cm206_lock_door(struct cdrom_device_info *cdi, int lock) { uch command = (lock) ? c_lock_tray : c_unlock_tray; type_0_command(command, 1); /* wait and get dsb */ /* the logic calculates the success, 0 means successful */ return lock ^ ((cd->dsb & dsb_tray_locked) != 0); } /* Although a session start should be in LBA format, we return it in MSF format because it is slightly easier, and the new generic ioctl will take care of the necessary conversion. */ static int cm206_get_last_session(struct cdrom_device_info *cdi, struct cdrom_multisession *mssp) { if (!FIRST_TRACK) get_disc_status(); if (mssp != NULL) { if (DISC_STATUS & cds_multi_session) { /* multi-session */ mssp->addr.msf.frame = cd->disc_status[3]; mssp->addr.msf.second = cd->disc_status[4]; mssp->addr.msf.minute = cd->disc_status[5]; mssp->addr_format = CDROM_MSF; mssp->xa_flag = 1; } else { mssp->xa_flag = 0; } return 1; } return 0; } static int cm206_get_upc(struct cdrom_device_info *cdi, struct cdrom_mcn *mcn) { uch upc[10]; char *ret = mcn->medium_catalog_number; int i; if (type_1_command(c_read_upc, 10, upc)) return -EIO; for (i = 0; i < 13; i++) { int w = i / 2 + 1, r = i % 2; if (r) ret[i] = 0x30 | (upc[w] & 0x0f); else ret[i] = 0x30 | ((upc[w] >> 4) & 0x0f); } ret[13] = '\0'; return 0; } static int cm206_reset(struct cdrom_device_info *cdi) { stop_read(); reset_cm260(); outw(dc_normal | dc_break | READ_AHEAD, r_data_control); mdelay(1); /* 750 musec minimum */ outw(dc_normal | READ_AHEAD, r_data_control); cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; invalidate_toc(); return 0; } static int cm206_select_speed(struct cdrom_device_info *cdi, int speed) { int r; switch (speed) { case 0: r = type_0_command(c_auto_mode, 1); break; case 1: r = type_0_command(c_force_1x, 1); break; case 2: r = type_0_command(c_force_2x, 1); break; default: return -1; } if (r < 0) return r; else return 1; } static struct cdrom_device_ops cm206_dops = { .open = cm206_open, .release = cm206_release, .drive_status = cm206_drive_status, .media_changed = cm206_media_changed, .tray_move = cm206_tray_move, .lock_door = cm206_lock_door, .select_speed = cm206_select_speed, .get_last_session = cm206_get_last_session, .get_mcn = cm206_get_upc, .reset = cm206_reset, .audio_ioctl = cm206_audio_ioctl, .capability = CDC_CLOSE_TRAY | CDC_OPEN_TRAY | CDC_LOCK | CDC_MULTI_SESSION | CDC_MEDIA_CHANGED | CDC_MCN | CDC_PLAY_AUDIO | CDC_SELECT_SPEED | CDC_DRIVE_STATUS, .n_minors = 1, }; static struct cdrom_device_info cm206_info = { .ops = &cm206_dops, .speed = 2, .capacity = 1, .name = "cm206", }; static int cm206_block_open(struct inode *inode, struct file *file) { return cdrom_open(&cm206_info, inode, file); } static int cm206_block_release(struct inode *inode, struct file *file) { return cdrom_release(&cm206_info, file); } static int cm206_block_ioctl(struct inode *inode, struct file *file, unsigned cmd, unsigned long arg) { switch (cmd) { #ifdef STATISTICS case CM206CTL_GET_STAT: if (arg >= NR_STATS) return -EINVAL; return cd->stats[arg]; case CM206CTL_GET_LAST_STAT: if (arg >= NR_STATS) return -EINVAL; return cd->last_stat[arg]; #endif default: break; } return cdrom_ioctl(file, &cm206_info, inode, cmd, arg); } static int cm206_block_media_changed(struct gendisk *disk) { return cdrom_media_changed(&cm206_info); } static struct block_device_operations cm206_bdops = { .owner = THIS_MODULE, .open = cm206_block_open, .release = cm206_block_release, .ioctl = cm206_block_ioctl, .media_changed = cm206_block_media_changed, }; static struct gendisk *cm206_gendisk; /* This function probes for the adapter card. It returns the base address if it has found the adapter card. One can specify a base port to probe specifically, or 0 which means span all possible bases. Linus says it is too dangerous to use writes for probing, so we stick with pure reads for a while. Hope that 8 possible ranges, request_region, 15 bits of one port and 6 of another make things likely enough to accept the region on the first hit... */ static int __init probe_base_port(int base) { int b = 0x300, e = 0x370; /* this is the range of start addresses */ volatile int fool, i; if (base) b = e = base; for (base = b; base <= e; base += 0x10) { if (!request_region(base, 0x10,"cm206")) continue; for (i = 0; i < 3; i++) fool = inw(base + 2); /* empty possibly uart_receive_buffer */ if ((inw(base + 6) & 0xffef) != 0x0001 || /* line_status */ (inw(base) & 0xad00) != 0) { /* data status */ release_region(base,0x10); continue; } return (base); } return 0; } #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) /* Probe for irq# nr. If nr==0, probe for all possible irq's. */ static int __init probe_irq(int nr) { int irqs, irq; outw(dc_normal | READ_AHEAD, r_data_control); /* disable irq-generation */ sti(); irqs = probe_irq_on(); reset_cm260(); /* causes interrupt */ udelay(100); /* wait for it */ irq = probe_irq_off(irqs); outw(dc_normal | READ_AHEAD, r_data_control); /* services interrupt */ if (nr && irq != nr && irq > 0) return 0; /* wrong interrupt happened */ else return irq; } #endif int __init cm206_init(void) { uch e = 0; long int size = sizeof(struct cm206_struct); struct gendisk *disk; printk(KERN_INFO "cm206 cdrom driver " REVISION); cm206_base = probe_base_port(auto_probe ? 0 : cm206_base); if (!cm206_base) { printk(" can't find adapter!\n"); return -EIO; } printk(" adapter at 0x%x", cm206_base); cd = (struct cm206_struct *) kmalloc(size, GFP_KERNEL); if (!cd) goto out_base; /* Now we have found the adaptor card, try to reset it. As we have * found out earlier, this process generates an interrupt as well, * so we might just exploit that fact for irq probing! */ #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) cm206_irq = probe_irq(auto_probe ? 0 : cm206_irq); if (cm206_irq <= 0) { printk("can't find IRQ!\n"); goto out_probe; } else printk(" IRQ %d found\n", cm206_irq); #else cli(); reset_cm260(); /* Now, the problem here is that reset_cm260 can generate an interrupt. It seems that this can cause a kernel oops some time later. So we wait a while and `service' this interrupt. */ mdelay(1); outw(dc_normal | READ_AHEAD, r_data_control); sti(); printk(" using IRQ %d\n", cm206_irq); #endif if (send_receive_polled(c_drive_configuration) != c_drive_configuration) { printk(KERN_INFO " drive not there\n"); goto out_probe; } e = send_receive_polled(c_gimme); printk(KERN_INFO "Firmware revision %d", e & dcf_revision_code); if (e & dcf_transfer_rate) printk(" double"); else printk(" single"); printk(" speed drive"); if (e & dcf_motorized_tray) printk(", motorized tray"); if (request_irq(cm206_irq, cm206_interrupt, 0, "cm206", NULL)) { printk("\nUnable to reserve IRQ---aborted\n"); goto out_probe; } printk(".\n"); if (register_blkdev(MAJOR_NR, "cm206")) goto out_blkdev; disk = alloc_disk(1); if (!disk) goto out_disk; disk->major = MAJOR_NR; disk->first_minor = 0; sprintf(disk->disk_name, "cm206cd"); disk->fops = &cm206_bdops; disk->flags = GENHD_FL_CD; cm206_gendisk = disk; if (register_cdrom(&cm206_info) != 0) { printk(KERN_INFO "Cannot register for cdrom %d!\n", MAJOR_NR); goto out_cdrom; } cm206_queue = blk_init_queue(do_cm206_request, &cm206_lock); if (!cm206_queue) goto out_queue; blk_queue_hardsect_size(cm206_queue, 2048); disk->queue = cm206_queue; add_disk(disk); memset(cd, 0, sizeof(*cd)); /* give'm some reasonable value */ cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; init_timer(&cd->timer); cd->timer.function = cm206_timeout; cd->max_sectors = (inw(r_data_status) & ds_ram_size) ? 24 : 97; printk(KERN_INFO "%d kB adapter memory available, " " %ld bytes kernel memory used.\n", cd->max_sectors * 2, size); return 0; out_queue: unregister_cdrom(&cm206_info); out_cdrom: put_disk(disk); out_disk: unregister_blkdev(MAJOR_NR, "cm206"); out_blkdev: free_irq(cm206_irq, NULL); out_probe: kfree(cd); out_base: release_region(cm206_base, 16); return -EIO; } #ifdef MODULE static void __init parse_options(void) { int i; for (i = 0; i < 2; i++) { if (0x300 <= cm206[i] && i <= 0x370 && cm206[i] % 0x10 == 0) { cm206_base = cm206[i]; auto_probe = 0; } else if (3 <= cm206[i] && cm206[i] <= 15) { cm206_irq = cm206[i]; auto_probe = 0; } } } static int __cm206_init(void) { parse_options(); #if !defined(AUTO_PROBE_MODULE) auto_probe = 0; #endif return cm206_init(); } static void __exit cm206_exit(void) { del_gendisk(cm206_gendisk); put_disk(cm206_gendisk); if (unregister_cdrom(&cm206_info)) { printk("Can't unregister cdrom cm206\n"); return; } if (unregister_blkdev(MAJOR_NR, "cm206")) { printk("Can't unregister major cm206\n"); return; } blk_cleanup_queue(cm206_queue); free_irq(cm206_irq, NULL); kfree(cd); release_region(cm206_base, 16); printk(KERN_INFO "cm206 removed\n"); } module_init(__cm206_init); module_exit(cm206_exit); #else /* !MODULE */ /* This setup function accepts either `auto' or numbers in the range * 3--11 (for irq) or 0x300--0x370 (for base port) or both. */ static int __init cm206_setup(char *s) { int i, p[4]; (void) get_options(s, ARRAY_SIZE(p), p); if (!strcmp(s, "auto")) auto_probe = 1; for (i = 1; i <= p[0]; i++) { if (0x300 <= p[i] && i <= 0x370 && p[i] % 0x10 == 0) { cm206_base = p[i]; auto_probe = 0; } else if (3 <= p[i] && p[i] <= 15) { cm206_irq = p[i]; auto_probe = 0; } } return 1; } __setup("cm206=", cm206_setup); #endif /* !MODULE */ MODULE_ALIAS_BLOCKDEV_MAJOR(CM206_CDROM_MAJOR); /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -m486 -DMODULE -DMODVERSIONS -include /usr/src/linux/include/linux/modversions.h -c -o cm206.o cm206.c" * End: */