/*------------------------------------------------------------------------
. smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
.
. Copyright (C) 1996 by Erik Stahlman
. Copyright (C) 2001 Standard Microsystems Corporation
. Developed by Simple Network Magic Corporation
. Copyright (C) 2003 Monta Vista Software, Inc.
. Unified SMC91x driver by Nicolas Pitre
.
. This program is free software; you can redistribute it and/or modify
. it under the terms of the GNU General Public License as published by
. the Free Software Foundation; either version 2 of the License, or
. (at your option) any later version.
.
. This program is distributed in the hope that it will be useful,
. but WITHOUT ANY WARRANTY; without even the implied warranty of
. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
. GNU General Public License for more details.
.
. You should have received a copy of the GNU General Public License
. along with this program; if not, write to the Free Software
. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC. To get a copy, if you really want one, you can find
. information under www.smsc.com.
.
. Authors
. Erik Stahlman <erik@vt.edu>
. Daris A Nevil <dnevil@snmc.com>
. Nicolas Pitre <nico@cam.org>
.
---------------------------------------------------------------------------*/
#ifndef _SMC91X_H_
#define _SMC91X_H_
#include <linux/smc91x.h>
/*
* Define your architecture specific bus configuration parameters here.
*/
#if defined(CONFIG_ARCH_LUBBOCK) ||\
defined(CONFIG_MACH_MAINSTONE) ||\
defined(CONFIG_MACH_ZYLONITE)
#include <asm/mach-types.h>
/* Now the bus width is specified in the platform data
* pretend here to support all I/O access types
*/
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 1
#define SMC_NOWAIT 1
#define SMC_IO_SHIFT (lp->io_shift)
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_inl(a, r) readl((a) + (r))
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_outl(v, a, r) writel(v, (a) + (r))
#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
#define SMC_IRQ_FLAGS (-1) /* from resource */
/* We actually can't write halfwords properly if not word aligned */
static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
{
if (machine_is_mainstone() && reg & 2) {
unsigned int v = val << 16;
v |= readl(ioaddr + (reg & ~2)) & 0xffff;
writel(v, ioaddr + (reg & ~2));
} else {
writew(val, ioaddr + reg);
}
}
#elif defined(CONFIG_BLACKFIN)
#define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH
#define RPC_LSA_DEFAULT RPC_LED_100_10
#define RPC_LSB_DEFAULT RPC_LED_TX_RX
# if defined (CONFIG_BFIN561_EZKIT)
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 1
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_USE_BFIN_DMA 0
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_inl(a, r) readl((a) + (r))
#define SMC_outl(v, a, r) writel(v, (a) + (r))
#define SMC_outsl(a, r, p, l) outsl((unsigned long *)((a) + (r)), p, l)
#define SMC_insl(a, r, p, l) insl ((unsigned long *)((a) + (r)), p, l)
# else
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_USE_BFIN_DMA 0
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_outsw(a, r, p, l) outsw((unsigned long *)((a) + (r)), p, l)
#define SMC_insw(a, r, p, l) insw ((unsigned long *)((a) + (r)), p, l)
# endif
/* check if the mac in reg is valid */
#define SMC_GET_MAC_ADDR(lp, addr) \
do { \
unsigned int __v; \
__v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
addr[0] = __v; addr[1] = __v >> 8; \
__v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
addr[2] = __v; addr[3] = __v >> 8; \
__v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
addr[4] = __v; addr[5] = __v >> 8; \
if (*(u32 *)(&addr[0]) == 0xFFFFFFFF) { \
random_ether_addr(addr); \
} \
} while (0)
#elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
/* We can only do 16-bit reads and writes in the static memory space. */
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_NOWAIT 1
#define SMC_IO_SHIFT 0
#define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
#define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
#define SMC_insw(a, r, p, l) \
do { \
unsigned long __port = (a) + (r); \
u16 *__p = (u16 *)(p); \
int __l = (l); \
insw(__port, __p, __l); \
while (__l > 0) { \
*__p = swab16(*__p); \
__p++; \
__l--; \
} \
} while (0)
#define SMC_outsw(a, r, p, l) \
do { \
unsigned long __port = (a) + (r); \
u16 *__p = (u16 *)(p); \
int __l = (l); \
while (__l > 0) { \
/* Believe it or not, the swab isn't needed. */ \
outw( /* swab16 */ (*__p++), __port); \
__l--; \
} \
} while (0)
#define SMC_IRQ_FLAGS (0)
#elif defined(CONFIG_SA1100_PLEB)
/* We can only do 16-bit reads and writes in the static memory space. */
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
#define SMC_IRQ_FLAGS (-1)
#elif defined(CONFIG_SA1100_ASSABET)
#include <asm/arch/neponset.h>
/* We can only do 8-bit reads and writes in the static memory space. */
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 0
#define SMC_CAN_USE_32BIT 0
#define SMC_NOWAIT 1
/* The first two address lines aren't connected... */
#define SMC_IO_SHIFT 2
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
#define SMC_IRQ_FLAGS (-1) /* from resource */
#elif defined(CONFIG_MACH_LOGICPD_PXA270)
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
#elif defined(CONFIG_ARCH_INNOKOM) || \
defined(CONFIG_ARCH_PXA_IDP) || \
defined(CONFIG_ARCH_RAMSES) || \
defined(CONFIG_ARCH_PCM027)
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 1
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_USE_PXA_DMA 1
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_inl(a, r) readl((a) + (r))
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_outl(v, a, r) writel(v, (a) + (r))
#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
#define SMC_IRQ_FLAGS (-1) /* from resource */
/* We actually can't write halfwords properly if not word aligned */
static inline void
SMC_outw(u16 val, void __iomem *ioaddr, int reg)
{
if (reg & 2) {
unsigned int v = val << 16;
v |= readl(ioaddr + (reg & ~2)) & 0xffff;
writel(v, ioaddr + (reg & ~2));
} else {
writew(val, ioaddr + reg);
}
}
#elif defined(CONFIG_ARCH_OMAP)
/* We can only do 16-bit reads and writes in the static memory space. */
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
#define SMC_IRQ_FLAGS (-1) /* from resource */
#elif defined(CONFIG_SH_SH4202_MICRODEV)
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
#define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
#define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
#define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
#define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
#define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
#define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
#define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
#define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
#define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
#define SMC_IRQ_FLAGS (0)
#elif defined(CONFIG_ISA)
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_inb(a, r) inb((a) + (r))
#define SMC_inw(a, r) inw((a) + (r))
#define SMC_outb(v, a, r) outb(v, (a) + (r))
#define SMC_outw(v, a, r) outw(v, (a) + (r))
#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
#elif defined(CONFIG_M32R)
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_inb(a, r) inb(((u32)a) + (r))
#define SMC_inw(a, r) inw(((u32)a) + (r))
#define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
#define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
#define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
#define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
#define SMC_IRQ_FLAGS (0)
#define RPC_LSA_DEFAULT RPC_LED_TX_RX
#define RPC_LSB_DEFAULT RPC_LED_100_10
#elif defined(CONFIG_MACH_LPD79520) \
|| defined(CONFIG_MACH_LPD7A400) \
|| defined(CONFIG_MACH_LPD7A404)
/* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the
* way that the CPU handles chip selects and the way that the SMC chip
* expects the chip select to operate. Refer to
* Documentation/arm/Sharp-LH/IOBarrier for details. The read from
* IOBARRIER is a byte, in order that we read the least-common
* denominator. It would be wasteful to read 32 bits from an 8-bit
* accessible region.
*
* There is no explicit protection against interrupts intervening
* between the writew and the IOBARRIER. In SMC ISR there is a
* preamble that performs an IOBARRIER in the extremely unlikely event
* that the driver interrupts itself between a writew to the chip an
* the IOBARRIER that follows *and* the cache is large enough that the
* first off-chip access while handing the interrupt is to the SMC
* chip. Other devices in the same address space as the SMC chip must
* be aware of the potential for trouble and perform a similar
* IOBARRIER on entry to their ISR.
*/
#include <asm/arch/constants.h> /* IOBARRIER_VIRT */
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_NOWAIT 0
#define LPD7X_IOBARRIER readb (IOBARRIER_VIRT)
#define SMC_inw(a,r)\
({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; })
#define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; })
#define SMC_insw LPD7_SMC_insw
static inline void LPD7_SMC_insw (unsigned char* a, int r,
unsigned char* p, int l)
{
unsigned short* ps = (unsigned short*) p;
while (l-- > 0) {
*ps++ = readw (a + r);
LPD7X_IOBARRIER;
}
}
#define SMC_outsw LPD7_SMC_outsw
static inline void LPD7_SMC_outsw (unsigned char* a, int r,
unsigned char* p, int l)
{
unsigned short* ps = (unsigned short*) p;
while (l-- > 0) {
writew (*ps++, a + r);
LPD7X_IOBARRIER;
}
}
#define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER
#define RPC_LSA_DEFAULT RPC_LED_TX_RX
#define RPC_LSB_DEFAULT RPC_LED_100_10
#elif defined(CONFIG_SOC_AU1X00)
#include <au1xxx.h>
/* We can only do 16-bit reads and writes in the static memory space. */
#define SMC_CAN_USE_8BIT 0
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 0
#define SMC_IO_SHIFT 0
#define SMC_NOWAIT 1
#define SMC_inw(a, r) au_readw((unsigned long)((a) + (r)))
#define SMC_insw(a, r, p, l) \
do { \
unsigned long _a = (unsigned long)((a) + (r)); \
int _l = (l); \
u16 *_p = (u16 *)(p); \
while (_l-- > 0) \
*_p++ = au_readw(_a); \
} while(0)
#define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r)))
#define SMC_outsw(a, r, p, l) \
do { \
unsigned long _a = (unsigned long)((a) + (r)); \
int _l = (l); \
const u16 *_p = (const u16 *)(p); \
while (_l-- > 0) \
au_writew(*_p++ , _a); \
} while(0)
#define SMC_IRQ_FLAGS (0)
#elif defined(CONFIG_ARCH_VERSATILE)
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 1
#define SMC_NOWAIT 1
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_inl(a, r) readl((a) + (r))
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_outl(v, a, r) writel(v, (a) + (r))
#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
#define SMC_IRQ_FLAGS (-1) /* from resource */
#elif defined(CONFIG_MN10300)
/*
* MN10300/AM33 configuration
*/
#include <asm/unit/smc91111.h>
#else
/*
* Default configuration
*/
#define SMC_CAN_USE_8BIT 1
#define SMC_CAN_USE_16BIT 1
#define SMC_CAN_USE_32BIT 1
#define SMC_NOWAIT 1
#define SMC_inb(a, r) readb((a) + (r))
#define SMC_inw(a, r) readw((a) + (r))
#define SMC_inl(a, r) readl((a) + (r))
#define SMC_outb(v, a, r) writeb(v, (a) + (r))
#define SMC_outw(v, a, r) writew(v, (a) + (r))
#define SMC_outl(v, a, r) writel(v, (a) + (r))
#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
#define RPC_LSA_DEFAULT RPC_LED_100_10
#define RPC_LSB_DEFAULT RPC_LED_TX_RX
#endif
/* store this information for the driver.. */
struct smc_local {
/*
* If I have to wait until memory is available to send a
* packet, I will store the skbuff here, until I get the
* desired memory. Then, I'll send it out and free it.
*/
struct sk_buff *pending_tx_skb;
struct tasklet_struct tx_task;
/* version/revision of the SMC91x chip */
int version;
/* Contains the current active transmission mode */
int tcr_cur_mode;
/* Contains the current active receive mode */
int rcr_cur_mode;
/* Contains the current active receive/phy mode */
int rpc_cur_mode;
int ctl_rfduplx;
int ctl_rspeed;
u32 msg_enable;
u32 phy_type;
struct mii_if_info mii;
/* work queue */
struct work_struct phy_configure;
struct net_device *dev;
int work_pending;
spinlock_t lock;
#ifdef CONFIG_ARCH_PXA
/* DMA needs the physical address of the chip */
u_long physaddr;
struct device *device;
#endif
void __iomem *base;
void __iomem *datacs;
/* the low address lines on some platforms aren't connected... */
int io_shift;
struct smc91x_platdata cfg;
};
#define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
#define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
#define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
#ifdef CONFIG_ARCH_PXA
/*
* Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
* always happening in irq context so no need to worry about races. TX is
* different and probably not worth it for that reason, and not as critical
* as RX which can overrun memory and lose packets.
*/
#include <linux/dma-mapping.h>
#include <asm/dma.h>
#include <asm/arch/pxa-regs.h>
#ifdef SMC_insl
#undef SMC_insl
#define SMC_insl(a, r, p, l) \
smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
static inline void
smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
u_char *buf, int len)
{
u_long physaddr = lp->physaddr;
dma_addr_t dmabuf;
/* fallback if no DMA available */
if (dma == (unsigned char)-1) {
readsl(ioaddr + reg, buf, len);
return;
}
/* 64 bit alignment is required for memory to memory DMA */
if ((long)buf & 4) {
*((u32 *)buf) = SMC_inl(ioaddr, reg);
buf += 4;
len--;
}
len *= 4;
dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
DCSR(dma) = DCSR_NODESC;
DTADR(dma) = dmabuf;
DSADR(dma) = physaddr + reg;
DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH4 | (DCMD_LENGTH & len));
DCSR(dma) = DCSR_NODESC | DCSR_RUN;
while (!(DCSR(dma) & DCSR_STOPSTATE))
cpu_relax();
DCSR(dma) = 0;
dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
}
#endif
#ifdef SMC_insw
#undef SMC_insw
#define SMC_insw(a, r, p, l) \
smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
static inline void
smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
u_char *buf, int len)
{
u_long physaddr = lp->physaddr;
dma_addr_t dmabuf;
/* fallback if no DMA available */
if (dma == (unsigned char)-1) {
readsw(ioaddr + reg, buf, len);
return;
}
/* 64 bit alignment is required for memory to memory DMA */
while ((long)buf & 6) {
*((u16 *)buf) = SMC_inw(ioaddr, reg);
buf += 2;
len--;
}
len *= 2;
dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
DCSR(dma) = DCSR_NODESC;
DTADR(dma) = dmabuf;
DSADR(dma) = physaddr + reg;
DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH2 | (DCMD_LENGTH & len));
DCSR(dma) = DCSR_NODESC | DCSR_RUN;
while (!(DCSR(dma) & DCSR_STOPSTATE))
cpu_relax();
DCSR(dma) = 0;
dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
}
#endif
static void
smc_pxa_dma_irq(int dma, void *dummy)
{
DCSR(dma) = 0;
}
#endif /* CONFIG_ARCH_PXA */
/*
* Everything a particular hardware setup needs should have been defined
* at this point. Add stubs for the undefined cases, mainly to avoid
* compilation warnings since they'll be optimized away, or to prevent buggy
* use of them.
*/
#if ! SMC_CAN_USE_32BIT
#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
#define SMC_outl(x, ioaddr, reg) BUG()
#define SMC_insl(a, r, p, l) BUG()
#define SMC_outsl(a, r, p, l) BUG()
#endif
#if !defined(SMC_insl) || !defined(SMC_outsl)
#define SMC_insl(a, r, p, l) BUG()
#define SMC_outsl(a, r, p, l) BUG()
#endif
#if ! SMC_CAN_USE_16BIT
/*
* Any 16-bit access is performed with two 8-bit accesses if the hardware
* can't do it directly. Most registers are 16-bit so those are mandatory.
*/
#define SMC_outw(x, ioaddr, reg) \
do { \
unsigned int __val16 = (x); \
SMC_outb( __val16, ioaddr, reg ); \
SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
} while (0)
#define SMC_inw(ioaddr, reg) \
({ \
unsigned int __val16; \
__val16 = SMC_inb( ioaddr, reg ); \
__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
__val16; \
})
#define SMC_insw(a, r, p, l) BUG()
#define SMC_outsw(a, r, p, l) BUG()
#endif
#if !defined(SMC_insw) || !defined(SMC_outsw)
#define SMC_insw(a, r, p, l) BUG()
#define SMC_outsw(a, r, p, l) BUG()
#endif
#if ! SMC_CAN_USE_8BIT
#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
#define SMC_outb(x, ioaddr, reg) BUG()
#define SMC_insb(a, r, p, l) BUG()
#define SMC_outsb(a, r, p, l) BUG()
#endif
#if !defined(SMC_insb) || !defined(SMC_outsb)
#define SMC_insb(a, r, p, l) BUG()
#define SMC_outsb(a, r, p, l) BUG()
#endif
#ifndef SMC_CAN_USE_DATACS
#define SMC_CAN_USE_DATACS 0
#endif
#ifndef SMC_IO_SHIFT
#define SMC_IO_SHIFT 0
#endif
#ifndef SMC_IRQ_FLAGS
#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
#endif
#ifndef SMC_INTERRUPT_PREAMBLE
#define SMC_INTERRUPT_PREAMBLE
#endif
/* Because of bank switching, the LAN91x uses only 16 I/O ports */
#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
#define SMC_DATA_EXTENT (4)
/*
. Bank Select Register:
.
. yyyy yyyy 0000 00xx
. xx = bank number
. yyyy yyyy = 0x33, for identification purposes.
*/
#define BANK_SELECT (14 << SMC_IO_SHIFT)
// Transmit Control Register
/* BANK 0 */
#define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
#define TCR_ENABLE 0x0001 // When 1 we can transmit
#define TCR_LOOP 0x0002 // Controls output pin LBK
#define TCR_FORCOL 0x0004 // When 1 will force a collision
#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
#define TCR_CLEAR 0 /* do NOTHING */
/* the default settings for the TCR register : */
#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
// EPH Status Register
/* BANK 0 */
#define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
#define ES_TX_SUC 0x0001 // Last TX was successful
#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
#define ES_LTX_MULT 0x0008 // Last tx was a multicast
#define ES_16COL 0x0010 // 16 Collisions Reached
#define ES_SQET 0x0020 // Signal Quality Error Test
#define ES_LTXBRD 0x0040 // Last tx was a broadcast
#define ES_TXDEFR 0x0080 // Transmit Deferred
#define ES_LATCOL 0x0200 // Late collision detected on last tx
#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
#define ES_EXC_DEF 0x0800 // Excessive Deferral
#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
#define ES_TXUNRN 0x8000 // Tx Underrun
// Receive Control Register
/* BANK 0 */
#define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
#define RCR_PRMS 0x0002 // Enable promiscuous mode
#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
#define RCR_SOFTRST 0x8000 // resets the chip
/* the normal settings for the RCR register : */
#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
#define RCR_CLEAR 0x0 // set it to a base state
// Counter Register
/* BANK 0 */
#define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
// Memory Information Register
/* BANK 0 */
#define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
// Receive/Phy Control Register
/* BANK 0 */
#define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
#define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
#define RPC_LED_RES (0x01) // LED = Reserved
#define RPC_LED_10 (0x02) // LED = 10Mbps link detect
#define RPC_LED_FD (0x03) // LED = Full Duplex Mode
#define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
#define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
#define RPC_LED_TX (0x06) // LED = TX packet occurred
#define RPC_LED_RX (0x07) // LED = RX packet occurred
#ifndef RPC_LSA_DEFAULT
#define RPC_LSA_DEFAULT RPC_LED_100
#endif
#ifndef RPC_LSB_DEFAULT
#define RPC_LSB_DEFAULT RPC_LED_FD
#endif
#define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
/* Bank 0 0x0C is reserved */
// Bank Select Register
/* All Banks */
#define BSR_REG 0x000E
// Configuration Reg
/* BANK 1 */
#define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
// Base Address Register
/* BANK 1 */
#define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
// Individual Address Registers
/* BANK 1 */
#define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
#define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
#define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
// General Purpose Register
/* BANK 1 */
#define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
// Control Register
/* BANK 1 */
#define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
#define CTL_STORE 0x0001 // When set stores registers into EEPROM
// MMU Command Register
/* BANK 2 */
#define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
#define MC_BUSY 1 // When 1 the last release has not completed
#define MC_NOP (0<<5) // No Op
#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
#define MC_RESET (2<<5) // Reset MMU to initial state
#define MC_REMOVE (3<<5) // Remove the current rx packet
#define MC_RELEASE (4<<5) // Remove and release the current rx packet
#define MC_FREEPKT (5<<5) // Release packet in PNR register
#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
// Packet Number Register
/* BANK 2 */
#define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
// Allocation Result Register
/* BANK 2 */
#define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
#define AR_FAILED 0x80 // Alocation Failed
// TX FIFO Ports Register
/* BANK 2 */
#define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
// RX FIFO Ports Register
/* BANK 2 */
#define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
#define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
// Pointer Register
/* BANK 2 */
#define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
#define PTR_READ 0x2000 // When 1 the operation is a read
// Data Register
/* BANK 2 */
#define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
// Interrupt Status/Acknowledge Register
/* BANK 2 */
#define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
// Interrupt Mask Register
/* BANK 2 */
#define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
#define IM_ERCV_INT 0x40 // Early Receive Interrupt
#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
#define IM_TX_INT 0x02 // Transmit Interrupt
#define IM_RCV_INT 0x01 // Receive Interrupt
// Multicast Table Registers
/* BANK 3 */
#define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
#define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
#define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
#define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
// Management Interface Register (MII)
/* BANK 3 */
#define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
#define MII_MDOE 0x0008 // MII Output Enable
#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
#define MII_MDI 0x0002 // MII Input, pin MDI
#define MII_MDO 0x0001 // MII Output, pin MDO
// Revision Register
/* BANK 3 */
/* ( hi: chip id low: rev # ) */
#define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
// Early RCV Register
/* BANK 3 */
/* this is NOT on SMC9192 */
#define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
// External Register
/* BANK 7 */
#define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
#define CHIP_9192 3
#define CHIP_9194 4
#define CHIP_9195 5
#define CHIP_9196 6
#define CHIP_91100 7
#define CHIP_91100FD 8
#define CHIP_91111FD 9
static const char * chip_ids[ 16 ] = {
NULL, NULL, NULL,
/* 3 */ "SMC91C90/91C92",
/* 4 */ "SMC91C94",
/* 5 */ "SMC91C95",
/* 6 */ "SMC91C96",
/* 7 */ "SMC91C100",
/* 8 */ "SMC91C100FD",
/* 9 */ "SMC91C11xFD",
NULL, NULL, NULL,
NULL, NULL, NULL};
/*
. Receive status bits
*/
#define RS_ALGNERR 0x8000
#define RS_BRODCAST 0x4000
#define RS_BADCRC 0x2000
#define RS_ODDFRAME 0x1000
#define RS_TOOLONG 0x0800
#define RS_TOOSHORT 0x0400
#define RS_MULTICAST 0x0001
#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
/*
* PHY IDs
* LAN83C183 == LAN91C111 Internal PHY
*/
#define PHY_LAN83C183 0x0016f840
#define PHY_LAN83C180 0x02821c50
/*
* PHY Register Addresses (LAN91C111 Internal PHY)
*
* Generic PHY registers can be found in <linux/mii.h>
*
* These phy registers are specific to our on-board phy.
*/
// PHY Configuration Register 1
#define PHY_CFG1_REG 0x10
#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
#define PHY_CFG1_TLVL_MASK 0x003C
#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
// PHY Configuration Register 2
#define PHY_CFG2_REG 0x11
#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
// PHY Status Output (and Interrupt status) Register
#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
#define PHY_INT_JAB 0x0100 // 1=Jabber detected
#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
// PHY Interrupt/Status Mask Register
#define PHY_MASK_REG 0x13 // Interrupt Mask
// Uses the same bit definitions as PHY_INT_REG
/*
* SMC91C96 ethernet config and status registers.
* These are in the "attribute" space.
*/
#define ECOR 0x8000
#define ECOR_RESET 0x80
#define ECOR_LEVEL_IRQ 0x40
#define ECOR_WR_ATTRIB 0x04
#define ECOR_ENABLE 0x01
#define ECSR 0x8002
#define ECSR_IOIS8 0x20
#define ECSR_PWRDWN 0x04
#define ECSR_INT 0x02
#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
/*
* Macros to abstract register access according to the data bus
* capabilities. Please use those and not the in/out primitives.
* Note: the following macros do *not* select the bank -- this must
* be done separately as needed in the main code. The SMC_REG() macro
* only uses the bank argument for debugging purposes (when enabled).
*
* Note: despite inline functions being safer, everything leading to this
* should preferably be macros to let BUG() display the line number in
* the core source code since we're interested in the top call site
* not in any inline function location.
*/
#if SMC_DEBUG > 0
#define SMC_REG(lp, reg, bank) \
({ \
int __b = SMC_CURRENT_BANK(lp); \
if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
printk( "%s: bank reg screwed (0x%04x)\n", \
CARDNAME, __b ); \
BUG(); \
} \
reg<<SMC_IO_SHIFT; \
})
#else
#define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
#endif
/*
* Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
* aligned to a 32 bit boundary. I tell you that does exist!
* Fortunately the affected register accesses can be easily worked around
* since we can write zeroes to the preceeding 16 bits without adverse
* effects and use a 32-bit access.
*
* Enforce it on any 32-bit capable setup for now.
*/
#define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
#define SMC_GET_PN(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
#define SMC_SET_PN(lp, x) \
do { \
if (SMC_MUST_ALIGN_WRITE(lp)) \
SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
else if (SMC_8BIT(lp)) \
SMC_outb(x, ioaddr, PN_REG(lp)); \
else \
SMC_outw(x, ioaddr, PN_REG(lp)); \
} while (0)
#define SMC_GET_AR(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
#define SMC_GET_TXFIFO(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
#define SMC_GET_RXFIFO(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
#define SMC_GET_INT(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
#define SMC_ACK_INT(lp, x) \
do { \
if (SMC_8BIT(lp)) \
SMC_outb(x, ioaddr, INT_REG(lp)); \
else { \
unsigned long __flags; \
int __mask; \
local_irq_save(__flags); \
__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
SMC_outw(__mask | (x), ioaddr, INT_REG(lp)); \
local_irq_restore(__flags); \
} \
} while (0)
#define SMC_GET_INT_MASK(lp) \
(SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
#define SMC_SET_INT_MASK(lp, x) \
do { \
if (SMC_8BIT(lp)) \
SMC_outb(x, ioaddr, IM_REG(lp)); \
else \
SMC_outw((x) << 8, ioaddr, INT_REG(lp)); \
} while (0)
#define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
#define SMC_SELECT_BANK(lp, x) \
do { \
if (SMC_MUST_ALIGN_WRITE(lp)) \
SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
else \
SMC_outw(x, ioaddr, BANK_SELECT); \
} while (0)
#define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
#define SMC_SET_BASE(lp, x) SMC_outw(x, ioaddr, BASE_REG(lp))
#define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
#define SMC_SET_CONFIG(lp, x) SMC_outw(x, ioaddr, CONFIG_REG(lp))
#define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
#define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
#define SMC_SET_CTL(lp, x) SMC_outw(x, ioaddr, CTL_REG(lp))
#define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
#define SMC_SET_MII(lp, x) SMC_outw(x, ioaddr, MII_REG(lp))
#define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
#define SMC_SET_MIR(lp, x) SMC_outw(x, ioaddr, MIR_REG(lp))
#define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
#define SMC_SET_MMU_CMD(lp, x) SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
#define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
#define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
#define SMC_SET_PTR(lp, x) \
do { \
if (SMC_MUST_ALIGN_WRITE(lp)) \
SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
else \
SMC_outw(x, ioaddr, PTR_REG(lp)); \
} while (0)
#define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
#define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
#define SMC_SET_RCR(lp, x) SMC_outw(x, ioaddr, RCR_REG(lp))
#define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
#define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
#define SMC_SET_RPC(lp, x) \
do { \
if (SMC_MUST_ALIGN_WRITE(lp)) \
SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
else \
SMC_outw(x, ioaddr, RPC_REG(lp)); \
} while (0)
#define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
#define SMC_SET_TCR(lp, x) SMC_outw(x, ioaddr, TCR_REG(lp))
#ifndef SMC_GET_MAC_ADDR
#define SMC_GET_MAC_ADDR(lp, addr) \
do { \
unsigned int __v; \
__v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
addr[0] = __v; addr[1] = __v >> 8; \
__v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
addr[2] = __v; addr[3] = __v >> 8; \
__v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
addr[4] = __v; addr[5] = __v >> 8; \
} while (0)
#endif
#define SMC_SET_MAC_ADDR(lp, addr) \
do { \
SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
} while (0)
#define SMC_SET_MCAST(lp, x) \
do { \
const unsigned char *mt = (x); \
SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
} while (0)
#define SMC_PUT_PKT_HDR(lp, status, length) \
do { \
if (SMC_32BIT(lp)) \
SMC_outl((status) | (length)<<16, ioaddr, \
DATA_REG(lp)); \
else { \
SMC_outw(status, ioaddr, DATA_REG(lp)); \
SMC_outw(length, ioaddr, DATA_REG(lp)); \
} \
} while (0)
#define SMC_GET_PKT_HDR(lp, status, length) \
do { \
if (SMC_32BIT(lp)) { \
unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
(status) = __val & 0xffff; \
(length) = __val >> 16; \
} else { \
(status) = SMC_inw(ioaddr, DATA_REG(lp)); \
(length) = SMC_inw(ioaddr, DATA_REG(lp)); \
} \
} while (0)
#define SMC_PUSH_DATA(lp, p, l) \
do { \
if (SMC_32BIT(lp)) { \
void *__ptr = (p); \
int __len = (l); \
void __iomem *__ioaddr = ioaddr; \
if (__len >= 2 && (unsigned long)__ptr & 2) { \
__len -= 2; \
SMC_outw(*(u16 *)__ptr, ioaddr, \
DATA_REG(lp)); \
__ptr += 2; \
} \
if (SMC_CAN_USE_DATACS && lp->datacs) \
__ioaddr = lp->datacs; \
SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
if (__len & 2) { \
__ptr += (__len & ~3); \
SMC_outw(*((u16 *)__ptr), ioaddr, \
DATA_REG(lp)); \
} \
} else if (SMC_16BIT(lp)) \
SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
else if (SMC_8BIT(lp)) \
SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
} while (0)
#define SMC_PULL_DATA(lp, p, l) \
do { \
if (SMC_32BIT(lp)) { \
void *__ptr = (p); \
int __len = (l); \
void __iomem *__ioaddr = ioaddr; \
if ((unsigned long)__ptr & 2) { \
/* \
* We want 32bit alignment here. \
* Since some buses perform a full \
* 32bit fetch even for 16bit data \
* we can't use SMC_inw() here. \
* Back both source (on-chip) and \
* destination pointers of 2 bytes. \
* This is possible since the call to \
* SMC_GET_PKT_HDR() already advanced \
* the source pointer of 4 bytes, and \
* the skb_reserve(skb, 2) advanced \
* the destination pointer of 2 bytes. \
*/ \
__ptr -= 2; \
__len += 2; \
SMC_SET_PTR(lp, \
2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
} \
if (SMC_CAN_USE_DATACS && lp->datacs) \
__ioaddr = lp->datacs; \
__len += 2; \
SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
} else if (SMC_16BIT(lp)) \
SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
else if (SMC_8BIT(lp)) \
SMC_insb(ioaddr, DATA_REG(lp), p, l); \
} while (0)
#endif /* _SMC91X_H_ */