aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/net/skfp/drvfbi.c
blob: 4fe624b0dd251907522f74d9aecd97554f3f3040 (plain) (tree)
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
























                                                                                
                         

















































































                                                                               

                                                 

















































































































































































































































































































































                                                                                


                                                                         
                                                      


                                             
                                                              








                                                                         
                                                     


                                             
                                                             




                                                                         
                                                       

















                                                                    
                                                                           






                                                         
                                                             
































































































































                                                                              
                                                            



































































































































                                                                               
























































































































































































































































































































































































































































































































                                                                                 

                                                                      
















                                                                          
                                                













                                                                         






                                      
/******************************************************************************
 *
 *	(C)Copyright 1998,1999 SysKonnect,
 *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
 *
 *	See the file "skfddi.c" for further information.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	The information in this file is provided "AS IS" without warranty.
 *
 ******************************************************************************/

/*
 * FBI board dependent Driver for SMT and LLC
 */

#include "h/types.h"
#include "h/fddi.h"
#include "h/smc.h"
#include "h/supern_2.h"
#include "h/skfbiinc.h"
#include <linux/bitrev.h>

#ifndef	lint
static const char ID_sccs[] = "@(#)drvfbi.c	1.63 99/02/11 (C) SK " ;
#endif

/*
 * PCM active state
 */
#define PC8_ACTIVE	8

#define	LED_Y_ON	0x11	/* Used for ring up/down indication */
#define	LED_Y_OFF	0x10


#define MS2BCLK(x)	((x)*12500L)

/*
 * valid configuration values are:
 */
#ifdef	ISA
const int opt_ints[] = {8,	3, 4, 5, 9, 10, 11, 12, 15} ;
const int opt_iops[] = {8,
	0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
const int opt_dmas[] = {4,	3, 5, 6, 7} ;
const int opt_eproms[] = {15,	0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
			0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
#endif
#ifdef	EISA
const int opt_ints[] = {5, 9, 10, 11} ;
const int opt_dmas[] = {0, 5, 6, 7} ;
const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
				0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
#endif

#ifdef	MCA
int	opt_ints[] = {3, 11, 10, 9} ;			/* FM1 */
int	opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
#endif	/* MCA */

/*
 *	xPOS_ID:xxxx
 *	|	\  /
 *	|	 \/
 *	|	  --------------------- the patched POS_ID of the Adapter
 *	|				xxxx = (Vendor ID low byte,
 *	|					Vendor ID high byte,
 *	|					Device ID low byte,
 *	|					Device ID high byte)
 *	+------------------------------ the patched oem_id must be
 *					'S' for SK or 'I' for IBM
 *					this is a short id for the driver.
 */
#ifndef MULT_OEM
#ifndef	OEM_CONCEPT
#ifndef MCA
const u_char oem_id[] = "xPOS_ID:xxxx" ;
#else
const u_char oem_id[] = "xPOSID1:xxxx" ;	/* FM1 card id. */
#endif
#else	/* OEM_CONCEPT */
#ifndef MCA
const u_char oem_id[] = OEM_ID ;
#else
const u_char oem_id[] = OEM_ID1 ;	/* FM1 card id. */
#endif	/* MCA */
#endif	/* OEM_CONCEPT */
#define	ID_BYTE0	8
#define	OEMID(smc,i)	oem_id[ID_BYTE0 + i]
#else	/* MULT_OEM */
const struct s_oem_ids oem_ids[] = {
#include "oemids.h"
{0}
};
#define	OEMID(smc,i)	smc->hw.oem_id->oi_id[i]
#endif	/* MULT_OEM */

/* Prototypes of external functions */
#ifdef AIX
extern int AIX_vpdReadByte() ;
#endif


/* Prototype of a local function. */
static void smt_stop_watchdog(struct s_smc *smc);

#ifdef MCA
static int read_card_id() ;
static void DisableSlotAccess() ;
static void EnableSlotAccess() ;
#ifdef AIX
extern int attach_POS_addr() ;
extern int detach_POS_addr() ;
extern u_char read_POS() ;
extern void write_POS() ;
extern int AIX_vpdReadByte() ;
#else
#define	read_POS(smc,a1,a2)	((u_char) inp(a1))
#define	write_POS(smc,a1,a2,a3)	outp((a1),(a3))
#endif
#endif	/* MCA */


/*
 * FDDI card reset
 */
static void card_start(struct s_smc *smc)
{
	int i ;
#ifdef	PCI
	u_char	rev_id ;
	u_short word;
#endif

	smt_stop_watchdog(smc) ;

#ifdef	ISA
	outpw(CSR_A,0) ;			/* reset for all chips */
	for (i = 10 ; i ; i--)			/* delay for PLC's */
		(void)inpw(ISR_A) ;
	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
					/* counter 2, mode 2 */
	OUT_82c54_TIMER(2,97) ;		/* LSB */
	OUT_82c54_TIMER(2,0) ;		/* MSB ( 15.6 us ) */
	outpw(CSR_A,CS_CRESET) ;
#endif
#ifdef	EISA
	outpw(CSR_A,0) ;			/* reset for all chips */
	for (i = 10 ; i ; i--)			/* delay for PLC's */
		(void)inpw(ISR_A) ;
	outpw(CSR_A,CS_CRESET) ;
	smc->hw.led = (2<<6) ;
	outpw(CSR_A,CS_CRESET | smc->hw.led) ;
#endif
#ifdef	MCA
	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
	for (i = 10 ; i ; i--)			/* delay for PLC's */
		(void)inpw(ISR_A) ;
	outp(ADDR(CARD_EN),0) ;
	/* first I/O after reset must not be a access to FORMAC or PLC */

	/*
	 * bus timeout (MCA)
	 */
	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
					/* counter 2, mode 3 */
	OUT_82c54_TIMER(2,(2*24)) ;	/* 3.9 us * 2 square wave */
	OUT_82c54_TIMER(2,0) ;		/* MSB */

	/* POS 102 indicated an activ Check Line or Buss Error monitoring */
	if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
		outp(ADDR(IRQ_CHCK_EN),0) ;
	}

	if (!((i = inpw(CSR_A)) & CS_SAS)) {
		if (!(i & CS_BYSTAT)) {
			outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
		}
	}
	outpw(LEDR_A,LED_1) ;	/* yellow */
#endif	/* MCA */
#ifdef	PCI
	/*
	 * make sure no transfer activity is pending
	 */
	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
	/*
	 * now reset everything
	 */
	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
	i = (int) inp(ADDR(B0_CTRL)) ;		/* do dummy read */
	SK_UNUSED(i) ;				/* Make LINT happy. */
	outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;

	/*
	 * Reset all bits in the PCI STATUS register
	 */
	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ;	/* enable for writes */
	word = inpw(PCI_C(PCI_STATUS)) ;
	outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ;	/* disable writes */

	/*
	 * Release the reset of all the State machines
	 * Release Master_Reset
	 * Release HPI_SM_Reset
	 */
	outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;

	/*
	 * determine the adapter type
	 * Note: Do it here, because some drivers may call card_start() once
	 *	 at very first before any other initialization functions is
	 *	 executed.
	 */
	rev_id = inp(PCI_C(PCI_REV_ID)) ;
	if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
		smc->hw.hw_is_64bit = TRUE ;
	} else {
		smc->hw.hw_is_64bit = FALSE ;
	}

	/*
	 * Watermark initialization
	 */
	if (!smc->hw.hw_is_64bit) {
		outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
		outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
		outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
	}

	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* clear the reset chips */
	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */

	/* init the timer value for the watch dog 2,5 minutes */
	outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;

	/* initialize the ISR mask */
	smc->hw.is_imask = ISR_MASK ;
	smc->hw.hw_state = STOPPED ;
#endif
	GET_PAGE(0) ;		/* necessary for BOOT */
}

void card_stop(struct s_smc *smc)
{
	smt_stop_watchdog(smc) ;
	smc->hw.mac_ring_is_up = 0 ;		/* ring down */
#ifdef	ISA
	outpw(CSR_A,0) ;			/* reset for all chips */
#endif
#ifdef	EISA
	outpw(CSR_A,0) ;			/* reset for all chips */
#endif
#ifdef	MCA
	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
#endif
#ifdef	PCI
	/*
	 * make sure no transfer activity is pending
	 */
	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
	/*
	 * now reset everything
	 */
	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* reset for all chips */
	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
	smc->hw.hw_state = STOPPED ;
#endif
}
/*--------------------------- ISR handling ----------------------------------*/

void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
{
	int	restart_tx = 0 ;
again:
#ifndef PCI
#ifndef ISA
/*
 * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
 */
	if (stl & (FM_SPCEPDS  |	/* parit/coding err. syn.q.*/
		   FM_SPCEPDA0 |	/* parit/coding err. a.q.0 */
		   FM_SPCEPDA1 |	/* parit/coding err. a.q.1 */
		   FM_SPCEPDA2)) {	/* parit/coding err. a.q.2 */
		SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
	}
	if (stl & (FM_STBURS  |	/* tx buffer underrun syn.q.*/
		   FM_STBURA0 |	/* tx buffer underrun a.q.0 */
		   FM_STBURA1 |	/* tx buffer underrun a.q.1 */
		   FM_STBURA2)) {	/* tx buffer underrun a.q.2 */
		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
	}
#endif
	if ( (stu & (FM_SXMTABT |		/* transmit abort */
#ifdef	SYNC
		     FM_STXABRS |	/* syn. tx abort */
#endif	/* SYNC */
		     FM_STXABRA0)) ||	/* asyn. tx abort */
	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
		     FM_SQLCKA0)) ) {	/* lock for asyn. q. */
		formac_tx_restart(smc) ;		/* init tx */
		restart_tx = 1 ;
		stu = inpw(FM_A(FM_ST1U)) ;
		stl = inpw(FM_A(FM_ST1L)) ;
		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
		if (stu || stl)
			goto again ;
	}

#ifndef	SYNC
	if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
		   FM_STEFRMA0)) { /* end of frame asyn tx */
		/* free tx_queue */
		smc->hw.n_a_send = 0 ;
		if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
			start_next_send(smc);
		}
		restart_tx = 1 ;
	}
#else	/* SYNC */
	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
		    FM_STEFRMS)) {	/* end of sync tx */
		restart_tx = 1 ;
	}
#endif	/* SYNC */
	if (restart_tx)
		llc_restart_tx(smc) ;
}
#else	/* PCI */

	/*
	 * parity error: note encoding error is not possible in tag mode
	 */
	if (stl & (FM_SPCEPDS  |	/* parity err. syn.q.*/
		   FM_SPCEPDA0 |	/* parity err. a.q.0 */
		   FM_SPCEPDA1)) {	/* parity err. a.q.1 */
		SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
	}
	/*
	 * buffer underrun: can only occur if a tx threshold is specified
	 */
	if (stl & (FM_STBURS  |		/* tx buffer underrun syn.q.*/
		   FM_STBURA0 |		/* tx buffer underrun a.q.0 */
		   FM_STBURA1)) {	/* tx buffer underrun a.q.2 */
		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
	}

	if ( (stu & (FM_SXMTABT |		/* transmit abort */
		     FM_STXABRS |		/* syn. tx abort */
		     FM_STXABRA0)) ||		/* asyn. tx abort */
	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
		     FM_SQLCKA0)) ) {		/* lock for asyn. q. */
		formac_tx_restart(smc) ;	/* init tx */
		restart_tx = 1 ;
		stu = inpw(FM_A(FM_ST1U)) ;
		stl = inpw(FM_A(FM_ST1L)) ;
		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
		if (stu || stl)
			goto again ;
	}

	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
		    FM_STEFRMS)) {	/* end of sync tx */
		restart_tx = 1 ;
	}

	if (restart_tx)
		llc_restart_tx(smc) ;
}
#endif	/* PCI */
/*
 * interrupt source= plc1
 * this function is called in nwfbisr.asm
 */
void plc1_irq(struct s_smc *smc)
{
	u_short	st = inpw(PLC(PB,PL_INTR_EVENT)) ;

#if	(defined(ISA) || defined(EISA))
	/* reset PLC Int. bits */
	outpw(PLC1_I,inpw(PLC1_I)) ;
#endif
	plc_irq(smc,PB,st) ;
}

/*
 * interrupt source= plc2
 * this function is called in nwfbisr.asm
 */
void plc2_irq(struct s_smc *smc)
{
	u_short	st = inpw(PLC(PA,PL_INTR_EVENT)) ;

#if	(defined(ISA) || defined(EISA))
	/* reset PLC Int. bits */
	outpw(PLC2_I,inpw(PLC2_I)) ;
#endif
	plc_irq(smc,PA,st) ;
}


/*
 * interrupt source= timer
 */
void timer_irq(struct s_smc *smc)
{
	hwt_restart(smc);
	smc->hw.t_stop = smc->hw.t_start;
	smt_timer_done(smc) ;
}

/*
 * return S-port (PA or PB)
 */
int pcm_get_s_port(struct s_smc *smc)
{
	SK_UNUSED(smc) ;
	return(PS) ;
}

/*
 * Station Label = "FDDI-XYZ" where
 *
 *	X = connector type
 *	Y = PMD type
 *	Z = port type
 */
#define STATION_LABEL_CONNECTOR_OFFSET	5
#define STATION_LABEL_PMD_OFFSET	6
#define STATION_LABEL_PORT_OFFSET	7

void read_address(struct s_smc *smc, u_char *mac_addr)
{
	char ConnectorType ;
	char PmdType ;
	int	i ;

#if	(defined(ISA) || defined(MCA))
	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
		smc->hw.fddi_phys_addr.a[i] =
			bitrev8(inpw(PR_A(i+SA_MAC)));
	}
	for (i = 4; i < 6; i++) {
		smc->hw.fddi_phys_addr.a[i] =
			bitrev8(inpw(PR_A(i+SA_MAC+PRA_OFF)));
	}
#endif
#ifdef	EISA
	/*
	 * Note: We get trouble on an Alpha machine if we make a inpw()
	 * instead of inp()
	 */
	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
		smc->hw.fddi_phys_addr.a[i] =
			bitrev8(inp(PR_A(i+SA_MAC)));
	}
	for (i = 4; i < 6; i++) {
		smc->hw.fddi_phys_addr.a[i] =
			bitrev8(inp(PR_A(i+SA_MAC+PRA_OFF)));
	}
#endif
#ifdef	PCI
	for (i = 0; i < 6; i++) {	/* read mac address from board */
		smc->hw.fddi_phys_addr.a[i] =
			bitrev8(inp(ADDR(B2_MAC_0+i)));
	}
#endif
#ifndef	PCI
	ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
	PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
#else
	ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
	PmdType = inp(ADDR(B2_PMD_TYP)) ;
#endif

	smc->y[PA].pmd_type[PMD_SK_CONN] =
	smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
	smc->y[PA].pmd_type[PMD_SK_PMD ] =
	smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;

	if (mac_addr) {
		for (i = 0; i < 6 ;i++) {
			smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
			smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]);
		}
		return ;
	}
	smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;

	for (i = 0; i < 6 ;i++) {
		smc->hw.fddi_canon_addr.a[i] =
			bitrev8(smc->hw.fddi_phys_addr.a[i]);
	}
}

/*
 * FDDI card soft reset
 */
void init_board(struct s_smc *smc, u_char *mac_addr)
{
	card_start(smc) ;
	read_address(smc,mac_addr) ;

#ifndef	PCI
	if (inpw(CSR_A) & CS_SAS)
#else
	if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
#endif
		smc->s.sas = SMT_SAS ;	/* Single att. station */
	else
		smc->s.sas = SMT_DAS ;	/* Dual att. station */

#ifndef	PCI
	if (inpw(CSR_A) & CS_BYSTAT)
#else
	if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
#endif
		smc->mib.fddiSMTBypassPresent = 0 ;
		/* without opt. bypass */
	else
		smc->mib.fddiSMTBypassPresent = 1 ;
		/* with opt. bypass */
}

/*
 * insert or deinsert optical bypass (called by ECM)
 */
void sm_pm_bypass_req(struct s_smc *smc, int mode)
{
#if	(defined(ISA) || defined(EISA))
	int csra_v ;
#endif

	DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
					"BP_INSERT" : "BP_DEINSERT",0) ;

	if (smc->s.sas != SMT_DAS)
		return ;

#if	(defined(ISA) || defined(EISA))

	csra_v = inpw(CSR_A) & ~CS_BYPASS ;
#ifdef	EISA
	csra_v |= smc->hw.led ;
#endif

	switch(mode) {
	case BP_INSERT :
		outpw(CSR_A,csra_v | CS_BYPASS) ;
		break ;
	case BP_DEINSERT :
		outpw(CSR_A,csra_v) ;
		break ;
	}
#endif	/* ISA / EISA */
#ifdef	MCA
	switch(mode) {
	case BP_INSERT :
		outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
		break ;
	case BP_DEINSERT :
		outp(ADDR(BYPASS(STAT_BYP)),0) ;	/* bypass station */
		break ;
	}
#endif
#ifdef	PCI
	switch(mode) {
	case BP_INSERT :
		outp(ADDR(B0_DAS),DAS_BYP_INS) ;	/* insert station */
		break ;
	case BP_DEINSERT :
		outp(ADDR(B0_DAS),DAS_BYP_RMV) ;	/* bypass station */
		break ;
	}
#endif
}

/*
 * check if bypass connected
 */
int sm_pm_bypass_present(struct s_smc *smc)
{
#ifndef	PCI
	return(	(inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
#else
	return(	(inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
#endif
}

void plc_clear_irq(struct s_smc *smc, int p)
{
	SK_UNUSED(p) ;

#if	(defined(ISA) || defined(EISA))
	switch (p) {
	case PA :
		/* reset PLC Int. bits */
		outpw(PLC2_I,inpw(PLC2_I)) ;
		break ;
	case PB :
		/* reset PLC Int. bits */
		outpw(PLC1_I,inpw(PLC1_I)) ;
		break ;
	}
#else
	SK_UNUSED(smc) ;
#endif
}


/*
 * led_indication called by rmt_indication() and
 * pcm_state_change()
 *
 * Input:
 *	smc:	SMT context
 *	led_event:
 *	0	Only switch green LEDs according to their respective PCM state
 *	LED_Y_OFF	just switch yellow LED off
 *	LED_Y_ON	just switch yello LED on
 */
static void led_indication(struct s_smc *smc, int led_event)
{
	/* use smc->hw.mac_ring_is_up == TRUE 
	 * as indication for Ring Operational
	 */
	u_short			led_state ;
	struct s_phy		*phy ;
	struct fddi_mib_p	*mib_a ;
	struct fddi_mib_p	*mib_b ;

	phy = &smc->y[PA] ;
	mib_a = phy->mib ;
	phy = &smc->y[PB] ;
	mib_b = phy->mib ;

#ifdef	EISA
	/* Ring up = yellow led OFF*/
	if (led_event == LED_Y_ON) {
		smc->hw.led |= CS_LED_1 ;
	}
	else if (led_event == LED_Y_OFF) {
		smc->hw.led &= ~CS_LED_1 ;
	}
	else {
		/* Link at Port A or B = green led ON */
		if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
		    mib_b->fddiPORTPCMState == PC8_ACTIVE) {
			smc->hw.led |= CS_LED_0 ;
		}
		else {
			smc->hw.led &= ~CS_LED_0 ;
		}
	}
#endif
#ifdef	MCA
	led_state = inpw(LEDR_A) ;
	
	/* Ring up = yellow led OFF*/
	if (led_event == LED_Y_ON) {
		led_state |= LED_1 ;
	}
	else if (led_event == LED_Y_OFF) {
		led_state &= ~LED_1 ;
	}
	else {
                led_state &= ~(LED_2|LED_0) ;

		/* Link at Port A = green led A ON */
		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {	
			led_state |= LED_2 ;
		}
		
		/* Link at Port B/S = green led B ON */
		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
			led_state |= LED_0 ;
		}
	}

        outpw(LEDR_A, led_state) ;
#endif	/* MCA */
#ifdef	PCI
        led_state = 0 ;
	
	/* Ring up = yellow led OFF*/
	if (led_event == LED_Y_ON) {
		led_state |= LED_MY_ON ;
	}
	else if (led_event == LED_Y_OFF) {
		led_state |= LED_MY_OFF ;
	}
	else {	/* PCM state changed */
		/* Link at Port A/S = green led A ON */
		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {	
			led_state |= LED_GA_ON ;
		}
		else {
			led_state |= LED_GA_OFF ;
		}
		
		/* Link at Port B = green led B ON */
		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
			led_state |= LED_GB_ON ;
		}
		else {
			led_state |= LED_GB_OFF ;
		}
	}

        outp(ADDR(B0_LED), led_state) ;
#endif	/* PCI */

}


void pcm_state_change(struct s_smc *smc, int plc, int p_state)
{
	/*
	 * the current implementation of pcm_state_change() in the driver
	 * parts must be renamed to drv_pcm_state_change() which will be called
	 * now after led_indication.
	 */
	DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
	
	led_indication(smc,0) ;
}


void rmt_indication(struct s_smc *smc, int i)
{
	/* Call a driver special function if defined */
	DRV_RMT_INDICATION(smc,i) ;

        led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
}


/*
 * llc_recover_tx called by init_tx (fplus.c)
 */
void llc_recover_tx(struct s_smc *smc)
{
#ifdef	LOAD_GEN
	extern	int load_gen_flag ;

	load_gen_flag = 0 ;
#endif
#ifndef	SYNC
	smc->hw.n_a_send= 0 ;
#else
	SK_UNUSED(smc) ;
#endif
}

#ifdef MULT_OEM
static int is_equal_num(char comp1[], char comp2[], int num)
{
	int i ;

	for (i = 0 ; i < num ; i++) {
		if (comp1[i] != comp2[i])
			return (0) ;
	}
		return (1) ;
}	/* is_equal_num */


/*
 * set the OEM ID defaults, and test the contents of the OEM data base
 * The default OEM is the first ACTIVE entry in the OEM data base 
 *
 * returns:	0	success
 *		1	error in data base
 *		2	data base empty
 *		3	no active entry	
 */
int set_oi_id_def(struct s_smc *smc)
{
	int sel_id ;
	int i ;
	int act_entries ;

	i = 0 ;
	sel_id = -1 ;
	act_entries = FALSE ;
	smc->hw.oem_id = 0 ;
	smc->hw.oem_min_status = OI_STAT_ACTIVE ;
	
	/* check OEM data base */
	while (oem_ids[i].oi_status) {
		switch (oem_ids[i].oi_status) {
		case OI_STAT_ACTIVE:
			act_entries = TRUE ;	/* we have active IDs */
			if (sel_id == -1)
				sel_id = i ;	/* save the first active ID */
		case OI_STAT_VALID:
		case OI_STAT_PRESENT:
			i++ ;
			break ;			/* entry ok */
		default:
			return (1) ;		/* invalid oi_status */
		}
	}

	if (i == 0)
		return (2) ;
	if (!act_entries)
		return (3) ;

	/* ok, we have a valid OEM data base with an active entry */
	smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[sel_id] ;
	return (0) ;
}
#endif	/* MULT_OEM */


#ifdef	MCA
/************************
 *
 * BEGIN_MANUAL_ENTRY()
 *
 *	exist_board
 *
 *	Check if an MCA board is present in the specified slot.
 *
 *	int exist_board(
 *		struct s_smc *smc,
 *		int slot) ;
 * In
 *	smc - A pointer to the SMT Context struct.
 *
 *	slot - The number of the slot to inspect.
 * Out
 *	0 = No adapter present.
 *	1 = Found FM1 adapter.
 *
 * Pseudo
 *      Read MCA ID
 *	for all valid OEM_IDs
 *		compare with ID read
 *		if equal, return 1
 *	return(0
 *
 * Note
 *	The smc pointer must be valid now.
 *
 * END_MANUAL_ENTRY()
 *
 ************************/
#define LONG_CARD_ID(lo, hi)	((((hi) & 0xff) << 8) | ((lo) & 0xff))
int exist_board(struct s_smc *smc, int slot)
{
#ifdef MULT_OEM
	SK_LOC_DECL(u_char,id[2]) ;
	int idi ;
#endif	/* MULT_OEM */

	/* No longer valid. */
	if (smc == NULL)
		return(0) ;

#ifndef MULT_OEM
	if (read_card_id(smc, slot)
		== LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
		return (1) ;	/* Found FM adapter. */

#else	/* MULT_OEM */
	idi = read_card_id(smc, slot) ;
	id[0] = idi & 0xff ;
	id[1] = idi >> 8 ;

        smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
			continue ;

		if (is_equal_num(&id[0],&OEMID(smc,0),2))
			return (1) ;
	}
#endif	/* MULT_OEM */
	return (0) ;	/* No adapter found. */
}

/************************
 *
 *	read_card_id
 *
 *	Read the MCA card id from the specified slot.
 * In
 *	smc - A pointer to the SMT Context struct.
 *	CAVEAT: This pointer may be NULL and *must not* be used within this
 *	function. It's only purpose is for drivers that need some information
 *	for the inp() and outp() macros.
 *
 *	slot - The number of the slot for which the card id is returned.
 * Out
 *	Returns the card id read from the specified slot. If an illegal slot
 *	number is specified, the function returns zero.
 *
 ************************/
static int read_card_id(struct s_smc *smc, int slot)
/* struct s_smc *smc ;	Do not use. */
{
	int card_id ;

	SK_UNUSED(smc) ;	/* Make LINT happy. */
	if ((slot < 1) || (slot > 15))	/* max 16 slots, 0 = motherboard */
		return (0) ;	/* Illegal slot number specified. */

	EnableSlotAccess(smc, slot) ;

	card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
				(read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;

	DisableSlotAccess(smc) ;

	return (card_id) ;
}

/************************
 *
 * BEGIN_MANUAL_ENTRY()
 *
 *	get_board_para
 *
 *	Get adapter configuration information. Fill all board specific
 *	parameters within the 'smc' structure.
 *
 *	int get_board_para(
 *		struct s_smc *smc,
 *		int slot) ;
 * In
 *	smc - A pointer to the SMT Context struct, to which this function will
 *	write some adapter configuration data.
 *
 *	slot - The number of the slot, in which the adapter is installed.
 * Out
 *	0 = No adapter present.
 *	1 = Ok.
 *	2 = Adapter present, but card enable bit not set.
 *
 * END_MANUAL_ENTRY()
 *
 ************************/
int get_board_para(struct s_smc *smc, int slot)
{
	int val ;
	int i ;

	/* Check if adapter present & get type of adapter. */
	switch (exist_board(smc, slot)) {
	case 0:	/* Adapter not present. */
		return (0) ;
	case 1:	/* FM Rev. 1 */
		smc->hw.rev = FM1_REV ;
		smc->hw.VFullRead = 0x0a ;
		smc->hw.VFullWrite = 0x05 ;
		smc->hw.DmaWriteExtraBytes = 8 ;	/* 2 extra words. */
		break ;
	}
	smc->hw.slot = slot ;

	EnableSlotAccess(smc, slot) ;

	if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
		DisableSlotAccess(smc) ;
		return (2) ;	/* Card enable bit not set. */
	}

	val = read_POS(smc,POS_104, slot - 1) ;	/* I/O, IRQ */

#ifndef MEM_MAPPED_IO	/* is defined by the operating system */
	i = val & POS_IOSEL ;	/* I/O base addr. (0x0200 .. 0xfe00) */
	smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
#endif
	i = ((val & POS_IRQSEL) >> 6) & 0x03 ;	/* IRQ <0, 1> */
	smc->hw.irq = opt_ints[i] ;

	/* FPROM base addr. */
	i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
	smc->hw.eprom = opt_eproms[i] ;

	DisableSlotAccess(smc) ;

	/* before this, the smc->hw.iop must be set !!! */
	smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;

	return (1) ;
}

/* Enable access to specified MCA slot. */
static void EnableSlotAccess(struct s_smc *smc, int slot)
{
	SK_UNUSED(slot) ;

#ifndef AIX
	SK_UNUSED(smc) ;

	/* System mode. */
	outp(POS_SYS_SETUP, POS_SYSTEM) ;

	/* Select slot. */
	outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
#else
	attach_POS_addr (smc) ;
#endif
}

/* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
static void DisableSlotAccess(struct s_smc *smc)
{
#ifndef AIX
	SK_UNUSED(smc) ;

	outp(POS_CHANNEL_POS, 0) ;
#else
	detach_POS_addr (smc) ;
#endif
}
#endif	/* MCA */

#ifdef	EISA
#ifndef	MEM_MAPPED_IO
#define	SADDR(slot)	(((slot)<<12)&0xf000)
#else	/* MEM_MAPPED_IO */
#define	SADDR(slot)	(smc->hw.iop)
#endif	/* MEM_MAPPED_IO */

/************************
 *
 * BEGIN_MANUAL_ENTRY()
 *
 *	exist_board
 *
 *	Check if an EISA board is present in the specified slot.
 *
 *	int exist_board(
 *		struct s_smc *smc,
 *		int slot) ;
 * In
 *	smc - A pointer to the SMT Context struct.
 *
 *	slot - The number of the slot to inspect.
 * Out
 *	0 = No adapter present.
 *	1 = Found adapter.
 *
 * Pseudo
 *      Read EISA ID
 *	for all valid OEM_IDs
 *		compare with ID read
 *		if equal, return 1
 *	return(0
 *
 * Note
 *	The smc pointer must be valid now.
 *
 ************************/
int exist_board(struct s_smc *smc, int slot)
{
	int i ;
#ifdef MULT_OEM
	SK_LOC_DECL(u_char,id[4]) ;
#endif	/* MULT_OEM */

	/* No longer valid. */
	if (smc == NULL)
		return(0);

	SK_UNUSED(slot) ;

#ifndef MULT_OEM
	for (i = 0 ; i < 4 ; i++) {
		if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
			return(0) ;
	}
	return(1) ;
#else	/* MULT_OEM */
	for (i = 0 ; i < 4 ; i++)
		id[i] = inp(SADDR(slot)+PRA(i)) ;

	smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;

	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
			continue ;

		if (is_equal_num(&id[0],&OEMID(smc,0),4))
			return (1) ;
	}
	return (0) ;	/* No adapter found. */
#endif	/* MULT_OEM */
}


int get_board_para(struct s_smc *smc, int slot)
{
	int	i ;

	if (!exist_board(smc,slot))
		return(0) ;

	smc->hw.slot = slot ;
#ifndef	MEM_MAPPED_IO		/* if defined by the operating system */
	smc->hw.iop = SADDR(slot) ;
#endif

	if (!(inp(C0_A(0))&CFG_CARD_EN)) {
		return(2) ;			/* CFG_CARD_EN bit not set! */
	}

	smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
	smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;

	if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
		smc->hw.eprom = opt_eproms[i] ;
	else
		smc->hw.eprom = 0 ;

	smc->hw.DmaWriteExtraBytes = 8 ;

	return(1) ;
}
#endif	/* EISA */

#ifdef	ISA
#ifndef MULT_OEM
const u_char sklogo[6] = SKLOGO_STR ;
#define	SIZE_SKLOGO(smc)	sizeof(sklogo)
#define	SKLOGO(smc,i)		sklogo[i]
#else	/* MULT_OEM */
#define	SIZE_SKLOGO(smc)	smc->hw.oem_id->oi_logo_len
#define	SKLOGO(smc,i)		smc->hw.oem_id->oi_logo[i]
#endif	/* MULT_OEM */


int exist_board(struct s_smc *smc, HW_PTR port)
{
	int	i ;
#ifdef MULT_OEM
	int	bytes_read ;
	u_char	board_logo[15] ;
	SK_LOC_DECL(u_char,id[4]) ;
#endif	/* MULT_OEM */

	/* No longer valid. */
	if (smc == NULL)
		return(0);

	SK_UNUSED(smc) ;
#ifndef MULT_OEM
	for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
		if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
			return(0) ;
		}
	}

	/* check MAC address (S&K or other) */
	for (i = 0 ; i < 3 ; i++) {
		if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
			return(0) ;
	}
	return(1) ;
#else	/* MULT_OEM */
        smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[0] ;
	board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
	bytes_read = 1 ;

	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
			continue ;

		/* Test all read bytes with current OEM_entry */
		/* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
		for (i = 0; i < bytes_read; i++) {
			if (board_logo[i] != SKLOGO(smc,i))
				break ;
		}

		/* If mismatch, switch to next OEM entry */
		if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
			continue ;

		--i ;
		while (bytes_read < SIZE_SKLOGO(smc)) {
			//   inpw next byte SK_Logo
			i++ ;
			board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
			bytes_read++ ;
			if (board_logo[i] != SKLOGO(smc,i))
				break ;
		}

		for (i = 0 ; i < 3 ; i++)
			id[i] = (u_char)inpw((PRA(i)+port)) ;

		if ((board_logo[i] == SKLOGO(smc,i))
			&& (bytes_read == SIZE_SKLOGO(smc))) {

			if (is_equal_num(&id[0],&OEMID(smc,0),3))
				return(1);
		}
	}	/* for */
	return(0) ;
#endif	/* MULT_OEM */
}

int get_board_para(struct s_smc *smc, int slot)
{
	SK_UNUSED(smc) ;
	SK_UNUSED(slot) ;
	return(0) ;	/* for ISA not supported */
}
#endif	/* ISA */

#ifdef PCI
#ifdef USE_BIOS_FUN
int exist_board(struct s_smc *smc, int slot)
{
	u_short dev_id ;
	u_short ven_id ;
	int found ; 
	int i ;

	found = FALSE ;		/* make sure we returned with adatper not found*/
				/* if an empty oemids.h was included */

#ifdef MULT_OEM
        smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
			continue ;
#endif
		ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ; 
		dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ; 
		for (i = 0; i < slot; i++) {
			if (pci_find_device(i,&smc->hw.pci_handle,
				dev_id,ven_id) != 0) {

				found = FALSE ;
			} else {
				found = TRUE ;
			}
		}
		if (found) {
			return(1) ;	/* adapter was found */
		}
#ifdef MULT_OEM
	}
#endif
	return(0) ;	/* adapter was not found */
}
#endif	/* PCI */
#endif	/* USE_BIOS_FUNC */

void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
{
	int i ;

	for (i = 0 ; i < 6 ; i++)
		bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]);
}

void smt_start_watchdog(struct s_smc *smc)
{
	SK_UNUSED(smc) ;	/* Make LINT happy. */

#ifndef	DEBUG

#ifdef	PCI
	if (smc->hw.wdog_used) {
		outpw(ADDR(B2_WDOG_CRTL),TIM_START) ;	/* Start timer. */
	}
#endif

#endif	/* DEBUG */
}

static void smt_stop_watchdog(struct s_smc *smc)
{
	SK_UNUSED(smc) ;	/* Make LINT happy. */
#ifndef	DEBUG

#ifdef	PCI
	if (smc->hw.wdog_used) {
		outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ;	/* Stop timer. */
	}
#endif

#endif	/* DEBUG */
}

#ifdef	PCI

void mac_do_pci_fix(struct s_smc *smc)
{
	SK_UNUSED(smc) ;
}
#endif	/* PCI */