/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/i2c.h>
#include <linux/mii.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
#include "regs.h"
#include "io.h"
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"
/* Hardware control for SFC4000 (aka Falcon). */
/**************************************************************************
*
* Configurable values
*
**************************************************************************
*/
/* This is set to 16 for a good reason. In summary, if larger than
* 16, the descriptor cache holds more than a default socket
* buffer's worth of packets (for UDP we can only have at most one
* socket buffer's worth outstanding). This combined with the fact
* that we only get 1 TX event per descriptor cache means the NIC
* goes idle.
*/
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1
#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
* 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
| (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
| (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
* 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
| (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
| (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
| (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
| (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
/* RX FIFO XOFF watermark
*
* When the amount of the RX FIFO increases used increases past this
* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
/* RX FIFO XON watermark
*
* When the amount of the RX FIFO used decreases below this
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
/* If FALCON_MAX_INT_ERRORS internal errors occur within
* FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
* disable it.
*/
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
*/
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
/**************************************************************************
*
* Falcon constants
*
**************************************************************************
*/
/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096
/* Depth of RX flush request fifo */
#define FALCON_RX_FLUSH_COUNT 4
#define FALCON_IS_DUAL_FUNC(efx) \
(efx_nic_rev(efx) < EFX_REV_FALCON_B0)
/**************************************************************************
*
* Falcon hardware access
*
**************************************************************************/
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
value, index);
}
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
unsigned int index)
{
return (((efx_qword_t *) (channel->eventq.addr)) + index);
}
/* See if an event is present
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int falcon_event_present(efx_qword_t *event)
{
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}
/**************************************************************************
*
* I2C bus - this is a bit-bashing interface using GPIO pins
* Note that it uses the output enables to tristate the outputs
* SDA is the data pin and SCL is the clock
*
**************************************************************************
*/
static void falcon_setsda(void *data, int state)
{
struct efx_nic *efx = (struct efx_nic *)data;
efx_oword_t reg;
efx_reado(efx, ®, FR_AB_GPIO_CTL);
EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
efx_writeo(efx, ®, FR_AB_GPIO_CTL);
}
static void falcon_setscl(void *data, int state)
{
struct efx_nic *efx = (struct efx_nic *)data;
efx_oword_t reg;
efx_reado(efx, ®, FR_AB_GPIO_CTL);
EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
efx_writeo(efx, ®, FR_AB_GPIO_CTL);
}
static int falcon_getsda(void *data)
{
struct efx_nic *efx = (struct efx_nic *)data;
efx_oword_t reg;
efx_reado(efx, ®, FR_AB_GPIO_CTL);
return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
}
static int falcon_getscl(void *data)
{
struct efx_nic *efx = (struct efx_nic *)data;
efx_oword_t reg;
efx_reado(efx, ®, FR_AB_GPIO_CTL);
return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
}
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
.setsda = falcon_setsda,
.setscl = falcon_setscl,
.getsda = falcon_getsda,
.getscl = falcon_getscl,
.udelay = 5,
/* Wait up to 50 ms for slave to let us pull SCL high */
.timeout = DIV_ROUND_UP(HZ, 20),
};
/**************************************************************************
*
* Falcon special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
* Initialise a Falcon special buffer
*
* This will define a buffer (previously allocated via
* falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static void
falcon_init_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
int index;
dma_addr_t dma_addr;
int i;
EFX_BUG_ON_PARANOID(!buffer->addr);
/* Write buffer descriptors to NIC */
for (i = 0; i < buffer->entries; i++) {
index = buffer->index + i;
dma_addr = buffer->dma_addr + (i * 4096);
EFX_LOG(efx, "mapping special buffer %d at %llx\n",
index, (unsigned long long)dma_addr);
EFX_POPULATE_QWORD_3(buf_desc,
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
falcon_write_buf_tbl(efx, &buf_desc, index);
}
}
/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
unsigned int end = (buffer->index + buffer->entries - 1);
if (!buffer->entries)
return;
EFX_LOG(efx, "unmapping special buffers %d-%d\n",
buffer->index, buffer->index + buffer->entries - 1);
EFX_POPULATE_OWORD_4(buf_tbl_upd,
FRF_AZ_BUF_UPD_CMD, 0,
FRF_AZ_BUF_CLR_CMD, 1,
FRF_AZ_BUF_CLR_END_ID, end,
FRF_AZ_BUF_CLR_START_ID, start);
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}
/*
* Allocate a new Falcon special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
* new buffer ID range. It does not write into Falcon's buffer table.
*
* This call will allocate 4KB buffers, since Falcon can't use 8KB
* buffers for event queues and descriptor rings.
*/
static int falcon_alloc_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer,
unsigned int len)
{
len = ALIGN(len, FALCON_BUF_SIZE);
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
buffer->entries = len / FALCON_BUF_SIZE;
BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
/* All zeros is a potentially valid event so memset to 0xff */
memset(buffer->addr, 0xff, len);
/* Select new buffer ID */
buffer->index = efx->next_buffer_table;
efx->next_buffer_table += buffer->entries;
EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->dma_addr, len,
buffer->addr, (u64)virt_to_phys(buffer->addr));
return 0;
}
static void falcon_free_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer)
{
if (!buffer->addr)
return;
EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->dma_addr, buffer->len,
buffer->addr, (u64)virt_to_phys(buffer->addr));
pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
buffer->dma_addr);
buffer->addr = NULL;
buffer->entries = 0;
}
/**************************************************************************
*
* Falcon generic buffer handling
* These buffers are used for interrupt status and MAC stats
*
**************************************************************************/
static int falcon_alloc_buffer(struct efx_nic *efx,
struct efx_buffer *buffer, unsigned int len)
{
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
memset(buffer->addr, 0, len);
return 0;
}
static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
if (buffer->addr) {
pci_free_consistent(efx->pci_dev, buffer->len,
buffer->addr, buffer->dma_addr);
buffer->addr = NULL;
}
}
/**************************************************************************
*
* Falcon TX path
*
**************************************************************************/
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
unsigned int index)
{
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, ®,
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
do {
write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
buffer = &tx_queue->buffer[write_ptr];
txd = falcon_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
EFX_POPULATE_QWORD_4(*txd,
FSF_AZ_TX_KER_CONT, buffer->continuation,
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
FSF_AZ_TX_KER_BUF_REGION, 0,
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
falcon_notify_tx_desc(tx_queue);
}
/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
EFX_TXQ_SIZE & EFX_TXQ_MASK);
return falcon_alloc_special_buffer(efx, &tx_queue->txd,
EFX_TXQ_SIZE * sizeof(efx_qword_t));
}
void falcon_init_tx(struct efx_tx_queue *tx_queue)
{
efx_oword_t tx_desc_ptr;
struct efx_nic *efx = tx_queue->efx;
tx_queue->flushed = FLUSH_NONE;
/* Pin TX descriptor ring */
falcon_init_special_buffer(efx, &tx_queue->txd);
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(tx_desc_ptr,
FRF_AZ_TX_DESCQ_EN, 1,
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
FRF_AZ_TX_DESCQ_EVQ_ID,
tx_queue->channel->channel,
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
FRF_AZ_TX_DESCQ_SIZE,
__ffs(tx_queue->txd.entries),
FRF_AZ_TX_DESCQ_TYPE, 0,
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
!csum);
}
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
efx_oword_t reg;
/* Only 128 bits in this register */
BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
clear_bit_le(tx_queue->queue, (void *)®);
else
set_bit_le(tx_queue->queue, (void *)®);
efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
}
}
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_flush_descq;
tx_queue->flushed = FLUSH_PENDING;
/* Post a flush command */
EFX_POPULATE_OWORD_2(tx_flush_descq,
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}
void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
/* The queue should have been flushed */
WARN_ON(tx_queue->flushed != FLUSH_DONE);
/* Remove TX descriptor ring from card */
EFX_ZERO_OWORD(tx_desc_ptr);
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
/* Unpin TX descriptor ring */
falcon_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
* Falcon RX path
*
**************************************************************************/
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}
/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = falcon_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
FSF_AZ_RX_KER_BUF_SIZE,
rx_buf->len -
rx_queue->efx->type->rx_buffer_padding,
FSF_AZ_RX_KER_BUF_REGION, 0,
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
falcon_build_rx_desc(rx_queue,
rx_queue->notified_count &
EFX_RXQ_MASK);
++rx_queue->notified_count;
}
wmb();
write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(rx_queue->efx, ®,
FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
}
int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
EFX_RXQ_SIZE & EFX_RXQ_MASK);
return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
EFX_RXQ_SIZE * sizeof(efx_qword_t));
}
void falcon_init_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
bool iscsi_digest_en = is_b0;
EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
rx_queue->queue, rx_queue->rxd.index,
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
rx_queue->flushed = FLUSH_NONE;
/* Pin RX descriptor ring */
falcon_init_special_buffer(efx, &rx_queue->rxd);
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
FRF_AZ_RX_DESCQ_EVQ_ID,
rx_queue->channel->channel,
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
FRF_AZ_RX_DESCQ_SIZE,
__ffs(rx_queue->rxd.entries),
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
/* For >=B0 this is scatter so disable */
FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
FRF_AZ_RX_DESCQ_EN, 1);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
rx_queue->queue);
}
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_oword_t rx_flush_descq;
rx_queue->flushed = FLUSH_PENDING;
/* Post a flush command */
EFX_POPULATE_OWORD_2(rx_flush_descq,
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}
void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
/* The queue should already have been flushed */
WARN_ON(rx_queue->flushed != FLUSH_DONE);
/* Remove RX descriptor ring from card */
EFX_ZERO_OWORD(rx_desc_ptr);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
rx_queue->queue);
/* Unpin RX descriptor ring */
falcon_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
* Falcon event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
/* Update a channel's event queue's read pointer (RPTR) register
*
* This writes the EVQ_RPTR_REG register for the specified channel's
* event queue.
*
* Note that EVQ_RPTR_REG contains the index of the "last read" event,
* whereas channel->eventq_read_ptr contains the index of the "next to
* read" event.
*/
void falcon_eventq_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base,
channel->channel);
}
/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
drv_ev_reg.u32[0] = event->u32[0];
drv_ev_reg.u32[1] = event->u32[1];
drv_ev_reg.u32[2] = 0;
drv_ev_reg.u32[3] = 0;
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
}
/* Handle a transmit completion event
*
* Falcon batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
static void falcon_handle_tx_event(struct efx_channel *channel,
efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
struct efx_tx_queue *tx_queue;
struct efx_nic *efx = channel->efx;
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = &efx->tx_queue[tx_ev_q_label];
channel->irq_mod_score +=
(tx_ev_desc_ptr - tx_queue->read_count) &
EFX_TXQ_MASK;
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = &efx->tx_queue[tx_ev_q_label];
if (efx_dev_registered(efx))
netif_tx_lock(efx->net_dev);
falcon_notify_tx_desc(tx_queue);
if (efx_dev_registered(efx))
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
EFX_WORKAROUND_10727(efx)) {
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
} else {
EFX_ERR(efx, "channel %d unexpected TX event "
EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(*event));
}
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event,
bool *rx_ev_pkt_ok,
bool *discard)
{
struct efx_nic *efx = rx_queue->efx;
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
bool rx_ev_other_err, rx_ev_pause_frm;
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned rx_ev_pkt_type;
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
/* Every error apart from tobe_disc and pause_frm */
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
/* Count errors that are not in MAC stats. Ignore expected
* checksum errors during self-test. */
if (rx_ev_frm_trunc)
++rx_queue->channel->n_rx_frm_trunc;
else if (rx_ev_tobe_disc)
++rx_queue->channel->n_rx_tobe_disc;
else if (!efx->loopback_selftest) {
if (rx_ev_ip_hdr_chksum_err)
++rx_queue->channel->n_rx_ip_hdr_chksum_err;
else if (rx_ev_tcp_udp_chksum_err)
++rx_queue->channel->n_rx_tcp_udp_chksum_err;
}
/* The frame must be discarded if any of these are true. */
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm);
/* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow.
*/
#ifdef EFX_ENABLE_DEBUG
if (rx_ev_other_err) {
EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
rx_queue->queue, EFX_QWORD_VAL(*event),
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
rx_ev_ip_hdr_chksum_err ?
" [IP_HDR_CHKSUM_ERR]" : "",
rx_ev_tcp_udp_chksum_err ?
" [TCP_UDP_CHKSUM_ERR]" : "",
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
rx_ev_pause_frm ? " [PAUSE]" : "");
}
#endif
}
/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
unsigned index)
{
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
expected = rx_queue->removed_count & EFX_RXQ_MASK;
dropped = (index - expected) & EFX_RXQ_MASK;
EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
dropped, index, expected);
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}
/* Handle a packet received event
*
* Falcon silicon gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
static void falcon_handle_rx_event(struct efx_channel *channel,
const efx_qword_t *event)
{
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr;
bool rx_ev_pkt_ok, discard = false, checksummed;
struct efx_rx_queue *rx_queue;
struct efx_nic *efx = channel->efx;
/* Basic packet information */
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
channel->channel);
rx_queue = &efx->rx_queue[channel->channel];
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
if (unlikely(rx_ev_desc_ptr != expected_ptr))
falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
if (likely(rx_ev_pkt_ok)) {
/* If packet is marked as OK and packet type is TCP/IPv4 or
* UDP/IPv4, then we can rely on the hardware checksum.
*/
checksummed =
likely(efx->rx_checksum_enabled) &&
(rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
} else {
falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
&discard);
checksummed = false;
}
/* Detect multicast packets that didn't match the filter */
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
if (rx_ev_mcast_pkt) {
unsigned int rx_ev_mcast_hash_match =
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
if (unlikely(!rx_ev_mcast_hash_match)) {
++channel->n_rx_mcast_mismatch;
discard = true;
}
}
channel->irq_mod_score += 2;
/* Handle received packet */
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
checksummed, discard);
}
/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
bool handled = false;
if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
/* Ignored */
handled = true;
}
if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
efx->xmac_poll_required = true;
handled = true;
}
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
EFX_ERR(efx, "channel %d seen global RX_RESET "
"event. Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
handled = true;
}
if (!handled)
EFX_ERR(efx, "channel %d unknown global event "
EFX_QWORD_FMT "\n", channel->channel,
EFX_QWORD_VAL(*event));
}
static void falcon_handle_driver_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
unsigned int ev_sub_data;
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
switch (ev_sub_code) {
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_EVQ_INIT_DONE_EV:
EFX_LOG(efx, "channel %d EVQ %d initialised\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_SRM_UPD_DONE_EV:
EFX_TRACE(efx, "channel %d SRAM update done\n",
channel->channel);
break;
case FSE_AZ_WAKE_UP_EV:
EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_TIMER_EV:
EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
channel->channel, ev_sub_data);
break;
case FSE_AA_RX_RECOVER_EV:
EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
"Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx,
EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY :
RESET_TYPE_DISABLE);
break;
case FSE_BZ_RX_DSC_ERROR_EV:
EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
break;
case FSE_BZ_TX_DSC_ERROR_EV:
EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
break;
default:
EFX_TRACE(efx, "channel %d unknown driver event code %d "
"data %04x\n", channel->channel, ev_sub_code,
ev_sub_data);
break;
}
}
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
{
unsigned int read_ptr;
efx_qword_t event, *p_event;
int ev_code;
int rx_packets = 0;
read_ptr = channel->eventq_read_ptr;
do {
p_event = falcon_event(channel, read_ptr);
event = *p_event;
if (!falcon_event_present(&event))
/* End of events */
break;
EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(event));
/* Clear this event by marking it all ones */
EFX_SET_QWORD(*p_event);
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
switch (ev_code) {
case FSE_AZ_EV_CODE_RX_EV:
falcon_handle_rx_event(channel, &event);
++rx_packets;
break;
case FSE_AZ_EV_CODE_TX_EV:
falcon_handle_tx_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRV_GEN_EV:
channel->eventq_magic = EFX_QWORD_FIELD(
event, FSF_AZ_DRV_GEN_EV_MAGIC);
EFX_LOG(channel->efx, "channel %d received generated "
"event "EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(event));
break;
case FSE_AZ_EV_CODE_GLOBAL_EV:
falcon_handle_global_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRIVER_EV:
falcon_handle_driver_event(channel, &event);
break;
default:
EFX_ERR(channel->efx, "channel %d unknown event type %d"
" (data " EFX_QWORD_FMT ")\n", channel->channel,
ev_code, EFX_QWORD_VAL(event));
}
/* Increment read pointer */
read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
} while (rx_packets < rx_quota);
channel->eventq_read_ptr = read_ptr;
return rx_packets;
}
static void falcon_push_irq_moderation(struct efx_channel *channel)
{
efx_dword_t timer_cmd;
struct efx_nic *efx = channel->efx;
/* Set timer register */
if (channel->irq_moderation) {
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_AB_TC_TIMER_MODE,
FFE_BB_TIMER_MODE_INT_HLDOFF,
FRF_AB_TC_TIMER_VAL,
channel->irq_moderation - 1);
} else {
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_AB_TC_TIMER_MODE,
FFE_BB_TIMER_MODE_DIS,
FRF_AB_TC_TIMER_VAL, 0);
}
BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
channel->channel);
}
/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
EFX_EVQ_SIZE & EFX_EVQ_MASK);
return falcon_alloc_special_buffer(efx, &channel->eventq,
EFX_EVQ_SIZE * sizeof(efx_qword_t));
}
void falcon_init_eventq(struct efx_channel *channel)
{
efx_oword_t evq_ptr;
struct efx_nic *efx = channel->efx;
EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
channel->channel, channel->eventq.index,
channel->eventq.index + channel->eventq.entries - 1);
/* Pin event queue buffer */
falcon_init_special_buffer(efx, &channel->eventq);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.addr, 0xff, channel->eventq.len);
/* Push event queue to card */
EFX_POPULATE_OWORD_3(evq_ptr,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
channel->channel);
falcon_push_irq_moderation(channel);
}
void falcon_fini_eventq(struct efx_channel *channel)
{
efx_oword_t eventq_ptr;
struct efx_nic *efx = channel->efx;
/* Remove event queue from card */
EFX_ZERO_OWORD(eventq_ptr);
efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
channel->channel);
/* Unpin event queue */
falcon_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
falcon_free_special_buffer(channel->efx, &channel->eventq);
}
/* Generates a test event on the event queue. A subsequent call to
* process_eventq() should pick up the event and place the value of
* "magic" into channel->eventq_magic;
*/
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
efx_qword_t test_event;
EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
falcon_generate_event(channel, &test_event);
}
/**************************************************************************
*
* Flush handling
*
**************************************************************************/
static void falcon_poll_flush_events(struct efx_nic *efx)
{
struct efx_channel *channel = &efx->channel[0];
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
unsigned int read_ptr = channel->eventq_read_ptr;
unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
do {
efx_qword_t *event = falcon_event(channel, read_ptr);
int ev_code, ev_sub_code, ev_queue;
bool ev_failed;
if (!falcon_event_present(event))
break;
ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
ev_sub_code = EFX_QWORD_FIELD(*event,
FSF_AZ_DRIVER_EV_SUBCODE);
if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
ev_queue = EFX_QWORD_FIELD(*event,
FSF_AZ_DRIVER_EV_SUBDATA);
if (ev_queue < EFX_TX_QUEUE_COUNT) {
tx_queue = efx->tx_queue + ev_queue;
tx_queue->flushed = FLUSH_DONE;
}
} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
ev_queue = EFX_QWORD_FIELD(
*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
ev_failed = EFX_QWORD_FIELD(
*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
if (ev_queue < efx->n_rx_queues) {
rx_queue = efx->rx_queue + ev_queue;
rx_queue->flushed =
ev_failed ? FLUSH_FAILED : FLUSH_DONE;
}
}
/* We're about to destroy the queue anyway, so
* it's ok to throw away every non-flush event */
EFX_SET_QWORD(*event);
read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
} while (read_ptr != end_ptr);
channel->eventq_read_ptr = read_ptr;
}
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
static void falcon_prepare_flush(struct efx_nic *efx)
{
falcon_deconfigure_mac_wrapper(efx);
/* Wait for the tx and rx fifo's to get to the next packet boundary
* (~1ms without back-pressure), then to drain the remainder of the
* fifo's at data path speeds (negligible), with a healthy margin. */
msleep(10);
}
/* Handle tx and rx flushes at the same time, since they run in
* parallel in the hardware and there's no reason for us to
* serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
struct efx_tx_queue *tx_queue;
int i, tx_pending, rx_pending;
/* If necessary prepare the hardware for flushing */
efx->type->prepare_flush(efx);
/* Flush all tx queues in parallel */
efx_for_each_tx_queue(tx_queue, efx)
falcon_flush_tx_queue(tx_queue);
/* The hardware supports four concurrent rx flushes, each of which may
* need to be retried if there is an outstanding descriptor fetch */
for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
rx_pending = tx_pending = 0;
efx_for_each_rx_queue(rx_queue, efx) {
if (rx_queue->flushed == FLUSH_PENDING)
++rx_pending;
}
efx_for_each_rx_queue(rx_queue, efx) {
if (rx_pending == FALCON_RX_FLUSH_COUNT)
break;
if (rx_queue->flushed == FLUSH_FAILED ||
rx_queue->flushed == FLUSH_NONE) {
falcon_flush_rx_queue(rx_queue);
++rx_pending;
}
}
efx_for_each_tx_queue(tx_queue, efx) {
if (tx_queue->flushed != FLUSH_DONE)
++tx_pending;
}
if (rx_pending == 0 && tx_pending == 0)
return 0;
msleep(FALCON_FLUSH_INTERVAL);
falcon_poll_flush_events(efx);
}
/* Mark the queues as all flushed. We're going to return failure
* leading to a reset, or fake up success anyway */
efx_for_each_tx_queue(tx_queue, efx) {
if (tx_queue->flushed != FLUSH_DONE)
EFX_ERR(efx, "tx queue %d flush command timed out\n",
tx_queue->queue);
tx_queue->flushed = FLUSH_DONE;
}
efx_for_each_rx_queue(rx_queue, efx) {
if (rx_queue->flushed != FLUSH_DONE)
EFX_ERR(efx, "rx queue %d flush command timed out\n",
rx_queue->queue);
rx_queue->flushed = FLUSH_DONE;
}
if (EFX_WORKAROUND_7803(efx))
return 0;
return -ETIMEDOUT;
}
/**************************************************************************
*
* Falcon hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
int force)
{
efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_2(int_en_reg_ker,
FRF_AZ_KER_INT_KER, force,
FRF_AZ_DRV_INT_EN_KER, enabled);
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}
void falcon_enable_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
/* Enable interrupts */
falcon_interrupts(efx, 1, 0);
/* Force processing of all the channels to get the EVQ RPTRs up to
date */
efx_for_each_channel(channel, efx)
efx_schedule_channel(channel);
}
void falcon_disable_interrupts(struct efx_nic *efx)
{
/* Disable interrupts */
falcon_interrupts(efx, 0, 0);
}
/* Generate a Falcon test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
void falcon_generate_interrupt(struct efx_nic *efx)
{
falcon_interrupts(efx, 1, 1);
}
/* Acknowledge a legacy interrupt from Falcon
*
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
*
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
* BIU. Interrupt acknowledge is read sensitive so must write instead
* (then read to ensure the BIU collector is flushed)
*
* NB most hardware supports MSI interrupts
*/
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
efx_dword_t reg;
EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
efx_writed(efx, ®, FR_AA_INT_ACK_KER);
efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
}
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t *int_ker = efx->irq_status.addr;
efx_oword_t fatal_intr;
int error, mem_perr;
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
EFX_OWORD_VAL(fatal_intr),
error ? "disabling bus mastering" : "no recognised error");
if (error == 0)
goto out;
/* If this is a memory parity error dump which blocks are offending */
mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
if (mem_perr) {
efx_oword_t reg;
efx_reado(efx, ®, FR_AZ_MEM_STAT);
EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
}
/* Disable both devices */
pci_clear_master(efx->pci_dev);
if (FALCON_IS_DUAL_FUNC(efx))
pci_clear_master(nic_data->pci_dev2);
falcon_disable_interrupts(efx);
/* Count errors and reset or disable the NIC accordingly */
if (efx->int_error_count == 0 ||
time_after(jiffies, efx->int_error_expire)) {
efx->int_error_count = 0;
efx->int_error_expire =
jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
}
if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
"NIC will be disabled\n");
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
out:
return IRQ_HANDLED;
}
/* Handle a legacy interrupt from Falcon
* Acknowledges the interrupt and schedule event queue processing.
*/
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
efx_oword_t *int_ker = efx->irq_status.addr;
irqreturn_t result = IRQ_NONE;
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
int syserr;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, ®, FR_BZ_INT_ISR0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
/* Schedule processing of any interrupting queues */
efx_for_each_channel(channel, efx) {
if ((queues & 1) ||
falcon_event_present(
falcon_event(channel, channel->eventq_read_ptr))) {
efx_schedule_channel(channel);
result = IRQ_HANDLED;
}
queues >>= 1;
}
if (result == IRQ_HANDLED) {
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
}
return result;
}
static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
efx_oword_t *int_ker = efx->irq_status.addr;
struct efx_channel *channel;
int syserr;
int queues;
/* Check to see if this is our interrupt. If it isn't, we
* exit without having touched the hardware.
*/
if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
raw_smp_processor_id());
return IRQ_NONE;
}
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
/* Determine interrupting queues, clear interrupt status
* register and acknowledge the device interrupt.
*/
BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
EFX_ZERO_OWORD(*int_ker);
wmb(); /* Ensure the vector is cleared before interrupt ack */
falcon_irq_ack_a1(efx);
/* Schedule processing of any interrupting queues */
channel = &efx->channel[0];
while (queues) {
if (queues & 0x01)
efx_schedule_channel(channel);
channel++;
queues >>= 1;
}
return IRQ_HANDLED;
}
/* Handle an MSI interrupt from Falcon
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
struct efx_channel *channel = dev_id;
struct efx_nic *efx = channel->efx;
efx_oword_t *int_ker = efx->irq_status.addr;
int syserr;
efx->last_irq_cpu = raw_smp_processor_id();
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return falcon_fatal_interrupt(efx);
/* Schedule processing of the channel */
efx_schedule_channel(channel);
return IRQ_HANDLED;
}
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
int i = 0;
unsigned long offset;
efx_dword_t dword;
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
return;
for (offset = FR_BZ_RX_INDIRECTION_TBL;
offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
offset += 0x10) {
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
i % efx->n_rx_queues);
efx_writed(efx, &dword, offset);
i++;
}
}
/* Hook interrupt handler(s)
* Try MSI and then legacy interrupts.
*/
int falcon_init_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
if (!EFX_INT_MODE_USE_MSI(efx)) {
irq_handler_t handler;
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
handler = falcon_legacy_interrupt_b0;
else
handler = falcon_legacy_interrupt_a1;
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
efx->name, efx);
if (rc) {
EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
efx->pci_dev->irq);
goto fail1;
}
return 0;
}
/* Hook MSI or MSI-X interrupt */
efx_for_each_channel(channel, efx) {
rc = request_irq(channel->irq, falcon_msi_interrupt,
IRQF_PROBE_SHARED, /* Not shared */
channel->name, channel);
if (rc) {
EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
goto fail2;
}
}
return 0;
fail2:
efx_for_each_channel(channel, efx)
free_irq(channel->irq, channel);
fail1:
return rc;
}
void falcon_fini_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_oword_t reg;
/* Disable MSI/MSI-X interrupts */
efx_for_each_channel(channel, efx) {
if (channel->irq)
free_irq(channel->irq, channel);
}
/* ACK legacy interrupt */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
efx_reado(efx, ®, FR_BZ_INT_ISR0);
else
falcon_irq_ack_a1(efx);
/* Disable legacy interrupt */
if (efx->legacy_irq)
free_irq(efx->legacy_irq, efx);
}
/**************************************************************************
*
* EEPROM/flash
*
**************************************************************************
*/
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
static int falcon_spi_poll(struct efx_nic *efx)
{
efx_oword_t reg;
efx_reado(efx, ®, FR_AB_EE_SPI_HCMD);
return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
}
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
/* Most commands will finish quickly, so we start polling at
* very short intervals. Sometimes the command may have to
* wait for VPD or expansion ROM access outside of our
* control, so we allow up to 100 ms. */
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
int i;
for (i = 0; i < 10; i++) {
if (!falcon_spi_poll(efx))
return 0;
udelay(10);
}
for (;;) {
if (!falcon_spi_poll(efx))
return 0;
if (time_after_eq(jiffies, timeout)) {
EFX_ERR(efx, "timed out waiting for SPI\n");
return -ETIMEDOUT;
}
schedule_timeout_uninterruptible(1);
}
}
int falcon_spi_cmd(const struct efx_spi_device *spi,
unsigned int command, int address,
const void *in, void *out, size_t len)
{
struct efx_nic *efx = spi->efx;
bool addressed = (address >= 0);
bool reading = (out != NULL);
efx_oword_t reg;
int rc;
/* Input validation */
if (len > FALCON_SPI_MAX_LEN)
return -EINVAL;
BUG_ON(!mutex_is_locked(&efx->spi_lock));
/* Check that previous command is not still running */
rc = falcon_spi_poll(efx);
if (rc)
return rc;
/* Program address register, if we have an address */
if (addressed) {
EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
efx_writeo(efx, ®, FR_AB_EE_SPI_HADR);
}
/* Program data register, if we have data */
if (in != NULL) {
memcpy(®, in, len);
efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA);
}
/* Issue read/write command */
EFX_POPULATE_OWORD_7(reg,
FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
FRF_AB_EE_SPI_HCMD_DABCNT, len,
FRF_AB_EE_SPI_HCMD_READ, reading,
FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
FRF_AB_EE_SPI_HCMD_ADBCNT,
(addressed ? spi->addr_len : 0),
FRF_AB_EE_SPI_HCMD_ENC, command);
efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD);
/* Wait for read/write to complete */
rc = falcon_spi_wait(efx);
if (rc)
return rc;
/* Read data */
if (out != NULL) {
efx_reado(efx, ®, FR_AB_EE_SPI_HDATA);
memcpy(out, ®, len);
}
return 0;
}
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
{
return min(FALCON_SPI_MAX_LEN,
(spi->block_size - (start & (spi->block_size - 1))));
}
static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
const u8 command, const unsigned int address)
{
return command | (((address >> 8) & spi->munge_address) << 3);
}
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
{
struct efx_nic *efx = spi->efx;
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
u8 status;
int rc;
for (;;) {
rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & SPI_STATUS_NRDY))
return 0;
if (time_after_eq(jiffies, timeout)) {
EFX_ERR(efx, "SPI write timeout on device %d"
" last status=0x%02x\n",
spi->device_id, status);
return -ETIMEDOUT;
}
schedule_timeout_uninterruptible(1);
}
}
int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
size_t len, size_t *retlen, u8 *buffer)
{
size_t block_len, pos = 0;
unsigned int command;
int rc = 0;
while (pos < len) {
block_len = min(len - pos, FALCON_SPI_MAX_LEN);
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
rc = falcon_spi_cmd(spi, command, start + pos, NULL,
buffer + pos, block_len);
if (rc)
break;
pos += block_len;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current)) {
rc = -EINTR;
break;
}
}
if (retlen)
*retlen = pos;
return rc;
}
int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
size_t len, size_t *retlen, const u8 *buffer)
{
u8 verify_buffer[FALCON_SPI_MAX_LEN];
size_t block_len, pos = 0;
unsigned int command;
int rc = 0;
while (pos < len) {
rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
break;
block_len = min(len - pos,
falcon_spi_write_limit(spi, start + pos));
command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
rc = falcon_spi_cmd(spi, command, start + pos,
buffer + pos, NULL, block_len);
if (rc)
break;
rc = falcon_spi_wait_write(spi);
if (rc)
break;
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
rc = falcon_spi_cmd(spi, command, start + pos,
NULL, verify_buffer, block_len);
if (memcmp(verify_buffer, buffer + pos, block_len)) {
rc = -EIO;
break;
}
pos += block_len;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current)) {
rc = -EINTR;
break;
}
}
if (retlen)
*retlen = pos;
return rc;
}
/**************************************************************************
*
* MAC wrapper
*
**************************************************************************
*/
static void falcon_push_multicast_hash(struct efx_nic *efx)
{
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
}
static void falcon_reset_macs(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t reg, mac_ctrl;
int count;
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
/* It's not safe to use GLB_CTL_REG to reset the
* macs, so instead use the internal MAC resets
*/
if (!EFX_IS10G(efx)) {
EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
efx_writeo(efx, ®, FR_AB_GM_CFG1);
udelay(1000);
EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
efx_writeo(efx, ®, FR_AB_GM_CFG1);
udelay(1000);
return;
} else {
EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
efx_writeo(efx, ®, FR_AB_XM_GLB_CFG);
for (count = 0; count < 10000; count++) {
efx_reado(efx, ®, FR_AB_XM_GLB_CFG);
if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
0)
return;
udelay(10);
}
EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
}
}
/* Mac stats will fail whist the TX fifo is draining */
WARN_ON(nic_data->stats_disable_count == 0);
efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
efx_reado(efx, ®, FR_AB_GLB_CTL);
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
efx_writeo(efx, ®, FR_AB_GLB_CTL);
count = 0;
while (1) {
efx_reado(efx, ®, FR_AB_GLB_CTL);
if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
!EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
EFX_LOG(efx, "Completed MAC reset after %d loops\n",
count);
break;
}
if (count > 20) {
EFX_ERR(efx, "MAC reset failed\n");
break;
}
count++;
udelay(10);
}
/* Ensure the correct MAC is selected before statistics
* are re-enabled by the caller */
efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
}
void falcon_drain_tx_fifo(struct efx_nic *efx)
{
efx_oword_t reg;
if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
(efx->loopback_mode != LOOPBACK_NONE))
return;
efx_reado(efx, ®, FR_AB_MAC_CTRL);
/* There is no point in draining more than once */
if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
return;
falcon_reset_macs(efx);
}
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
efx_oword_t reg;
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
return;
/* Isolate the MAC -> RX */
efx_reado(efx, ®, FR_AZ_RX_CFG);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
efx_writeo(efx, ®, FR_AZ_RX_CFG);
/* Isolate TX -> MAC */
falcon_drain_tx_fifo(efx);
}
void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
struct efx_link_state *link_state = &efx->link_state;
efx_oword_t reg;
int link_speed;
switch (link_state->speed) {
case 10000: link_speed = 3; break;
case 1000: link_speed = 2; break;
case 100: link_speed = 1; break;
default: link_speed = 0; break;
}
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
* as advertised. Disable to ensure packets are not
* indefinitely held and TX queue can be flushed at any point
* while the link is down. */
EFX_POPULATE_OWORD_5(reg,
FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
FRF_AB_MAC_BCAD_ACPT, 1,
FRF_AB_MAC_UC_PROM, efx->promiscuous,
FRF_AB_MAC_LINK_STATUS, 1, /* always set */
FRF_AB_MAC_SPEED, link_speed);
/* On B0, MAC backpressure can be disabled and packets get
* discarded. */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
!link_state->up);
}
efx_writeo(efx, ®, FR_AB_MAC_CTRL);
/* Restore the multicast hash registers. */
falcon_push_multicast_hash(efx);
efx_reado(efx, ®, FR_AZ_RX_CFG);
/* Enable XOFF signal from RX FIFO (we enabled it during NIC
* initialisation but it may read back as 0) */
EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
/* Unisolate the MAC -> RX */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
efx_writeo(efx, ®, FR_AZ_RX_CFG);
}
static void falcon_stats_request(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t reg;
WARN_ON(nic_data->stats_pending);
WARN_ON(nic_data->stats_disable_count);
if (nic_data->stats_dma_done == NULL)
return; /* no mac selected */
*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
nic_data->stats_pending = true;
wmb(); /* ensure done flag is clear */
/* Initiate DMA transfer of stats */
EFX_POPULATE_OWORD_2(reg,
FRF_AB_MAC_STAT_DMA_CMD, 1,
FRF_AB_MAC_STAT_DMA_ADR,
efx->stats_buffer.dma_addr);
efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA);
mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
}
static void falcon_stats_complete(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
if (!nic_data->stats_pending)
return;
nic_data->stats_pending = 0;
if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
rmb(); /* read the done flag before the stats */
efx->mac_op->update_stats(efx);
} else {
EFX_ERR(efx, "timed out waiting for statistics\n");
}
}
static void falcon_stats_timer_func(unsigned long context)
{
struct efx_nic *efx = (struct efx_nic *)context;
struct falcon_nic_data *nic_data = efx->nic_data;
spin_lock(&efx->stats_lock);
falcon_stats_complete(efx);
if (nic_data->stats_disable_count == 0)
falcon_stats_request(efx);
spin_unlock(&efx->stats_lock);
}
static void falcon_switch_mac(struct efx_nic *efx);
static bool falcon_loopback_link_poll(struct efx_nic *efx)
{
struct efx_link_state old_state = efx->link_state;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
WARN_ON(!LOOPBACK_INTERNAL(efx));
efx->link_state.fd = true;
efx->link_state.fc = efx->wanted_fc;
efx->link_state.up = true;
if (efx->loopback_mode == LOOPBACK_GMAC)
efx->link_state.speed = 1000;
else
efx->link_state.speed = 10000;
return !efx_link_state_equal(&efx->link_state, &old_state);
}
static int falcon_reconfigure_port(struct efx_nic *efx)
{
int rc;
WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
/* Poll the PHY link state *before* reconfiguring it. This means we
* will pick up the correct speed (in loopback) to select the correct
* MAC.
*/
if (LOOPBACK_INTERNAL(efx))
falcon_loopback_link_poll(efx);
else
efx->phy_op->poll(efx);
falcon_stop_nic_stats(efx);
falcon_deconfigure_mac_wrapper(efx);
falcon_switch_mac(efx);
efx->phy_op->reconfigure(efx);
rc = efx->mac_op->reconfigure(efx);
BUG_ON(rc);
falcon_start_nic_stats(efx);
/* Synchronise efx->link_state with the kernel */
efx_link_status_changed(efx);
return 0;
}
/**************************************************************************
*
* PHY access via GMII
*
**************************************************************************
*/
/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
efx_oword_t md_stat;
int count;
/* wait upto 50ms - taken max from datasheet */
for (count = 0; count < 5000; count++) {
efx_reado(efx, &md_stat, FR_AB_MD_STAT);
if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
EFX_ERR(efx, "error from GMII access "
EFX_OWORD_FMT"\n",
EFX_OWORD_VAL(md_stat));
return -EIO;
}
return 0;
}
udelay(10);
}
EFX_ERR(efx, "timed out waiting for GMII\n");
return -ETIMEDOUT;
}
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value)
{
struct efx_nic *efx = netdev_priv(net_dev);
efx_oword_t reg;
int rc;
EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
prtad, devad, addr, value);
mutex_lock(&efx->mdio_lock);
/* Check MDIO not currently being accessed */
rc = falcon_gmii_wait(efx);
if (rc)
goto out;
/* Write the address/ID register */
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
FRF_AB_MD_DEV_ADR, devad);
efx_writeo(efx, ®, FR_AB_MD_ID);
/* Write data */
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
efx_writeo(efx, ®, FR_AB_MD_TXD);
EFX_POPULATE_OWORD_2(reg,
FRF_AB_MD_WRC, 1,
FRF_AB_MD_GC, 0);
efx_writeo(efx, ®, FR_AB_MD_CS);
/* Wait for data to be written */
rc = falcon_gmii_wait(efx);
if (rc) {
/* Abort the write operation */
EFX_POPULATE_OWORD_2(reg,
FRF_AB_MD_WRC, 0,
FRF_AB_MD_GC, 1);
efx_writeo(efx, ®, FR_AB_MD_CS);
udelay(10);
}
out:
mutex_unlock(&efx->mdio_lock);
return rc;
}
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
int prtad, int devad, u16 addr)
{
struct efx_nic *efx = netdev_priv(net_dev);
efx_oword_t reg;
int rc;
mutex_lock(&efx->mdio_lock);
/* Check MDIO not currently being accessed */
rc = falcon_gmii_wait(efx);
if (rc)
goto out;
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
FRF_AB_MD_DEV_ADR, devad);
efx_writeo(efx, ®, FR_AB_MD_ID);
/* Request data to be read */
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
efx_writeo(efx, ®, FR_AB_MD_CS);
/* Wait for data to become available */
rc = falcon_gmii_wait(efx);
if (rc == 0) {
efx_reado(efx, ®, FR_AB_MD_RXD);
rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
prtad, devad, addr, rc);
} else {
/* Abort the read operation */
EFX_POPULATE_OWORD_2(reg,
FRF_AB_MD_RIC, 0,
FRF_AB_MD_GC, 1);
efx_writeo(efx, ®, FR_AB_MD_CS);
EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
prtad, devad, addr, rc);
}
out:
mutex_unlock(&efx->mdio_lock);
return rc;
}
static void falcon_clock_mac(struct efx_nic *efx)
{
unsigned strap_val;
efx_oword_t nic_stat;
/* Configure the NIC generated MAC clock correctly */
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
strap_val = EFX_IS10G(efx) ? 5 : 3;
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
} else {
/* Falcon A1 does not support 1G/10G speed switching
* and must not be used with a PHY that does. */
BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
strap_val);
}
}
static void falcon_switch_mac(struct efx_nic *efx)
{
struct efx_mac_operations *old_mac_op = efx->mac_op;
struct falcon_nic_data *nic_data = efx->nic_data;
unsigned int stats_done_offset;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
WARN_ON(nic_data->stats_disable_count == 0);
efx->mac_op = (EFX_IS10G(efx) ?
&falcon_xmac_operations : &falcon_gmac_operations);
if (EFX_IS10G(efx))
stats_done_offset = XgDmaDone_offset;
else
stats_done_offset = GDmaDone_offset;
nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
if (old_mac_op == efx->mac_op)
return;
falcon_clock_mac(efx);
EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
/* Not all macs support a mac-level link state */
efx->xmac_poll_required = false;
falcon_reset_macs(efx);
}
/* This call is responsible for hooking in the MAC and PHY operations */
static int falcon_probe_port(struct efx_nic *efx)
{
int rc;
switch (efx->phy_type) {
case PHY_TYPE_SFX7101:
efx->phy_op = &falcon_sfx7101_phy_ops;
break;
case PHY_TYPE_SFT9001A:
case PHY_TYPE_SFT9001B:
efx->phy_op = &falcon_sft9001_phy_ops;
break;
case PHY_TYPE_QT2022C2:
case PHY_TYPE_QT2025C:
efx->phy_op = &falcon_qt202x_phy_ops;
break;
default:
EFX_ERR(efx, "Unknown PHY type %d\n",
efx->phy_type);
return -ENODEV;
}
if (efx->phy_op->macs & EFX_XMAC)
efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
(1 << LOOPBACK_XGXS) |
(1 << LOOPBACK_XAUI));
if (efx->phy_op->macs & EFX_GMAC)
efx->loopback_modes |= (1 << LOOPBACK_GMAC);
efx->loopback_modes |= efx->phy_op->loopbacks;
/* Set up MDIO structure for PHY */
efx->mdio.mmds = efx->phy_op->mmds;
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
efx->mdio.mdio_read = falcon_mdio_read;
efx->mdio.mdio_write = falcon_mdio_write;
/* Initial assumption */
efx->link_state.speed = 10000;
efx->link_state.fd = true;
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
else
efx->wanted_fc = EFX_FC_RX;
/* Allocate buffer for stats */
rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
FALCON_MAC_STATS_SIZE);
if (rc)
return rc;
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
(u64)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
(u64)virt_to_phys(efx->stats_buffer.addr));
return 0;
}
static void falcon_remove_port(struct efx_nic *efx)
{
falcon_free_buffer(efx, &efx->stats_buffer);
}
/**************************************************************************
*
* Falcon test code
*
**************************************************************************/
int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
struct falcon_nvconfig *nvconfig;
struct efx_spi_device *spi;
void *region;
int rc, magic_num, struct_ver;
__le16 *word, *limit;
u32 csum;
spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
if (!spi)
return -EINVAL;
region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
if (!region)
return -ENOMEM;
nvconfig = region + FALCON_NVCONFIG_OFFSET;
mutex_lock(&efx->spi_lock);
rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
mutex_unlock(&efx->spi_lock);
if (rc) {
EFX_ERR(efx, "Failed to read %s\n",
efx->spi_flash ? "flash" : "EEPROM");
rc = -EIO;
goto out;
}
magic_num = le16_to_cpu(nvconfig->board_magic_num);
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
rc = -EINVAL;
if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
goto out;
}
if (struct_ver < 2) {
EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
goto out;
} else if (struct_ver < 4) {
word = &nvconfig->board_magic_num;
limit = (__le16 *) (nvconfig + 1);
} else {
word = region;
limit = region + FALCON_NVCONFIG_END;
}
for (csum = 0; word < limit; ++word)
csum += le16_to_cpu(*word);
if (~csum & 0xffff) {
EFX_ERR(efx, "NVRAM has incorrect checksum\n");
goto out;
}
rc = 0;
if (nvconfig_out)
memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
out:
kfree(region);
return rc;
}
/* Registers tested in the falcon register test */
static struct {
unsigned address;
efx_oword_t mask;
} efx_test_registers[] = {
{ FR_AZ_ADR_REGION,
EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
{ FR_AZ_RX_CFG,
EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
{ FR_AZ_TX_CFG,
EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_TX_RESERVED,
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
{ FR_AB_MAC_CTRL,
EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_SRM_TX_DC_CFG,
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_CFG,
EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_PF_WM,
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_DP_CTRL,
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_GM_CFG2,
EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_GMF_CFG0,
EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_GLB_CFG,
EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_TX_CFG,
EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_RX_CFG,
EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_RX_PARAM,
EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_FC,
EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_ADR_LO,
EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XX_SD_CTL,
EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
const efx_oword_t *mask)
{
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}
int falcon_test_registers(struct efx_nic *efx)
{
unsigned address = 0, i, j;
efx_oword_t mask, imask, original, reg, buf;
/* Falcon should be in loopback to isolate the XMAC from the PHY */
WARN_ON(!LOOPBACK_INTERNAL(efx));
for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
address = efx_test_registers[i].address;
mask = imask = efx_test_registers[i].mask;
EFX_INVERT_OWORD(imask);
efx_reado(efx, &original, address);
/* bit sweep on and off */
for (j = 0; j < 128; j++) {
if (!EFX_EXTRACT_OWORD32(mask, j, j))
continue;
/* Test this testable bit can be set in isolation */
EFX_AND_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 1);
efx_writeo(efx, ®, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(®, &buf, &mask))
goto fail;
/* Test this testable bit can be cleared in isolation */
EFX_OR_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 0);
efx_writeo(efx, ®, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(®, &buf, &mask))
goto fail;
}
efx_writeo(efx, &original, address);
}
return 0;
fail:
EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
return -EIO;
}
/**************************************************************************
*
* Device reset
*
**************************************************************************
*/
/* Resets NIC to known state. This routine must be called in process
* context and is allowed to sleep. */
static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t glb_ctl_reg_ker;
int rc;
EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
/* Initiate device reset */
if (method == RESET_TYPE_WORLD) {
rc = pci_save_state(efx->pci_dev);
if (rc) {
EFX_ERR(efx, "failed to backup PCI state of primary "
"function prior to hardware reset\n");
goto fail1;
}
if (FALCON_IS_DUAL_FUNC(efx)) {
rc = pci_save_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to backup PCI state of "
"secondary function prior to "
"hardware reset\n");
goto fail2;
}
}
EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
FRF_AB_EXT_PHY_RST_DUR,
FFE_AB_EXT_PHY_RST_DUR_10240US,
FRF_AB_SWRST, 1);
} else {
EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
/* exclude PHY from "invisible" reset */
FRF_AB_EXT_PHY_RST_CTL,
method == RESET_TYPE_INVISIBLE,
/* exclude EEPROM/flash and PCIe */
FRF_AB_PCIE_CORE_RST_CTL, 1,
FRF_AB_PCIE_NSTKY_RST_CTL, 1,
FRF_AB_PCIE_SD_RST_CTL, 1,
FRF_AB_EE_RST_CTL, 1,
FRF_AB_EXT_PHY_RST_DUR,
FFE_AB_EXT_PHY_RST_DUR_10240US,
FRF_AB_SWRST, 1);
}
efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
EFX_LOG(efx, "waiting for hardware reset\n");
schedule_timeout_uninterruptible(HZ / 20);
/* Restore PCI configuration if needed */
if (method == RESET_TYPE_WORLD) {
if (FALCON_IS_DUAL_FUNC(efx)) {
rc = pci_restore_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to restore PCI config for "
"the secondary function\n");
goto fail3;
}
}
rc = pci_restore_state(efx->pci_dev);
if (rc) {
EFX_ERR(efx, "failed to restore PCI config for the "
"primary function\n");
goto fail4;
}
EFX_LOG(efx, "successfully restored PCI config\n");
}
/* Assert that reset complete */
efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
rc = -ETIMEDOUT;
EFX_ERR(efx, "timed out waiting for hardware reset\n");
goto fail5;
}
EFX_LOG(efx, "hardware reset complete\n");
return 0;
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
return rc;
}
static void falcon_monitor(struct efx_nic *efx)
{
bool link_changed;
int rc;
BUG_ON(!mutex_is_locked(&efx->mac_lock));
rc = falcon_board(efx)->type->monitor(efx);
if (rc) {
EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
(rc == -ERANGE) ? "reported fault" : "failed");
efx->phy_mode |= PHY_MODE_LOW_POWER;
rc = __efx_reconfigure_port(efx);
WARN_ON(rc);
}
if (LOOPBACK_INTERNAL(efx))
link_changed = falcon_loopback_link_poll(efx);
else
link_changed = efx->phy_op->poll(efx);
if (link_changed) {
falcon_stop_nic_stats(efx);
falcon_deconfigure_mac_wrapper(efx);
falcon_switch_mac(efx);
rc = efx->mac_op->reconfigure(efx);
BUG_ON(rc);
falcon_start_nic_stats(efx);
efx_link_status_changed(efx);
}
if (EFX_IS10G(efx))
falcon_poll_xmac(efx);
}
/* Zeroes out the SRAM contents. This routine must be called in
* process context and is allowed to sleep.
*/
static int falcon_reset_sram(struct efx_nic *efx)
{
efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
int count;
/* Set the SRAM wake/sleep GPIO appropriately. */
efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
/* Initiate SRAM reset */
EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
FRF_AZ_SRM_INIT_EN, 1,
FRF_AZ_SRM_NB_SZ, 0);
efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
/* Wait for SRAM reset to complete */
count = 0;
do {
EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
/* SRAM reset is slow; expect around 16ms */
schedule_timeout_uninterruptible(HZ / 50);
/* Check for reset complete */
efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
EFX_LOG(efx, "SRAM reset complete\n");
return 0;
}
} while (++count < 20); /* wait upto 0.4 sec */
EFX_ERR(efx, "timed out waiting for SRAM reset\n");
return -ETIMEDOUT;
}
static int falcon_spi_device_init(struct efx_nic *efx,
struct efx_spi_device **spi_device_ret,
unsigned int device_id, u32 device_type)
{
struct efx_spi_device *spi_device;
if (device_type != 0) {
spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
if (!spi_device)
return -ENOMEM;
spi_device->device_id = device_id;
spi_device->size =
1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
spi_device->addr_len =
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
spi_device->munge_address = (spi_device->size == 1 << 9 &&
spi_device->addr_len == 1);
spi_device->erase_command =
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
spi_device->erase_size =
1 << SPI_DEV_TYPE_FIELD(device_type,
SPI_DEV_TYPE_ERASE_SIZE);
spi_device->block_size =
1 << SPI_DEV_TYPE_FIELD(device_type,
SPI_DEV_TYPE_BLOCK_SIZE);
spi_device->efx = efx;
} else {
spi_device = NULL;
}
kfree(*spi_device_ret);
*spi_device_ret = spi_device;
return 0;
}
static void falcon_remove_spi_devices(struct efx_nic *efx)
{
kfree(efx->spi_eeprom);
efx->spi_eeprom = NULL;
kfree(efx->spi_flash);
efx->spi_flash = NULL;
}
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
struct falcon_nvconfig *nvconfig;
int board_rev;
int rc;
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
if (!nvconfig)
return -ENOMEM;
rc = falcon_read_nvram(efx, nvconfig);
if (rc == -EINVAL) {
EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
efx->phy_type = PHY_TYPE_NONE;
efx->mdio.prtad = MDIO_PRTAD_NONE;
board_rev = 0;
rc = 0;
} else if (rc) {
goto fail1;
} else {
struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
efx->phy_type = v2->port0_phy_type;
efx->mdio.prtad = v2->port0_phy_addr;
board_rev = le16_to_cpu(v2->board_revision);
if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
rc = falcon_spi_device_init(
efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
le32_to_cpu(v3->spi_device_type
[FFE_AB_SPI_DEVICE_FLASH]));
if (rc)
goto fail2;
rc = falcon_spi_device_init(
efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
le32_to_cpu(v3->spi_device_type
[FFE_AB_SPI_DEVICE_EEPROM]));
if (rc)
goto fail2;
}
}
/* Read the MAC addresses */
memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
falcon_probe_board(efx, board_rev);
kfree(nvconfig);
return 0;
fail2:
falcon_remove_spi_devices(efx);
fail1:
kfree(nvconfig);
return rc;
}
/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
* count, port speed). Set workaround and feature flags accordingly.
*/
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
efx_oword_t altera_build;
efx_oword_t nic_stat;
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
EFX_ERR(efx, "Falcon FPGA not supported\n");
return -ENODEV;
}
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
u8 pci_rev = efx->pci_dev->revision;
if ((pci_rev == 0xff) || (pci_rev == 0)) {
EFX_ERR(efx, "Falcon rev A0 not supported\n");
return -ENODEV;
}
if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
return -ENODEV;
}
if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
return -ENODEV;
}
}
return 0;
}
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
int boot_dev;
efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
EFX_LOG(efx, "Booted from %s\n",
boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
} else {
/* Disable VPD and set clock dividers to safe
* values for initial programming. */
boot_dev = -1;
EFX_LOG(efx, "Booted from internal ASIC settings;"
" setting SPI config\n");
EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
/* 125 MHz / 7 ~= 20 MHz */
FRF_AB_EE_SF_CLOCK_DIV, 7,
/* 125 MHz / 63 ~= 2 MHz */
FRF_AB_EE_EE_CLOCK_DIV, 63);
efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
}
if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
falcon_spi_device_init(efx, &efx->spi_flash,
FFE_AB_SPI_DEVICE_FLASH,
default_flash_type);
if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
falcon_spi_device_init(efx, &efx->spi_eeprom,
FFE_AB_SPI_DEVICE_EEPROM,
large_eeprom_type);
}
static int falcon_probe_nic(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data;
struct falcon_board *board;
int rc;
/* Allocate storage for hardware specific data */
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
/* Determine number of ports etc. */
rc = falcon_probe_nic_variant(efx);
if (rc)
goto fail1;
/* Probe secondary function if expected */
if (FALCON_IS_DUAL_FUNC(efx)) {
struct pci_dev *dev = pci_dev_get(efx->pci_dev);
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
dev))) {
if (dev->bus == efx->pci_dev->bus &&
dev->devfn == efx->pci_dev->devfn + 1) {
nic_data->pci_dev2 = dev;
break;
}
}
if (!nic_data->pci_dev2) {
EFX_ERR(efx, "failed to find secondary function\n");
rc = -ENODEV;
goto fail2;
}
}
/* Now we can reset the NIC */
rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
if (rc) {
EFX_ERR(efx, "failed to reset NIC\n");
goto fail3;
}
/* Allocate memory for INT_KER */
rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
(u64)efx->irq_status.dma_addr,
efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
falcon_probe_spi_devices(efx);
/* Read in the non-volatile configuration */
rc = falcon_probe_nvconfig(efx);
if (rc)
goto fail5;
/* Initialise I2C adapter */
board = falcon_board(efx);
board->i2c_adap.owner = THIS_MODULE;
board->i2c_data = falcon_i2c_bit_operations;
board->i2c_data.data = efx;
board->i2c_adap.algo_data = &board->i2c_data;
board->i2c_adap.dev.parent = &efx->pci_dev->dev;
strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
sizeof(board->i2c_adap.name));
rc = i2c_bit_add_bus(&board->i2c_adap);
if (rc)
goto fail5;
rc = falcon_board(efx)->type->init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise board\n");
goto fail6;
}
nic_data->stats_disable_count = 1;
setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
(unsigned long)efx);
return 0;
fail6:
BUG_ON(i2c_del_adapter(&board->i2c_adap));
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
fail5:
falcon_remove_spi_devices(efx);
falcon_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
fail2:
fail1:
kfree(efx->nic_data);
return rc;
}
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
/* Prior to Siena the RX DMA engine will split each frame at
* intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
* be so large that that never happens. */
const unsigned huge_buf_size = (3 * 4096) >> 5;
/* RX control FIFO thresholds (32 entries) */
const unsigned ctrl_xon_thr = 20;
const unsigned ctrl_xoff_thr = 25;
/* RX data FIFO thresholds (256-byte units; size varies) */
int data_xon_thr = rx_xon_thresh_bytes >> 8;
int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
efx_oword_t reg;
efx_reado(efx, ®, FR_AZ_RX_CFG);
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
/* Data FIFO size is 5.5K */
if (data_xon_thr < 0)
data_xon_thr = 512 >> 8;
if (data_xoff_thr < 0)
data_xoff_thr = 2048 >> 8;
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
huge_buf_size);
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
} else {
/* Data FIFO size is 80K; register fields moved */
if (data_xon_thr < 0)
data_xon_thr = 27648 >> 8; /* ~3*max MTU */
if (data_xoff_thr < 0)
data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
huge_buf_size);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
}
/* Always enable XOFF signal from RX FIFO. We enable
* or disable transmission of pause frames at the MAC. */
EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
efx_writeo(efx, ®, FR_AZ_RX_CFG);
}
/* This call performs hardware-specific global initialisation, such as
* defining the descriptor cache sizes and number of RSS channels.
* It does not set up any buffers, descriptor rings or event queues.
*/
static int falcon_init_nic(struct efx_nic *efx)
{
efx_oword_t temp;
int rc;
/* Use on-chip SRAM */
efx_reado(efx, &temp, FR_AB_NIC_STAT);
EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
efx_writeo(efx, &temp, FR_AB_NIC_STAT);
/* Set the source of the GMAC clock */
if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
efx_reado(efx, &temp, FR_AB_GPIO_CTL);
EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
}
/* Select the correct MAC */
falcon_clock_mac(efx);
rc = falcon_reset_sram(efx);
if (rc)
return rc;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
efx->type->tx_dc_base / 8);
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
efx->type->rx_dc_base / 8);
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
/* Set TX descriptor cache size. */
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
/* Set RX descriptor cache size. Set low watermark to size-8, as
* this allows most efficient prefetching.
*/
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
/* Program INT_KER address */
EFX_POPULATE_OWORD_2(temp,
FRF_AZ_NORM_INT_VEC_DIS_KER,
EFX_INT_MODE_USE_MSI(efx),
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
/* Clear the parity enables on the TX data fifos as
* they produce false parity errors because of timing issues
*/
if (EFX_WORKAROUND_5129(efx)) {
efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
}
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
*
* Note: All other fatal interrupts are enabled
*/
EFX_POPULATE_OWORD_3(temp,
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
EFX_INVERT_OWORD(temp);
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
if (EFX_WORKAROUND_7244(efx)) {
efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
}
falcon_setup_rss_indir_table(efx);
/* XXX This is documented only for Falcon A0/A1 */
/* Setup RX. Wait for descriptor is broken and must
* be disabled. RXDP recovery shouldn't be needed, but is.
*/
efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
if (EFX_WORKAROUND_5583(efx))
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
*/
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
/* Squash TX of packets of 16 bytes or less */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
efx_reado(efx, &temp, FR_AZ_TX_CFG);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
efx_writeo(efx, &temp, FR_AZ_TX_CFG);
falcon_init_rx_cfg(efx);
/* Set destination of both TX and RX Flush events */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
}
return 0;
}
static void falcon_remove_nic(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
struct falcon_board *board = falcon_board(efx);
int rc;
board->type->fini(efx);
/* Remove I2C adapter and clear it in preparation for a retry */
rc = i2c_del_adapter(&board->i2c_adap);
BUG_ON(rc);
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
falcon_remove_spi_devices(efx);
falcon_free_buffer(efx, &efx->irq_status);
falcon_reset_hw(efx, RESET_TYPE_ALL);
/* Release the second function after the reset */
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
/* Tear down the private nic state */
kfree(efx->nic_data);
efx->nic_data = NULL;
}
static void falcon_update_nic_stats(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t cnt;
if (nic_data->stats_disable_count)
return;
efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
efx->n_rx_nodesc_drop_cnt +=
EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
if (nic_data->stats_pending &&
*nic_data->stats_dma_done == FALCON_STATS_DONE) {
nic_data->stats_pending = false;
rmb(); /* read the done flag before the stats */
efx->mac_op->update_stats(efx);
}
}
void falcon_start_nic_stats(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
spin_lock_bh(&efx->stats_lock);
if (--nic_data->stats_disable_count == 0)
falcon_stats_request(efx);
spin_unlock_bh(&efx->stats_lock);
}
void falcon_stop_nic_stats(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
int i;
might_sleep();
spin_lock_bh(&efx->stats_lock);
++nic_data->stats_disable_count;
spin_unlock_bh(&efx->stats_lock);
del_timer_sync(&nic_data->stats_timer);
/* Wait enough time for the most recent transfer to
* complete. */
for (i = 0; i < 4 && nic_data->stats_pending; i++) {
if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
break;
msleep(1);
}
spin_lock_bh(&efx->stats_lock);
falcon_stats_complete(efx);
spin_unlock_bh(&efx->stats_lock);
}
/**************************************************************************
*
* Revision-dependent attributes used by efx.c
*
**************************************************************************
*/
struct efx_nic_type falcon_a1_nic_type = {
.probe = falcon_probe_nic,
.remove = falcon_remove_nic,
.init = falcon_init_nic,
.fini = efx_port_dummy_op_void,
.monitor = falcon_monitor,
.reset = falcon_reset_hw,
.probe_port = falcon_probe_port,
.remove_port = falcon_remove_port,
.prepare_flush = falcon_prepare_flush,
.update_stats = falcon_update_nic_stats,
.start_stats = falcon_start_nic_stats,
.stop_stats = falcon_stop_nic_stats,
.push_irq_moderation = falcon_push_irq_moderation,
.push_multicast_hash = falcon_push_multicast_hash,
.reconfigure_port = falcon_reconfigure_port,
.default_mac_ops = &falcon_xmac_operations,
.revision = EFX_REV_FALCON_A1,
.mem_map_size = 0x20000,
.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_buffer_padding = 0x24,
.max_interrupt_mode = EFX_INT_MODE_MSI,
.phys_addr_channels = 4,
.tx_dc_base = 0x130000,
.rx_dc_base = 0x100000,
};
struct efx_nic_type falcon_b0_nic_type = {
.probe = falcon_probe_nic,
.remove = falcon_remove_nic,
.init = falcon_init_nic,
.fini = efx_port_dummy_op_void,
.monitor = falcon_monitor,
.reset = falcon_reset_hw,
.probe_port = falcon_probe_port,
.remove_port = falcon_remove_port,
.prepare_flush = falcon_prepare_flush,
.update_stats = falcon_update_nic_stats,
.start_stats = falcon_start_nic_stats,
.stop_stats = falcon_stop_nic_stats,
.push_irq_moderation = falcon_push_irq_moderation,
.push_multicast_hash = falcon_push_multicast_hash,
.reconfigure_port = falcon_reconfigure_port,
.default_mac_ops = &falcon_xmac_operations,
.revision = EFX_REV_FALCON_B0,
/* Map everything up to and including the RSS indirection
* table. Don't map MSI-X table, MSI-X PBA since Linux
* requires that they not be mapped. */
.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
FR_BZ_RX_INDIRECTION_TBL_STEP *
FR_BZ_RX_INDIRECTION_TBL_ROWS),
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_buffer_padding = 0,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32
* channels */
.tx_dc_base = 0x130000,
.rx_dc_base = 0x100000,
};