/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/topology.h>
#include "net_driver.h"
#include "gmii.h"
#include "ethtool.h"
#include "tx.h"
#include "rx.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "workarounds.h"
#include "mac.h"
#define EFX_MAX_MTU (9 * 1024)
/* RX slow fill workqueue. If memory allocation fails in the fast path,
* a work item is pushed onto this work queue to retry the allocation later,
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
* workqueue, there is nothing to be gained in making it per NIC
*/
static struct workqueue_struct *refill_workqueue;
/**************************************************************************
*
* Configurable values
*
*************************************************************************/
/*
* Enable large receive offload (LRO) aka soft segment reassembly (SSR)
*
* This sets the default for new devices. It can be controlled later
* using ethtool.
*/
static int lro = 1;
module_param(lro, int, 0644);
MODULE_PARM_DESC(lro, "Large receive offload acceleration");
/*
* Use separate channels for TX and RX events
*
* Set this to 1 to use separate channels for TX and RX. It allows us to
* apply a higher level of interrupt moderation to TX events.
*
* This is forced to 0 for MSI interrupt mode as the interrupt vector
* is not written
*/
static unsigned int separate_tx_and_rx_channels = 1;
/* This is the weight assigned to each of the (per-channel) virtual
* NAPI devices.
*/
static int napi_weight = 64;
/* This is the time (in jiffies) between invocations of the hardware
* monitor, which checks for known hardware bugs and resets the
* hardware and driver as necessary.
*/
unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the hardware monitor will trigger a
* reset when it detects an error condition.
*/
static unsigned int monitor_reset = 1;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* The default for RX should strike a balance between increasing the
* round-trip latency and reducing overhead.
*/
static unsigned int rx_irq_mod_usec = 60;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* This default is chosen to ensure that a 10G link does not go idle
* while a TX queue is stopped after it has become full. A queue is
* restarted when it drops below half full. The time this takes (assuming
* worst case 3 descriptors per packet and 1024 descriptors) is
* 512 / 3 * 1.2 = 205 usec.
*/
static unsigned int tx_irq_mod_usec = 150;
/* This is the first interrupt mode to try out of:
* 0 => MSI-X
* 1 => MSI
* 2 => legacy
*/
static unsigned int interrupt_mode;
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
* i.e. the number of CPUs among which we may distribute simultaneous
* interrupt handling.
*
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache)
*/
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
/**************************************************************************
*
* Utility functions and prototypes
*
*************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);
#define EFX_ASSERT_RESET_SERIALISED(efx) \
do { \
if ((efx->state == STATE_RUNNING) || \
(efx->state == STATE_RESETTING)) \
ASSERT_RTNL(); \
} while (0)
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Process channel's event queue
*
* This function is responsible for processing the event queue of a
* single channel. The caller must guarantee that this function will
* never be concurrently called more than once on the same channel,
* though different channels may be being processed concurrently.
*/
static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
{
int rxdmaqs;
struct efx_rx_queue *rx_queue;
if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
!channel->enabled))
return rx_quota;
rxdmaqs = falcon_process_eventq(channel, &rx_quota);
/* Deliver last RX packet. */
if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt,
channel->rx_pkt_csummed);
channel->rx_pkt = NULL;
}
efx_flush_lro(channel);
efx_rx_strategy(channel);
/* Refill descriptor rings as necessary */
rx_queue = &channel->efx->rx_queue[0];
while (rxdmaqs) {
if (rxdmaqs & 0x01)
efx_fast_push_rx_descriptors(rx_queue);
rx_queue++;
rxdmaqs >>= 1;
}
return rx_quota;
}
/* Mark channel as finished processing
*
* Note that since we will not receive further interrupts for this
* channel before we finish processing and call the eventq_read_ack()
* method, there is no need to use the interrupt hold-off timers.
*/
static inline void efx_channel_processed(struct efx_channel *channel)
{
/* The interrupt handler for this channel may set work_pending
* as soon as we acknowledge the events we've seen. Make sure
* it's cleared before then. */
channel->work_pending = 0;
smp_wmb();
falcon_eventq_read_ack(channel);
}
/* NAPI poll handler
*
* NAPI guarantees serialisation of polls of the same device, which
* provides the guarantee required by efx_process_channel().
*/
static int efx_poll(struct napi_struct *napi, int budget)
{
struct efx_channel *channel =
container_of(napi, struct efx_channel, napi_str);
struct net_device *napi_dev = channel->napi_dev;
int unused;
int rx_packets;
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
channel->channel, raw_smp_processor_id());
unused = efx_process_channel(channel, budget);
rx_packets = (budget - unused);
if (rx_packets < budget) {
/* There is no race here; although napi_disable() will
* only wait for netif_rx_complete(), this isn't a problem
* since efx_channel_processed() will have no effect if
* interrupts have already been disabled.
*/
netif_rx_complete(napi_dev, napi);
efx_channel_processed(channel);
}
return rx_packets;
}
/* Process the eventq of the specified channel immediately on this CPU
*
* Disable hardware generated interrupts, wait for any existing
* processing to finish, then directly poll (and ack ) the eventq.
* Finally reenable NAPI and interrupts.
*
* Since we are touching interrupts the caller should hold the suspend lock
*/
void efx_process_channel_now(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUG_ON(!channel->used_flags);
BUG_ON(!channel->enabled);
/* Disable interrupts and wait for ISRs to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
if (channel->has_interrupt && channel->irq)
synchronize_irq(channel->irq);
/* Wait for any NAPI processing to complete */
napi_disable(&channel->napi_str);
/* Poll the channel */
efx_process_channel(channel, efx->type->evq_size);
/* Ack the eventq. This may cause an interrupt to be generated
* when they are reenabled */
efx_channel_processed(channel);
napi_enable(&channel->napi_str);
falcon_enable_interrupts(efx);
}
/* Create event queue
* Event queue memory allocations are done only once. If the channel
* is reset, the memory buffer will be reused; this guards against
* errors during channel reset and also simplifies interrupt handling.
*/
static int efx_probe_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
return falcon_probe_eventq(channel);
}
/* Prepare channel's event queue */
static int efx_init_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
channel->eventq_read_ptr = 0;
return falcon_init_eventq(channel);
}
static void efx_fini_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
falcon_fini_eventq(channel);
}
static void efx_remove_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
falcon_remove_eventq(channel);
}
/**************************************************************************
*
* Channel handling
*
*************************************************************************/
static int efx_probe_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
rc = efx_probe_eventq(channel);
if (rc)
goto fail1;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
goto fail2;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_probe_rx_queue(rx_queue);
if (rc)
goto fail3;
}
channel->n_rx_frm_trunc = 0;
return 0;
fail3:
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
fail2:
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
fail1:
return rc;
}
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static int efx_init_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
int rc = 0;
/* Calculate the rx buffer allocation parameters required to
* support the current MTU, including padding for header
* alignment and overruns.
*/
efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
efx->rx_buffer_order = get_order(efx->rx_buffer_len);
/* Initialise the channels */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
rc = efx_init_eventq(channel);
if (rc)
goto err;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_init_tx_queue(tx_queue);
if (rc)
goto err;
}
/* The rx buffer allocation strategy is MTU dependent */
efx_rx_strategy(channel);
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_init_rx_queue(rx_queue);
if (rc)
goto err;
}
WARN_ON(channel->rx_pkt != NULL);
efx_rx_strategy(channel);
}
return 0;
err:
EFX_ERR(efx, "failed to initialise channel %d\n",
channel ? channel->channel : -1);
efx_fini_channels(efx);
return rc;
}
/* This enables event queue processing and packet transmission.
*
* Note that this function is not allowed to fail, since that would
* introduce too much complexity into the suspend/resume path.
*/
static void efx_start_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
if (!(channel->efx->net_dev->flags & IFF_UP))
netif_napi_add(channel->napi_dev, &channel->napi_str,
efx_poll, napi_weight);
/* The interrupt handler for this channel may set work_pending
* as soon as we enable it. Make sure it's cleared before
* then. Similarly, make sure it sees the enabled flag set. */
channel->work_pending = 0;
channel->enabled = 1;
smp_wmb();
napi_enable(&channel->napi_str);
/* Load up RX descriptors */
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fast_push_rx_descriptors(rx_queue);
}
/* This disables event queue processing and packet transmission.
* This function does not guarantee that all queue processing
* (e.g. RX refill) is complete.
*/
static void efx_stop_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
if (!channel->enabled)
return;
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
channel->enabled = 0;
napi_disable(&channel->napi_str);
/* Ensure that any worker threads have exited or will be no-ops */
efx_for_each_channel_rx_queue(rx_queue, channel) {
spin_lock_bh(&rx_queue->add_lock);
spin_unlock_bh(&rx_queue->add_lock);
}
}
static void efx_fini_channels(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fini_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_fini_tx_queue(tx_queue);
}
/* Do the event queues last so that we can handle flush events
* for all DMA queues. */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
efx_fini_eventq(channel);
}
}
static void efx_remove_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
efx_remove_eventq(channel);
channel->used_flags = 0;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
static void efx_link_status_changed(struct efx_nic *efx)
{
int carrier_ok;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN */
if (!netif_running(efx->net_dev))
return;
carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
if (efx->link_up != carrier_ok) {
efx->n_link_state_changes++;
if (efx->link_up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (efx->link_up) {
struct mii_if_info *gmii = &efx->mii;
unsigned adv, lpa;
/* NONE here means direct XAUI from the controller, with no
* MDIO-attached device we can query. */
if (efx->phy_type != PHY_TYPE_NONE) {
adv = gmii_advertised(gmii);
lpa = gmii_lpa(gmii);
} else {
lpa = GM_LPA_10000 | LPA_DUPLEX;
adv = lpa;
}
EFX_INFO(efx, "link up at %dMbps %s-duplex "
"(adv %04x lpa %04x) (MTU %d)%s\n",
(efx->link_options & GM_LPA_10000 ? 10000 :
(efx->link_options & GM_LPA_1000 ? 1000 :
(efx->link_options & GM_LPA_100 ? 100 :
10))),
(efx->link_options & GM_LPA_DUPLEX ?
"full" : "half"),
adv, lpa,
efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : ""));
} else {
EFX_INFO(efx, "link down\n");
}
}
/* This call reinitialises the MAC to pick up new PHY settings. The
* caller must hold the mac_lock */
static void __efx_reconfigure_port(struct efx_nic *efx)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
raw_smp_processor_id());
falcon_reconfigure_xmac(efx);
/* Inform kernel of loss/gain of carrier */
efx_link_status_changed(efx);
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
* we don't efx_reconfigure_port() if the port is disabled. Care is taken
* in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
static void efx_reconfigure_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
reconfigure_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled)
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
static int efx_probe_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "create port\n");
/* Connect up MAC/PHY operations table and read MAC address */
rc = falcon_probe_port(efx);
if (rc)
goto err;
/* Sanity check MAC address */
if (is_valid_ether_addr(efx->mac_address)) {
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
} else {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid MAC address %s\n",
print_mac(mac, efx->mac_address));
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
EFX_INFO(efx, "using locally-generated MAC %s\n",
print_mac(mac, efx->net_dev->dev_addr));
}
return 0;
err:
efx_remove_port(efx);
return rc;
}
static int efx_init_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "init port\n");
/* Initialise the MAC and PHY */
rc = falcon_init_xmac(efx);
if (rc)
return rc;
efx->port_initialized = 1;
/* Reconfigure port to program MAC registers */
falcon_reconfigure_xmac(efx);
return 0;
}
/* Allow efx_reconfigure_port() to be scheduled, and close the window
* between efx_stop_port and efx_flush_all whereby a previously scheduled
* efx_reconfigure_port() may have been cancelled */
static void efx_start_port(struct efx_nic *efx)
{
EFX_LOG(efx, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = 1;
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
* efx_set_multicast_list() from scheduling efx_reconfigure_work.
* efx_reconfigure_work can still be scheduled via NAPI processing
* until efx_flush_all() is called */
static void efx_stop_port(struct efx_nic *efx)
{
EFX_LOG(efx, "stop port\n");
mutex_lock(&efx->mac_lock);
efx->port_enabled = 0;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
}
}
static void efx_fini_port(struct efx_nic *efx)
{
EFX_LOG(efx, "shut down port\n");
if (!efx->port_initialized)
return;
falcon_fini_xmac(efx);
efx->port_initialized = 0;
efx->link_up = 0;
efx_link_status_changed(efx);
}
static void efx_remove_port(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying port\n");
falcon_remove_port(efx);
}
/**************************************************************************
*
* NIC handling
*
**************************************************************************/
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
dma_addr_t dma_mask = efx->type->max_dma_mask;
int rc;
EFX_LOG(efx, "initialising I/O\n");
rc = pci_enable_device(pci_dev);
if (rc) {
EFX_ERR(efx, "failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) &&
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
break;
dma_mask >>= 1;
}
if (rc) {
EFX_ERR(efx, "could not find a suitable DMA mask\n");
goto fail2;
}
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
if (rc) {
/* pci_set_consistent_dma_mask() is not *allowed* to
* fail with a mask that pci_set_dma_mask() accepted,
* but just in case...
*/
EFX_ERR(efx, "failed to set consistent DMA mask\n");
goto fail2;
}
efx->membase_phys = pci_resource_start(efx->pci_dev,
efx->type->mem_bar);
rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
if (rc) {
EFX_ERR(efx, "request for memory BAR failed\n");
rc = -EIO;
goto fail3;
}
efx->membase = ioremap_nocache(efx->membase_phys,
efx->type->mem_map_size);
if (!efx->membase) {
EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
efx->type->mem_bar,
(unsigned long long)efx->membase_phys,
efx->type->mem_map_size);
rc = -ENOMEM;
goto fail4;
}
EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
efx->type->mem_bar, (unsigned long long)efx->membase_phys,
efx->type->mem_map_size, efx->membase);
return 0;
fail4:
release_mem_region(efx->membase_phys, efx->type->mem_map_size);
fail3:
efx->membase_phys = 0;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
static void efx_fini_io(struct efx_nic *efx)
{
EFX_LOG(efx, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, efx->type->mem_bar);
efx->membase_phys = 0;
}
pci_disable_device(efx->pci_dev);
}
/* Probe the number and type of interrupts we are able to obtain. */
static void efx_probe_interrupts(struct efx_nic *efx)
{
int max_channel = efx->type->phys_addr_channels - 1;
struct msix_entry xentries[EFX_MAX_CHANNELS];
int rc, i;
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
if (rss_cpus == 0) {
cpumask_t core_mask;
int cpu;
cpus_clear(core_mask);
efx->rss_queues = 0;
for_each_online_cpu(cpu) {
if (!cpu_isset(cpu, core_mask)) {
++efx->rss_queues;
cpus_or(core_mask, core_mask,
topology_core_siblings(cpu));
}
}
} else {
efx->rss_queues = rss_cpus;
}
efx->rss_queues = min(efx->rss_queues, max_channel + 1);
efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
/* Request maximum number of MSI interrupts, and fill out
* the channel interrupt information the allowed allocation */
for (i = 0; i < efx->rss_queues; i++)
xentries[i].entry = i;
rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
if (rc > 0) {
EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
efx->rss_queues = rc;
rc = pci_enable_msix(efx->pci_dev, xentries,
efx->rss_queues);
}
if (rc == 0) {
for (i = 0; i < efx->rss_queues; i++) {
efx->channel[i].has_interrupt = 1;
efx->channel[i].irq = xentries[i].vector;
}
} else {
/* Fall back to single channel MSI */
efx->interrupt_mode = EFX_INT_MODE_MSI;
EFX_ERR(efx, "could not enable MSI-X\n");
}
}
/* Try single interrupt MSI */
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
efx->rss_queues = 1;
rc = pci_enable_msi(efx->pci_dev);
if (rc == 0) {
efx->channel[0].irq = efx->pci_dev->irq;
efx->channel[0].has_interrupt = 1;
} else {
EFX_ERR(efx, "could not enable MSI\n");
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
}
}
/* Assume legacy interrupts */
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
efx->rss_queues = 1;
/* Every channel is interruptible */
for (i = 0; i < EFX_MAX_CHANNELS; i++)
efx->channel[i].has_interrupt = 1;
efx->legacy_irq = efx->pci_dev->irq;
}
}
static void efx_remove_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
/* Remove MSI/MSI-X interrupts */
efx_for_each_channel_with_interrupt(channel, efx)
channel->irq = 0;
pci_disable_msi(efx->pci_dev);
pci_disable_msix(efx->pci_dev);
/* Remove legacy interrupt */
efx->legacy_irq = 0;
}
/* Select number of used resources
* Should be called after probe_interrupts()
*/
static void efx_select_used(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i;
/* TX queues. One per port per channel with TX capability
* (more than one per port won't work on Linux, due to out
* of order issues... but will be fine on Solaris)
*/
tx_queue = &efx->tx_queue[0];
/* Perform this for each channel with TX capabilities.
* At the moment, we only support a single TX queue
*/
tx_queue->used = 1;
if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
tx_queue->channel = &efx->channel[1];
else
tx_queue->channel = &efx->channel[0];
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
tx_queue++;
/* RX queues. Each has a dedicated channel. */
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
if (i < efx->rss_queues) {
rx_queue->used = 1;
/* If we allow multiple RX queues per channel
* we need to decide that here
*/
rx_queue->channel = &efx->channel[rx_queue->queue];
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
rx_queue++;
}
}
}
static int efx_probe_nic(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "creating NIC\n");
/* Carry out hardware-type specific initialisation */
rc = falcon_probe_nic(efx);
if (rc)
return rc;
/* Determine the number of channels and RX queues by trying to hook
* in MSI-X interrupts. */
efx_probe_interrupts(efx);
/* Determine number of RX queues and TX queues */
efx_select_used(efx);
/* Initialise the interrupt moderation settings */
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
return 0;
}
static void efx_remove_nic(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying NIC\n");
efx_remove_interrupts(efx);
falcon_remove_nic(efx);
}
/**************************************************************************
*
* NIC startup/shutdown
*
*************************************************************************/
static int efx_probe_all(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
/* Create NIC */
rc = efx_probe_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to create NIC\n");
goto fail1;
}
/* Create port */
rc = efx_probe_port(efx);
if (rc) {
EFX_ERR(efx, "failed to create port\n");
goto fail2;
}
/* Create channels */
efx_for_each_channel(channel, efx) {
rc = efx_probe_channel(channel);
if (rc) {
EFX_ERR(efx, "failed to create channel %d\n",
channel->channel);
goto fail3;
}
}
return 0;
fail3:
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
fail2:
efx_remove_nic(efx);
fail1:
return rc;
}
/* Called after previous invocation(s) of efx_stop_all, restarts the
* port, kernel transmit queue, NAPI processing and hardware interrupts,
* and ensures that the port is scheduled to be reconfigured.
* This function is safe to call multiple times when the NIC is in any
* state. */
static void efx_start_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock */
if (efx->port_enabled)
return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return;
if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
return;
/* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx);
efx_wake_queue(efx);
efx_for_each_channel(channel, efx)
efx_start_channel(channel);
falcon_enable_interrupts(efx);
/* Start hardware monitor if we're in RUNNING */
if (efx->state == STATE_RUNNING)
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/* Flush all delayed work. Should only be called when no more delayed work
* will be scheduled. This doesn't flush pending online resets (efx_reset),
* since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
/* Make sure the hardware monitor is stopped */
cancel_delayed_work_sync(&efx->monitor_work);
/* Ensure that all RX slow refills are complete. */
efx_for_each_rx_queue(rx_queue, efx)
cancel_delayed_work_sync(&rx_queue->work);
/* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->reconfigure_work);
}
/* Quiesce hardware and software without bringing the link down.
* Safe to call multiple times, when the nic and interface is in any
* state. The caller is guaranteed to subsequently be in a position
* to modify any hardware and software state they see fit without
* taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
/* Disable interrupts and wait for ISR to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
efx_for_each_channel_with_interrupt(channel, efx) {
if (channel->irq)
synchronize_irq(channel->irq);
}
/* Stop all NAPI processing and synchronous rx refills */
efx_for_each_channel(channel, efx)
efx_stop_channel(channel);
/* Stop all asynchronous port reconfigurations. Since all
* event processing has already been stopped, there is no
* window to loose phy events */
efx_stop_port(efx);
/* Flush reconfigure_work, refill_workqueue, monitor_work */
efx_flush_all(efx);
/* Isolate the MAC from the TX and RX engines, so that queue
* flushes will complete in a timely fashion. */
falcon_deconfigure_mac_wrapper(efx);
falcon_drain_tx_fifo(efx);
/* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */
efx_stop_queue(efx);
if (efx_dev_registered(efx)) {
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_remove_all(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
efx_remove_nic(efx);
}
/* A convinience function to safely flush all the queues */
int efx_flush_queues(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc) {
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
efx_start_all(efx);
return 0;
}
/**************************************************************************
*
* Interrupt moderation
*
**************************************************************************/
/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_for_each_tx_queue(tx_queue, efx)
tx_queue->channel->irq_moderation = tx_usecs;
efx_for_each_rx_queue(rx_queue, efx)
rx_queue->channel->irq_moderation = rx_usecs;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue. Serialised against
* efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
int rc = 0;
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of check_hw() anyway. */
if (!mutex_trylock(&efx->mac_lock)) {
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
return;
}
if (efx->port_enabled)
rc = falcon_check_xmac(efx);
mutex_unlock(&efx->mac_lock);
if (rc) {
if (monitor_reset) {
EFX_ERR(efx, "hardware monitor detected a fault: "
"triggering reset\n");
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
} else {
EFX_ERR(efx, "hardware monitor detected a fault, "
"skipping reset\n");
}
}
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* ioctls
*
*************************************************************************/
/* Net device ioctl
* Context: process, rtnl_lock() held.
*/
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
}
/**************************************************************************
*
* NAPI interface
*
**************************************************************************/
static int efx_init_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
efx_for_each_channel(channel, efx) {
channel->napi_dev = efx->net_dev;
rc = efx_lro_init(&channel->lro_mgr, efx);
if (rc)
goto err;
}
return 0;
err:
efx_fini_napi(efx);
return rc;
}
static void efx_fini_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
efx_lro_fini(&channel->lro_mgr);
channel->napi_dev = NULL;
}
}
/**************************************************************************
*
* Kernel netpoll interface
*
*************************************************************************/
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Although in the common case interrupts will be disabled, this is not
* guaranteed. However, all our work happens inside the NAPI callback,
* so no locking is required.
*/
static void efx_netpoll(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_channel *channel;
efx_for_each_channel_with_interrupt(channel, efx)
efx_schedule_channel(channel);
}
#endif
/**************************************************************************
*
* Kernel net device interface
*
*************************************************************************/
/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
efx_start_all(efx);
return 0;
}
/* Context: process, rtnl_lock() held.
* Note that the kernel will ignore our return code; this method
* should really be a void.
*/
static int efx_net_stop(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
int rc;
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
/* Stop the device and flush all the channels */
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc)
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return 0;
}
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct net_device_stats *stats = &net_dev->stats;
/* Update stats if possible, but do not wait if another thread
* is updating them (or resetting the NIC); slightly stale
* stats are acceptable.
*/
if (!spin_trylock(&efx->stats_lock))
return stats;
if (efx->state == STATE_RUNNING) {
falcon_update_stats_xmac(efx);
falcon_update_nic_stats(efx);
}
spin_unlock(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets;
stats->rx_bytes = mac_stats->rx_bytes;
stats->tx_bytes = mac_stats->tx_bytes;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_collision;
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
mac_stats->rx_length_error);
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
stats->rx_crc_errors = mac_stats->rx_bad;
stats->rx_frame_errors = mac_stats->rx_align_error;
stats->rx_fifo_errors = mac_stats->rx_overflow;
stats->rx_missed_errors = mac_stats->rx_missed;
stats->tx_window_errors = mac_stats->tx_late_collision;
stats->rx_errors = (stats->rx_length_errors +
stats->rx_over_errors +
stats->rx_crc_errors +
stats->rx_frame_errors +
stats->rx_fifo_errors +
stats->rx_missed_errors +
mac_stats->rx_symbol_error);
stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad);
return stats;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
atomic_read(&efx->netif_stop_count), efx->port_enabled,
monitor_reset ? "resetting channels" : "skipping reset");
if (monitor_reset)
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
}
/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = net_dev->priv;
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx);
if (new_mtu > EFX_MAX_MTU)
return -EINVAL;
efx_stop_all(efx);
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
efx_fini_channels(efx);
net_dev->mtu = new_mtu;
rc = efx_init_channels(efx);
if (rc)
goto fail;
efx_start_all(efx);
return rc;
fail:
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = net_dev->priv;
struct sockaddr *addr = data;
char *new_addr = addr->sa_data;
EFX_ASSERT_RESET_SERIALISED(efx);
if (!is_valid_ether_addr(new_addr)) {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
print_mac(mac, new_addr));
return -EINVAL;
}
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
/* Reconfigure the MAC */
efx_reconfigure_port(efx);
return 0;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct dev_mc_list *mc_list = net_dev->mc_list;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
int promiscuous;
u32 crc;
int bit;
int i;
/* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
if (efx->promiscuous != promiscuous) {
efx->promiscuous = promiscuous;
/* Close the window between efx_stop_port() and efx_flush_all()
* by only queuing work when the port is enabled. */
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->reconfigure_work);
}
/* Build multicast hash table */
if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
for (i = 0; i < net_dev->mc_count; i++) {
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
set_bit_le(bit, mc_hash->byte);
mc_list = mc_list->next;
}
}
/* Create and activate new global multicast hash table */
falcon_set_multicast_hash(efx);
}
static int efx_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *net_dev = ptr;
if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
struct efx_nic *efx = net_dev->priv;
strcpy(efx->name, net_dev->name);
}
return NOTIFY_DONE;
}
static struct notifier_block efx_netdev_notifier = {
.notifier_call = efx_netdev_event,
};
static int efx_register_netdev(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
int rc;
net_dev->watchdog_timeo = 5 * HZ;
net_dev->irq = efx->pci_dev->irq;
net_dev->open = efx_net_open;
net_dev->stop = efx_net_stop;
net_dev->get_stats = efx_net_stats;
net_dev->tx_timeout = &efx_watchdog;
net_dev->hard_start_xmit = efx_hard_start_xmit;
net_dev->do_ioctl = efx_ioctl;
net_dev->change_mtu = efx_change_mtu;
net_dev->set_mac_address = efx_set_mac_address;
net_dev->set_multicast_list = efx_set_multicast_list;
#ifdef CONFIG_NET_POLL_CONTROLLER
net_dev->poll_controller = efx_netpoll;
#endif
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev);
/* Clear MAC statistics */
falcon_update_stats_xmac(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rc = register_netdev(net_dev);
if (rc) {
EFX_ERR(efx, "could not register net dev\n");
return rc;
}
strcpy(efx->name, net_dev->name);
return 0;
}
static void efx_unregister_netdev(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
if (!efx->net_dev)
return;
BUG_ON(efx->net_dev->priv != efx);
/* Free up any skbs still remaining. This has to happen before
* we try to unregister the netdev as running their destructors
* may be needed to get the device ref. count to 0. */
efx_for_each_tx_queue(tx_queue, efx)
efx_release_tx_buffers(tx_queue);
if (efx_dev_registered(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
unregister_netdev(efx->net_dev);
}
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
/* The final hardware and software finalisation before reset. */
static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
rc = falcon_xmac_get_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not back up PHY settings\n");
goto fail;
}
efx_fini_channels(efx);
return 0;
fail:
return rc;
}
/* The first part of software initialisation after a hardware reset
* This function does not handle serialisation with the kernel, it
* assumes the caller has done this */
static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
rc = efx_init_channels(efx);
if (rc)
goto fail1;
/* Restore MAC and PHY settings. */
rc = falcon_xmac_set_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not restore PHY settings\n");
goto fail2;
}
return 0;
fail2:
efx_fini_channels(efx);
fail1:
return rc;
}
/* Reset the NIC as transparently as possible. Do not reset the PHY
* Note that the reset may fail, in which case the card will be left
* in a most-probably-unusable state.
*
* This function will sleep. You cannot reset from within an atomic
* state; use efx_schedule_reset() instead.
*
* Grabs the rtnl_lock.
*/
static int efx_reset(struct efx_nic *efx)
{
struct ethtool_cmd ecmd;
enum reset_type method = efx->reset_pending;
int rc;
/* Serialise with kernel interfaces */
rtnl_lock();
/* If we're not RUNNING then don't reset. Leave the reset_pending
* flag set so that efx_pci_probe_main will be retried */
if (efx->state != STATE_RUNNING) {
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
goto unlock_rtnl;
}
efx->state = STATE_RESETTING;
EFX_INFO(efx, "resetting (%d)\n", method);
/* The net_dev->get_stats handler is quite slow, and will fail
* if a fetch is pending over reset. Serialise against it. */
spin_lock(&efx->stats_lock);
spin_unlock(&efx->stats_lock);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
rc = efx_reset_down(efx, &ecmd);
if (rc)
goto fail1;
rc = falcon_reset_hw(efx, method);
if (rc) {
EFX_ERR(efx, "failed to reset hardware\n");
goto fail2;
}
/* Allow resets to be rescheduled. */
efx->reset_pending = RESET_TYPE_NONE;
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests. */
pci_set_master(efx->pci_dev);
/* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
* case so the driver can talk to external SRAM */
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail3;
}
/* Leave device stopped if necessary */
if (method == RESET_TYPE_DISABLE) {
/* Reinitialise the device anyway so the driver unload sequence
* can talk to the external SRAM */
falcon_init_nic(efx);
rc = -EIO;
goto fail4;
}
rc = efx_reset_up(efx, &ecmd);
if (rc)
goto fail5;
mutex_unlock(&efx->mac_lock);
EFX_LOG(efx, "reset complete\n");
efx->state = STATE_RUNNING;
efx_start_all(efx);
unlock_rtnl:
rtnl_unlock();
return 0;
fail5:
fail4:
fail3:
fail2:
fail1:
EFX_ERR(efx, "has been disabled\n");
efx->state = STATE_DISABLED;
mutex_unlock(&efx->mac_lock);
rtnl_unlock();
efx_unregister_netdev(efx);
efx_fini_port(efx);
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
efx_reset(nic);
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->reset_pending != RESET_TYPE_NONE) {
EFX_INFO(efx, "quenching already scheduled reset\n");
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
method = type;
break;
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_RX_DESC_FETCH:
case RESET_TYPE_TX_DESC_FETCH:
case RESET_TYPE_TX_SKIP:
method = RESET_TYPE_INVISIBLE;
break;
default:
method = RESET_TYPE_ALL;
break;
}
if (method != type)
EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
else
EFX_LOG(efx, "scheduling reset (%d)\n", method);
efx->reset_pending = method;
queue_work(efx->reset_workqueue, &efx->reset_work);
}
/**************************************************************************
*
* List of NICs we support
*
**************************************************************************/
/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
.driver_data = (unsigned long) &falcon_a_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
.driver_data = (unsigned long) &falcon_b_nic_type},
{0} /* end of list */
};
/**************************************************************************
*
* Dummy PHY/MAC/Board operations
*
* Can be used where the MAC does not implement this operation
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
static struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_void,
.check_hw = efx_port_dummy_op_int,
.fini = efx_port_dummy_op_void,
.clear_interrupt = efx_port_dummy_op_void,
.reset_xaui = efx_port_dummy_op_void,
};
/* Dummy board operations */
static int efx_nic_dummy_op_int(struct efx_nic *nic)
{
return 0;
}
static struct efx_board efx_dummy_board_info = {
.init = efx_nic_dummy_op_int,
.init_leds = efx_port_dummy_op_int,
.set_fault_led = efx_port_dummy_op_blink,
.fini = efx_port_dummy_op_void,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i, rc;
/* Initialise common structures */
memset(efx, 0, sizeof(*efx));
spin_lock_init(&efx->biu_lock);
spin_lock_init(&efx->phy_lock);
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx->pci_dev = pci_dev;
efx->state = STATE_INIT;
efx->reset_pending = RESET_TYPE_NONE;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->board_info = efx_dummy_board_info;
efx->net_dev = net_dev;
efx->rx_checksum_enabled = 1;
spin_lock_init(&efx->netif_stop_lock);
spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock);
efx->phy_op = &efx_dummy_phy_operations;
efx->mii.dev = net_dev;
INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
atomic_set(&efx->netif_stop_count, 1);
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
channel = &efx->channel[i];
channel->efx = efx;
channel->channel = i;
channel->evqnum = i;
channel->work_pending = 0;
}
for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
tx_queue = &efx->tx_queue[i];
tx_queue->efx = efx;
tx_queue->queue = i;
tx_queue->buffer = NULL;
tx_queue->channel = &efx->channel[0]; /* for safety */
tx_queue->tso_headers_free = NULL;
}
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
rx_queue->efx = efx;
rx_queue->queue = i;
rx_queue->channel = &efx->channel[0]; /* for safety */
rx_queue->buffer = NULL;
spin_lock_init(&rx_queue->add_lock);
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
}
efx->type = type;
/* Sanity-check NIC type */
EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
(efx->type->txd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
(efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->evq_size &
(efx->type->evq_size - 1));
/* As close as we can get to guaranteeing that we don't overflow */
EFX_BUG_ON_PARANOID(efx->type->evq_size <
(efx->type->txd_ring_mask + 1 +
efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
/* Higher numbered interrupt modes are less capable! */
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
interrupt_mode);
efx->workqueue = create_singlethread_workqueue("sfc_work");
if (!efx->workqueue) {
rc = -ENOMEM;
goto fail1;
}
efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
if (!efx->reset_workqueue) {
rc = -ENOMEM;
goto fail2;
}
return 0;
fail2:
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
fail1:
return rc;
}
static void efx_fini_struct(struct efx_nic *efx)
{
if (efx->reset_workqueue) {
destroy_workqueue(efx->reset_workqueue);
efx->reset_workqueue = NULL;
}
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/**************************************************************************
*
* PCI interface
*
**************************************************************************/
/* Main body of final NIC shutdown code
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove_main(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
/* Skip everything if we never obtained a valid membase */
if (!efx->membase)
return;
efx_fini_channels(efx);
efx_fini_port(efx);
/* Shutdown the board, then the NIC and board state */
efx->board_info.fini(efx);
falcon_fini_interrupt(efx);
efx_fini_napi(efx);
efx_remove_all(efx);
}
/* Final NIC shutdown
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove(struct pci_dev *pci_dev)
{
struct efx_nic *efx;
efx = pci_get_drvdata(pci_dev);
if (!efx)
return;
/* Mark the NIC as fini, then stop the interface */
rtnl_lock();
efx->state = STATE_FINI;
dev_close(efx->net_dev);
/* Allow any queued efx_resets() to complete */
rtnl_unlock();
if (efx->membase == NULL)
goto out;
efx_unregister_netdev(efx);
/* Wait for any scheduled resets to complete. No more will be
* scheduled from this point because efx_stop_all() has been
* called, we are no longer registered with driverlink, and
* the net_device's have been removed. */
flush_workqueue(efx->reset_workqueue);
efx_pci_remove_main(efx);
out:
efx_fini_io(efx);
EFX_LOG(efx, "shutdown successful\n");
pci_set_drvdata(pci_dev, NULL);
efx_fini_struct(efx);
free_netdev(efx->net_dev);
};
/* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically).
*/
static int efx_pci_probe_main(struct efx_nic *efx)
{
int rc;
/* Do start-of-day initialisation */
rc = efx_probe_all(efx);
if (rc)
goto fail1;
rc = efx_init_napi(efx);
if (rc)
goto fail2;
/* Initialise the board */
rc = efx->board_info.init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise board\n");
goto fail3;
}
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail4;
}
rc = efx_init_port(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise port\n");
goto fail5;
}
rc = efx_init_channels(efx);
if (rc)
goto fail6;
rc = falcon_init_interrupt(efx);
if (rc)
goto fail7;
return 0;
fail7:
efx_fini_channels(efx);
fail6:
efx_fini_port(efx);
fail5:
fail4:
fail3:
efx_fini_napi(efx);
fail2:
efx_remove_all(efx);
fail1:
return rc;
}
/* NIC initialisation
*
* This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC,
* sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network
* interfaces is brought up (i.e. efx_net_open).
*/
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *entry)
{
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
struct net_device *net_dev;
struct efx_nic *efx;
int i, rc;
/* Allocate and initialise a struct net_device and struct efx_nic */
net_dev = alloc_etherdev(sizeof(*efx));
if (!net_dev)
return -ENOMEM;
net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_TSO);
if (lro)
net_dev->features |= NETIF_F_LRO;
efx = net_dev->priv;
pci_set_drvdata(pci_dev, efx);
rc = efx_init_struct(efx, type, pci_dev, net_dev);
if (rc)
goto fail1;
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
/* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx);
if (rc)
goto fail2;
/* No serialisation is required with the reset path because
* we're in STATE_INIT. */
for (i = 0; i < 5; i++) {
rc = efx_pci_probe_main(efx);
if (rc == 0)
break;
/* Serialise against efx_reset(). No more resets will be
* scheduled since efx_stop_all() has been called, and we
* have not and never have been registered with either
* the rtnetlink or driverlink layers. */
flush_workqueue(efx->reset_workqueue);
/* Retry if a recoverably reset event has been scheduled */
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
(efx->reset_pending != RESET_TYPE_ALL))
goto fail3;
efx->reset_pending = RESET_TYPE_NONE;
}
if (rc) {
EFX_ERR(efx, "Could not reset NIC\n");
goto fail4;
}
/* Switch to the running state before we expose the device to
* the OS. This is to ensure that the initial gathering of
* MAC stats succeeds. */
rtnl_lock();
efx->state = STATE_RUNNING;
rtnl_unlock();
rc = efx_register_netdev(efx);
if (rc)
goto fail5;
EFX_LOG(efx, "initialisation successful\n");
return 0;
fail5:
efx_pci_remove_main(efx);
fail4:
fail3:
efx_fini_io(efx);
fail2:
efx_fini_struct(efx);
fail1:
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
free_netdev(net_dev);
return rc;
}
static struct pci_driver efx_pci_driver = {
.name = EFX_DRIVER_NAME,
.id_table = efx_pci_table,
.probe = efx_pci_probe,
.remove = efx_pci_remove,
};
/**************************************************************************
*
* Kernel module interface
*
*************************************************************************/
module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
static int __init efx_init_module(void)
{
int rc;
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
rc = register_netdevice_notifier(&efx_netdev_notifier);
if (rc)
goto err_notifier;
refill_workqueue = create_workqueue("sfc_refill");
if (!refill_workqueue) {
rc = -ENOMEM;
goto err_refill;
}
rc = pci_register_driver(&efx_pci_driver);
if (rc < 0)
goto err_pci;
return 0;
err_pci:
destroy_workqueue(refill_workqueue);
err_refill:
unregister_netdevice_notifier(&efx_netdev_notifier);
err_notifier:
return rc;
}
static void __exit efx_exit_module(void)
{
printk(KERN_INFO "Solarflare NET driver unloading\n");
pci_unregister_driver(&efx_pci_driver);
destroy_workqueue(refill_workqueue);
unregister_netdevice_notifier(&efx_netdev_notifier);
}
module_init(efx_init_module);
module_exit(efx_exit_module);
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
"Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);