/* File veth.c created by Kyle A. Lucke on Mon Aug 7 2000. */
/*
* IBM eServer iSeries Virtual Ethernet Device Driver
* Copyright (C) 2001 Kyle A. Lucke (klucke@us.ibm.com), IBM Corp.
* Substantially cleaned up by:
* Copyright (C) 2003 David Gibson <dwg@au1.ibm.com>, IBM Corporation.
* Copyright (C) 2004-2005 Michael Ellerman, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*
* This module implements the virtual ethernet device for iSeries LPAR
* Linux. It uses hypervisor message passing to implement an
* ethernet-like network device communicating between partitions on
* the iSeries.
*
* The iSeries LPAR hypervisor currently allows for up to 16 different
* virtual ethernets. These are all dynamically configurable on
* OS/400 partitions, but dynamic configuration is not supported under
* Linux yet. An ethXX network device will be created for each
* virtual ethernet this partition is connected to.
*
* - This driver is responsible for routing packets to and from other
* partitions. The MAC addresses used by the virtual ethernets
* contains meaning and must not be modified.
*
* - Having 2 virtual ethernets to the same remote partition DOES NOT
* double the available bandwidth. The 2 devices will share the
* available hypervisor bandwidth.
*
* - If you send a packet to your own mac address, it will just be
* dropped, you won't get it on the receive side.
*
* - Multicast is implemented by sending the frame frame to every
* other partition. It is the responsibility of the receiving
* partition to filter the addresses desired.
*
* Tunable parameters:
*
* VETH_NUMBUFFERS: This compile time option defaults to 120. It
* controls how much memory Linux will allocate per remote partition
* it is communicating with. It can be thought of as the maximum
* number of packets outstanding to a remote partition at a time.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/ethtool.h>
#include <asm/abs_addr.h>
#include <asm/iseries/mf.h>
#include <asm/uaccess.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/iseries/hv_types.h>
#include <asm/iseries/hv_lp_event.h>
#include <asm/iommu.h>
#include <asm/vio.h>
#undef DEBUG
MODULE_AUTHOR("Kyle Lucke <klucke@us.ibm.com>");
MODULE_DESCRIPTION("iSeries Virtual ethernet driver");
MODULE_LICENSE("GPL");
#define VETH_EVENT_CAP (0)
#define VETH_EVENT_FRAMES (1)
#define VETH_EVENT_MONITOR (2)
#define VETH_EVENT_FRAMES_ACK (3)
#define VETH_MAX_ACKS_PER_MSG (20)
#define VETH_MAX_FRAMES_PER_MSG (6)
struct veth_frames_data {
u32 addr[VETH_MAX_FRAMES_PER_MSG];
u16 len[VETH_MAX_FRAMES_PER_MSG];
u32 eofmask;
};
#define VETH_EOF_SHIFT (32-VETH_MAX_FRAMES_PER_MSG)
struct veth_frames_ack_data {
u16 token[VETH_MAX_ACKS_PER_MSG];
};
struct veth_cap_data {
u8 caps_version;
u8 rsvd1;
u16 num_buffers;
u16 ack_threshold;
u16 rsvd2;
u32 ack_timeout;
u32 rsvd3;
u64 rsvd4[3];
};
struct veth_lpevent {
struct HvLpEvent base_event;
union {
struct veth_cap_data caps_data;
struct veth_frames_data frames_data;
struct veth_frames_ack_data frames_ack_data;
} u;
};
#define DRV_NAME "iseries_veth"
#define DRV_VERSION "2.0"
#define VETH_NUMBUFFERS (120)
#define VETH_ACKTIMEOUT (1000000) /* microseconds */
#define VETH_MAX_MCAST (12)
#define VETH_MAX_MTU (9000)
#if VETH_NUMBUFFERS < 10
#define ACK_THRESHOLD (1)
#elif VETH_NUMBUFFERS < 20
#define ACK_THRESHOLD (4)
#elif VETH_NUMBUFFERS < 40
#define ACK_THRESHOLD (10)
#else
#define ACK_THRESHOLD (20)
#endif
#define VETH_STATE_SHUTDOWN (0x0001)
#define VETH_STATE_OPEN (0x0002)
#define VETH_STATE_RESET (0x0004)
#define VETH_STATE_SENTMON (0x0008)
#define VETH_STATE_SENTCAPS (0x0010)
#define VETH_STATE_GOTCAPACK (0x0020)
#define VETH_STATE_GOTCAPS (0x0040)
#define VETH_STATE_SENTCAPACK (0x0080)
#define VETH_STATE_READY (0x0100)
struct veth_msg {
struct veth_msg *next;
struct veth_frames_data data;
int token;
int in_use;
struct sk_buff *skb;
struct device *dev;
};
struct veth_lpar_connection {
HvLpIndex remote_lp;
struct work_struct statemachine_wq;
struct veth_msg *msgs;
int num_events;
struct veth_cap_data local_caps;
struct kobject kobject;
struct timer_list ack_timer;
struct timer_list reset_timer;
unsigned int reset_timeout;
unsigned long last_contact;
int outstanding_tx;
spinlock_t lock;
unsigned long state;
HvLpInstanceId src_inst;
HvLpInstanceId dst_inst;
struct veth_lpevent cap_event, cap_ack_event;
u16 pending_acks[VETH_MAX_ACKS_PER_MSG];
u32 num_pending_acks;
int num_ack_events;
struct veth_cap_data remote_caps;
u32 ack_timeout;
struct veth_msg *msg_stack_head;
};
struct veth_port {
struct device *dev;
struct net_device_stats stats;
u64 mac_addr;
HvLpIndexMap lpar_map;
/* queue_lock protects the stopped_map and dev's queue. */
spinlock_t queue_lock;
HvLpIndexMap stopped_map;
/* mcast_gate protects promiscuous, num_mcast & mcast_addr. */
rwlock_t mcast_gate;
int promiscuous;
int num_mcast;
u64 mcast_addr[VETH_MAX_MCAST];
struct kobject kobject;
};
static HvLpIndex this_lp;
static struct veth_lpar_connection *veth_cnx[HVMAXARCHITECTEDLPS]; /* = 0 */
static struct net_device *veth_dev[HVMAXARCHITECTEDVIRTUALLANS]; /* = 0 */
static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void veth_recycle_msg(struct veth_lpar_connection *, struct veth_msg *);
static void veth_wake_queues(struct veth_lpar_connection *cnx);
static void veth_stop_queues(struct veth_lpar_connection *cnx);
static void veth_receive(struct veth_lpar_connection *, struct veth_lpevent *);
static void veth_release_connection(struct kobject *kobject);
static void veth_timed_ack(unsigned long ptr);
static void veth_timed_reset(unsigned long ptr);
/*
* Utility functions
*/
#define veth_info(fmt, args...) \
printk(KERN_INFO DRV_NAME ": " fmt, ## args)
#define veth_error(fmt, args...) \
printk(KERN_ERR DRV_NAME ": Error: " fmt, ## args)
#ifdef DEBUG
#define veth_debug(fmt, args...) \
printk(KERN_DEBUG DRV_NAME ": " fmt, ## args)
#else
#define veth_debug(fmt, args...) do {} while (0)
#endif
/* You must hold the connection's lock when you call this function. */
static inline void veth_stack_push(struct veth_lpar_connection *cnx,
struct veth_msg *msg)
{
msg->next = cnx->msg_stack_head;
cnx->msg_stack_head = msg;
}
/* You must hold the connection's lock when you call this function. */
static inline struct veth_msg *veth_stack_pop(struct veth_lpar_connection *cnx)
{
struct veth_msg *msg;
msg = cnx->msg_stack_head;
if (msg)
cnx->msg_stack_head = cnx->msg_stack_head->next;
return msg;
}
/* You must hold the connection's lock when you call this function. */
static inline int veth_stack_is_empty(struct veth_lpar_connection *cnx)
{
return cnx->msg_stack_head == NULL;
}
static inline HvLpEvent_Rc
veth_signalevent(struct veth_lpar_connection *cnx, u16 subtype,
HvLpEvent_AckInd ackind, HvLpEvent_AckType acktype,
u64 token,
u64 data1, u64 data2, u64 data3, u64 data4, u64 data5)
{
return HvCallEvent_signalLpEventFast(cnx->remote_lp,
HvLpEvent_Type_VirtualLan,
subtype, ackind, acktype,
cnx->src_inst,
cnx->dst_inst,
token, data1, data2, data3,
data4, data5);
}
static inline HvLpEvent_Rc veth_signaldata(struct veth_lpar_connection *cnx,
u16 subtype, u64 token, void *data)
{
u64 *p = (u64 *) data;
return veth_signalevent(cnx, subtype, HvLpEvent_AckInd_NoAck,
HvLpEvent_AckType_ImmediateAck,
token, p[0], p[1], p[2], p[3], p[4]);
}
struct veth_allocation {
struct completion c;
int num;
};
static void veth_complete_allocation(void *parm, int number)
{
struct veth_allocation *vc = (struct veth_allocation *)parm;
vc->num = number;
complete(&vc->c);
}
static int veth_allocate_events(HvLpIndex rlp, int number)
{
struct veth_allocation vc = { COMPLETION_INITIALIZER(vc.c), 0 };
mf_allocate_lp_events(rlp, HvLpEvent_Type_VirtualLan,
sizeof(struct veth_lpevent), number,
&veth_complete_allocation, &vc);
wait_for_completion(&vc.c);
return vc.num;
}
/*
* sysfs support
*/
struct veth_cnx_attribute {
struct attribute attr;
ssize_t (*show)(struct veth_lpar_connection *, char *buf);
ssize_t (*store)(struct veth_lpar_connection *, const char *buf);
};
static ssize_t veth_cnx_attribute_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct veth_cnx_attribute *cnx_attr;
struct veth_lpar_connection *cnx;
cnx_attr = container_of(attr, struct veth_cnx_attribute, attr);
cnx = container_of(kobj, struct veth_lpar_connection, kobject);
if (!cnx_attr->show)
return -EIO;
return cnx_attr->show(cnx, buf);
}
#define CUSTOM_CNX_ATTR(_name, _format, _expression) \
static ssize_t _name##_show(struct veth_lpar_connection *cnx, char *buf)\
{ \
return sprintf(buf, _format, _expression); \
} \
struct veth_cnx_attribute veth_cnx_attr_##_name = __ATTR_RO(_name)
#define SIMPLE_CNX_ATTR(_name) \
CUSTOM_CNX_ATTR(_name, "%lu\n", (unsigned long)cnx->_name)
SIMPLE_CNX_ATTR(outstanding_tx);
SIMPLE_CNX_ATTR(remote_lp);
SIMPLE_CNX_ATTR(num_events);
SIMPLE_CNX_ATTR(src_inst);
SIMPLE_CNX_ATTR(dst_inst);
SIMPLE_CNX_ATTR(num_pending_acks);
SIMPLE_CNX_ATTR(num_ack_events);
CUSTOM_CNX_ATTR(ack_timeout, "%d\n", jiffies_to_msecs(cnx->ack_timeout));
CUSTOM_CNX_ATTR(reset_timeout, "%d\n", jiffies_to_msecs(cnx->reset_timeout));
CUSTOM_CNX_ATTR(state, "0x%.4lX\n", cnx->state);
CUSTOM_CNX_ATTR(last_contact, "%d\n", cnx->last_contact ?
jiffies_to_msecs(jiffies - cnx->last_contact) : 0);
#define GET_CNX_ATTR(_name) (&veth_cnx_attr_##_name.attr)
static struct attribute *veth_cnx_default_attrs[] = {
GET_CNX_ATTR(outstanding_tx),
GET_CNX_ATTR(remote_lp),
GET_CNX_ATTR(num_events),
GET_CNX_ATTR(reset_timeout),
GET_CNX_ATTR(last_contact),
GET_CNX_ATTR(state),
GET_CNX_ATTR(src_inst),
GET_CNX_ATTR(dst_inst),
GET_CNX_ATTR(num_pending_acks),
GET_CNX_ATTR(num_ack_events),
GET_CNX_ATTR(ack_timeout),
NULL
};
static struct sysfs_ops veth_cnx_sysfs_ops = {
.show = veth_cnx_attribute_show
};
static struct kobj_type veth_lpar_connection_ktype = {
.release = veth_release_connection,
.sysfs_ops = &veth_cnx_sysfs_ops,
.default_attrs = veth_cnx_default_attrs
};
struct veth_port_attribute {
struct attribute attr;
ssize_t (*show)(struct veth_port *, char *buf);
ssize_t (*store)(struct veth_port *, const char *buf);
};
static ssize_t veth_port_attribute_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct veth_port_attribute *port_attr;
struct veth_port *port;
port_attr = container_of(attr, struct veth_port_attribute, attr);
port = container_of(kobj, struct veth_port, kobject);
if (!port_attr->show)
return -EIO;
return port_attr->show(port, buf);
}
#define CUSTOM_PORT_ATTR(_name, _format, _expression) \
static ssize_t _name##_show(struct veth_port *port, char *buf) \
{ \
return sprintf(buf, _format, _expression); \
} \
struct veth_port_attribute veth_port_attr_##_name = __ATTR_RO(_name)
#define SIMPLE_PORT_ATTR(_name) \
CUSTOM_PORT_ATTR(_name, "%lu\n", (unsigned long)port->_name)
SIMPLE_PORT_ATTR(promiscuous);
SIMPLE_PORT_ATTR(num_mcast);
CUSTOM_PORT_ATTR(lpar_map, "0x%X\n", port->lpar_map);
CUSTOM_PORT_ATTR(stopped_map, "0x%X\n", port->stopped_map);
CUSTOM_PORT_ATTR(mac_addr, "0x%lX\n", port->mac_addr);
#define GET_PORT_ATTR(_name) (&veth_port_attr_##_name.attr)
static struct attribute *veth_port_default_attrs[] = {
GET_PORT_ATTR(mac_addr),
GET_PORT_ATTR(lpar_map),
GET_PORT_ATTR(stopped_map),
GET_PORT_ATTR(promiscuous),
GET_PORT_ATTR(num_mcast),
NULL
};
static struct sysfs_ops veth_port_sysfs_ops = {
.show = veth_port_attribute_show
};
static struct kobj_type veth_port_ktype = {
.sysfs_ops = &veth_port_sysfs_ops,
.default_attrs = veth_port_default_attrs
};
/*
* LPAR connection code
*/
static inline void veth_kick_statemachine(struct veth_lpar_connection *cnx)
{
schedule_work(&cnx->statemachine_wq);
}
static void veth_take_cap(struct veth_lpar_connection *cnx,
struct veth_lpevent *event)
{
unsigned long flags;
spin_lock_irqsave(&cnx->lock, flags);
/* Receiving caps may mean the other end has just come up, so
* we need to reload the instance ID of the far end */
cnx->dst_inst =
HvCallEvent_getTargetLpInstanceId(cnx->remote_lp,
HvLpEvent_Type_VirtualLan);
if (cnx->state & VETH_STATE_GOTCAPS) {
veth_error("Received a second capabilities from LPAR %d.\n",
cnx->remote_lp);
event->base_event.xRc = HvLpEvent_Rc_BufferNotAvailable;
HvCallEvent_ackLpEvent((struct HvLpEvent *) event);
} else {
memcpy(&cnx->cap_event, event, sizeof(cnx->cap_event));
cnx->state |= VETH_STATE_GOTCAPS;
veth_kick_statemachine(cnx);
}
spin_unlock_irqrestore(&cnx->lock, flags);
}
static void veth_take_cap_ack(struct veth_lpar_connection *cnx,
struct veth_lpevent *event)
{
unsigned long flags;
spin_lock_irqsave(&cnx->lock, flags);
if (cnx->state & VETH_STATE_GOTCAPACK) {
veth_error("Received a second capabilities ack from LPAR %d.\n",
cnx->remote_lp);
} else {
memcpy(&cnx->cap_ack_event, event,
sizeof(&cnx->cap_ack_event));
cnx->state |= VETH_STATE_GOTCAPACK;
veth_kick_statemachine(cnx);
}
spin_unlock_irqrestore(&cnx->lock, flags);
}
static void veth_take_monitor_ack(struct veth_lpar_connection *cnx,
struct veth_lpevent *event)
{
unsigned long flags;
spin_lock_irqsave(&cnx->lock, flags);
veth_debug("cnx %d: lost connection.\n", cnx->remote_lp);
/* Avoid kicking the statemachine once we're shutdown.
* It's unnecessary and it could break veth_stop_connection(). */
if (! (cnx->state & VETH_STATE_SHUTDOWN)) {
cnx->state |= VETH_STATE_RESET;
veth_kick_statemachine(cnx);
}
spin_unlock_irqrestore(&cnx->lock, flags);
}
static void veth_handle_ack(struct veth_lpevent *event)
{
HvLpIndex rlp = event->base_event.xTargetLp;
struct veth_lpar_connection *cnx = veth_cnx[rlp];
BUG_ON(! cnx);
switch (event->base_event.xSubtype) {
case VETH_EVENT_CAP:
veth_take_cap_ack(cnx, event);
break;
case VETH_EVENT_MONITOR:
veth_take_monitor_ack(cnx, event);
break;
default:
veth_error("Unknown ack type %d from LPAR %d.\n",
event->base_event.xSubtype, rlp);
};
}
static void veth_handle_int(struct veth_lpevent *event)
{
HvLpIndex rlp = event->base_event.xSourceLp;
struct veth_lpar_connection *cnx = veth_cnx[rlp];
unsigned long flags;
int i, acked = 0;
BUG_ON(! cnx);
switch (event->base_event.xSubtype) {
case VETH_EVENT_CAP:
veth_take_cap(cnx, event);
break;
case VETH_EVENT_MONITOR:
/* do nothing... this'll hang out here til we're dead,
* and the hypervisor will return it for us. */
break;
case VETH_EVENT_FRAMES_ACK:
spin_lock_irqsave(&cnx->lock, flags);
for (i = 0; i < VETH_MAX_ACKS_PER_MSG; ++i) {
u16 msgnum = event->u.frames_ack_data.token[i];
if (msgnum < VETH_NUMBUFFERS) {
veth_recycle_msg(cnx, cnx->msgs + msgnum);
cnx->outstanding_tx--;
acked++;
}
}
if (acked > 0) {
cnx->last_contact = jiffies;
veth_wake_queues(cnx);
}
spin_unlock_irqrestore(&cnx->lock, flags);
break;
case VETH_EVENT_FRAMES:
veth_receive(cnx, event);
break;
default:
veth_error("Unknown interrupt type %d from LPAR %d.\n",
event->base_event.xSubtype, rlp);
};
}
static void veth_handle_event(struct HvLpEvent *event, struct pt_regs *regs)
{
struct veth_lpevent *veth_event = (struct veth_lpevent *)event;
if (event->xFlags.xFunction == HvLpEvent_Function_Ack)
veth_handle_ack(veth_event);
else if (event->xFlags.xFunction == HvLpEvent_Function_Int)
veth_handle_int(veth_event);
}
static int veth_process_caps(struct veth_lpar_connection *cnx)
{
struct veth_cap_data *remote_caps = &cnx->remote_caps;
int num_acks_needed;
/* Convert timer to jiffies */
cnx->ack_timeout = remote_caps->ack_timeout * HZ / 1000000;
if ( (remote_caps->num_buffers == 0)
|| (remote_caps->ack_threshold > VETH_MAX_ACKS_PER_MSG)
|| (remote_caps->ack_threshold == 0)
|| (cnx->ack_timeout == 0) ) {
veth_error("Received incompatible capabilities from LPAR %d.\n",
cnx->remote_lp);
return HvLpEvent_Rc_InvalidSubtypeData;
}
num_acks_needed = (remote_caps->num_buffers
/ remote_caps->ack_threshold) + 1;
/* FIXME: locking on num_ack_events? */
if (cnx->num_ack_events < num_acks_needed) {
int num;
num = veth_allocate_events(cnx->remote_lp,
num_acks_needed-cnx->num_ack_events);
if (num > 0)
cnx->num_ack_events += num;
if (cnx->num_ack_events < num_acks_needed) {
veth_error("Couldn't allocate enough ack events "
"for LPAR %d.\n", cnx->remote_lp);
return HvLpEvent_Rc_BufferNotAvailable;
}
}
return HvLpEvent_Rc_Good;
}
/* FIXME: The gotos here are a bit dubious */
static void veth_statemachine(void *p)
{
struct veth_lpar_connection *cnx = (struct veth_lpar_connection *)p;
int rlp = cnx->remote_lp;
int rc;
spin_lock_irq(&cnx->lock);
restart:
if (cnx->state & VETH_STATE_RESET) {
if (cnx->state & VETH_STATE_OPEN)
HvCallEvent_closeLpEventPath(cnx->remote_lp,
HvLpEvent_Type_VirtualLan);
/*
* Reset ack data. This prevents the ack_timer actually
* doing anything, even if it runs one more time when
* we drop the lock below.
*/
memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks));
cnx->num_pending_acks = 0;
cnx->state &= ~(VETH_STATE_RESET | VETH_STATE_SENTMON
| VETH_STATE_OPEN | VETH_STATE_SENTCAPS
| VETH_STATE_GOTCAPACK | VETH_STATE_GOTCAPS
| VETH_STATE_SENTCAPACK | VETH_STATE_READY);
/* Clean up any leftover messages */
if (cnx->msgs) {
int i;
for (i = 0; i < VETH_NUMBUFFERS; ++i)
veth_recycle_msg(cnx, cnx->msgs + i);
}
cnx->outstanding_tx = 0;
veth_wake_queues(cnx);
/* Drop the lock so we can do stuff that might sleep or
* take other locks. */
spin_unlock_irq(&cnx->lock);
del_timer_sync(&cnx->ack_timer);
del_timer_sync(&cnx->reset_timer);
spin_lock_irq(&cnx->lock);
if (cnx->state & VETH_STATE_RESET)
goto restart;
/* Hack, wait for the other end to reset itself. */
if (! (cnx->state & VETH_STATE_SHUTDOWN)) {
schedule_delayed_work(&cnx->statemachine_wq, 5 * HZ);
goto out;
}
}
if (cnx->state & VETH_STATE_SHUTDOWN)
/* It's all over, do nothing */
goto out;
if ( !(cnx->state & VETH_STATE_OPEN) ) {
if (! cnx->msgs || (cnx->num_events < (2 + VETH_NUMBUFFERS)) )
goto cant_cope;
HvCallEvent_openLpEventPath(rlp, HvLpEvent_Type_VirtualLan);
cnx->src_inst =
HvCallEvent_getSourceLpInstanceId(rlp,
HvLpEvent_Type_VirtualLan);
cnx->dst_inst =
HvCallEvent_getTargetLpInstanceId(rlp,
HvLpEvent_Type_VirtualLan);
cnx->state |= VETH_STATE_OPEN;
}
if ( (cnx->state & VETH_STATE_OPEN)
&& !(cnx->state & VETH_STATE_SENTMON) ) {
rc = veth_signalevent(cnx, VETH_EVENT_MONITOR,
HvLpEvent_AckInd_DoAck,
HvLpEvent_AckType_DeferredAck,
0, 0, 0, 0, 0, 0);
if (rc == HvLpEvent_Rc_Good) {
cnx->state |= VETH_STATE_SENTMON;
} else {
if ( (rc != HvLpEvent_Rc_PartitionDead)
&& (rc != HvLpEvent_Rc_PathClosed) )
veth_error("Error sending monitor to LPAR %d, "
"rc = %d\n", rlp, rc);
/* Oh well, hope we get a cap from the other
* end and do better when that kicks us */
goto out;
}
}
if ( (cnx->state & VETH_STATE_OPEN)
&& !(cnx->state & VETH_STATE_SENTCAPS)) {
u64 *rawcap = (u64 *)&cnx->local_caps;
rc = veth_signalevent(cnx, VETH_EVENT_CAP,
HvLpEvent_AckInd_DoAck,
HvLpEvent_AckType_ImmediateAck,
0, rawcap[0], rawcap[1], rawcap[2],
rawcap[3], rawcap[4]);
if (rc == HvLpEvent_Rc_Good) {
cnx->state |= VETH_STATE_SENTCAPS;
} else {
if ( (rc != HvLpEvent_Rc_PartitionDead)
&& (rc != HvLpEvent_Rc_PathClosed) )
veth_error("Error sending caps to LPAR %d, "
"rc = %d\n", rlp, rc);
/* Oh well, hope we get a cap from the other
* end and do better when that kicks us */
goto out;
}
}
if ((cnx->state & VETH_STATE_GOTCAPS)
&& !(cnx->state & VETH_STATE_SENTCAPACK)) {
struct veth_cap_data *remote_caps = &cnx->remote_caps;
memcpy(remote_caps, &cnx->cap_event.u.caps_data,
sizeof(*remote_caps));
spin_unlock_irq(&cnx->lock);
rc = veth_process_caps(cnx);
spin_lock_irq(&cnx->lock);
/* We dropped the lock, so recheck for anything which
* might mess us up */
if (cnx->state & (VETH_STATE_RESET|VETH_STATE_SHUTDOWN))
goto restart;
cnx->cap_event.base_event.xRc = rc;
HvCallEvent_ackLpEvent((struct HvLpEvent *)&cnx->cap_event);
if (rc == HvLpEvent_Rc_Good)
cnx->state |= VETH_STATE_SENTCAPACK;
else
goto cant_cope;
}
if ((cnx->state & VETH_STATE_GOTCAPACK)
&& (cnx->state & VETH_STATE_GOTCAPS)
&& !(cnx->state & VETH_STATE_READY)) {
if (cnx->cap_ack_event.base_event.xRc == HvLpEvent_Rc_Good) {
/* Start the ACK timer */
cnx->ack_timer.expires = jiffies + cnx->ack_timeout;
add_timer(&cnx->ack_timer);
cnx->state |= VETH_STATE_READY;
} else {
veth_error("Caps rejected by LPAR %d, rc = %d\n",
rlp, cnx->cap_ack_event.base_event.xRc);
goto cant_cope;
}
}
out:
spin_unlock_irq(&cnx->lock);
return;
cant_cope:
/* FIXME: we get here if something happens we really can't
* cope with. The link will never work once we get here, and
* all we can do is not lock the rest of the system up */
veth_error("Unrecoverable error on connection to LPAR %d, shutting down"
" (state = 0x%04lx)\n", rlp, cnx->state);
cnx->state |= VETH_STATE_SHUTDOWN;
spin_unlock_irq(&cnx->lock);
}
static int veth_init_connection(u8 rlp)
{
struct veth_lpar_connection *cnx;
struct veth_msg *msgs;
int i, rc;
if ( (rlp == this_lp)
|| ! HvLpConfig_doLpsCommunicateOnVirtualLan(this_lp, rlp) )
return 0;
cnx = kmalloc(sizeof(*cnx), GFP_KERNEL);
if (! cnx)
return -ENOMEM;
memset(cnx, 0, sizeof(*cnx));
cnx->remote_lp = rlp;
spin_lock_init(&cnx->lock);
INIT_WORK(&cnx->statemachine_wq, veth_statemachine, cnx);
init_timer(&cnx->ack_timer);
cnx->ack_timer.function = veth_timed_ack;
cnx->ack_timer.data = (unsigned long) cnx;
init_timer(&cnx->reset_timer);
cnx->reset_timer.function = veth_timed_reset;
cnx->reset_timer.data = (unsigned long) cnx;
cnx->reset_timeout = 5 * HZ * (VETH_ACKTIMEOUT / 1000000);
memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks));
veth_cnx[rlp] = cnx;
/* This gets us 1 reference, which is held on behalf of the driver
* infrastructure. It's released at module unload. */
kobject_init(&cnx->kobject);
cnx->kobject.ktype = &veth_lpar_connection_ktype;
rc = kobject_set_name(&cnx->kobject, "cnx%.2d", rlp);
if (rc != 0)
return rc;
msgs = kmalloc(VETH_NUMBUFFERS * sizeof(struct veth_msg), GFP_KERNEL);
if (! msgs) {
veth_error("Can't allocate buffers for LPAR %d.\n", rlp);
return -ENOMEM;
}
cnx->msgs = msgs;
memset(msgs, 0, VETH_NUMBUFFERS * sizeof(struct veth_msg));
for (i = 0; i < VETH_NUMBUFFERS; i++) {
msgs[i].token = i;
veth_stack_push(cnx, msgs + i);
}
cnx->num_events = veth_allocate_events(rlp, 2 + VETH_NUMBUFFERS);
if (cnx->num_events < (2 + VETH_NUMBUFFERS)) {
veth_error("Can't allocate enough events for LPAR %d.\n", rlp);
return -ENOMEM;
}
cnx->local_caps.num_buffers = VETH_NUMBUFFERS;
cnx->local_caps.ack_threshold = ACK_THRESHOLD;
cnx->local_caps.ack_timeout = VETH_ACKTIMEOUT;
return 0;
}
static void veth_stop_connection(struct veth_lpar_connection *cnx)
{
if (!cnx)
return;
spin_lock_irq(&cnx->lock);
cnx->state |= VETH_STATE_RESET | VETH_STATE_SHUTDOWN;
veth_kick_statemachine(cnx);
spin_unlock_irq(&cnx->lock);
/* There's a slim chance the reset code has just queued the
* statemachine to run in five seconds. If so we need to cancel
* that and requeue the work to run now. */
if (cancel_delayed_work(&cnx->statemachine_wq)) {
spin_lock_irq(&cnx->lock);
veth_kick_statemachine(cnx);
spin_unlock_irq(&cnx->lock);
}
/* Wait for the state machine to run. */
flush_scheduled_work();
}
static void veth_destroy_connection(struct veth_lpar_connection *cnx)
{
if (!cnx)
return;
if (cnx->num_events > 0)
mf_deallocate_lp_events(cnx->remote_lp,
HvLpEvent_Type_VirtualLan,
cnx->num_events,
NULL, NULL);
if (cnx->num_ack_events > 0)
mf_deallocate_lp_events(cnx->remote_lp,
HvLpEvent_Type_VirtualLan,
cnx->num_ack_events,
NULL, NULL);
kfree(cnx->msgs);
veth_cnx[cnx->remote_lp] = NULL;
kfree(cnx);
}
static void veth_release_connection(struct kobject *kobj)
{
struct veth_lpar_connection *cnx;
cnx = container_of(kobj, struct veth_lpar_connection, kobject);
veth_stop_connection(cnx);
veth_destroy_connection(cnx);
}
/*
* net_device code
*/
static int veth_open(struct net_device *dev)
{
struct veth_port *port = (struct veth_port *) dev->priv;
memset(&port->stats, 0, sizeof (port->stats));
netif_start_queue(dev);
return 0;
}
static int veth_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static struct net_device_stats *veth_get_stats(struct net_device *dev)
{
struct veth_port *port = (struct veth_port *) dev->priv;
return &port->stats;
}
static int veth_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 68) || (new_mtu > VETH_MAX_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static void veth_set_multicast_list(struct net_device *dev)
{
struct veth_port *port = (struct veth_port *) dev->priv;
unsigned long flags;
write_lock_irqsave(&port->mcast_gate, flags);
if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > VETH_MAX_MCAST)) {
port->promiscuous = 1;
} else {
struct dev_mc_list *dmi = dev->mc_list;
int i;
port->promiscuous = 0;
/* Update table */
port->num_mcast = 0;
for (i = 0; i < dev->mc_count; i++) {
u8 *addr = dmi->dmi_addr;
u64 xaddr = 0;
if (addr[0] & 0x01) {/* multicast address? */
memcpy(&xaddr, addr, ETH_ALEN);
port->mcast_addr[port->num_mcast] = xaddr;
port->num_mcast++;
}
dmi = dmi->next;
}
}
write_unlock_irqrestore(&port->mcast_gate, flags);
}
static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strncpy(info->driver, DRV_NAME, sizeof(info->driver) - 1);
info->driver[sizeof(info->driver) - 1] = '\0';
strncpy(info->version, DRV_VERSION, sizeof(info->version) - 1);
info->version[sizeof(info->version) - 1] = '\0';
}
static int veth_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
ecmd->supported = (SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_FIBRE);
ecmd->advertising = (SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_FIBRE);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->phy_address = 0;
ecmd->speed = SPEED_1000;
ecmd->duplex = DUPLEX_FULL;
ecmd->autoneg = AUTONEG_ENABLE;
ecmd->maxtxpkt = 120;
ecmd->maxrxpkt = 120;
return 0;
}
static u32 veth_get_link(struct net_device *dev)
{
return 1;
}
static struct ethtool_ops ops = {
.get_drvinfo = veth_get_drvinfo,
.get_settings = veth_get_settings,
.get_link = veth_get_link,
};
static struct net_device * __init veth_probe_one(int vlan, struct device *vdev)
{
struct net_device *dev;
struct veth_port *port;
int i, rc;
dev = alloc_etherdev(sizeof (struct veth_port));
if (! dev) {
veth_error("Unable to allocate net_device structure!\n");
return NULL;
}
port = (struct veth_port *) dev->priv;
spin_lock_init(&port->queue_lock);
rwlock_init(&port->mcast_gate);
port->stopped_map = 0;
for (i = 0; i < HVMAXARCHITECTEDLPS; i++) {
HvLpVirtualLanIndexMap map;
if (i == this_lp)
continue;
map = HvLpConfig_getVirtualLanIndexMapForLp(i);
if (map & (0x8000 >> vlan))
port->lpar_map |= (1 << i);
}
port->dev = vdev;
dev->dev_addr[0] = 0x02;
dev->dev_addr[1] = 0x01;
dev->dev_addr[2] = 0xff;
dev->dev_addr[3] = vlan;
dev->dev_addr[4] = 0xff;
dev->dev_addr[5] = this_lp;
dev->mtu = VETH_MAX_MTU;
memcpy(&port->mac_addr, dev->dev_addr, 6);
dev->open = veth_open;
dev->hard_start_xmit = veth_start_xmit;
dev->stop = veth_close;
dev->get_stats = veth_get_stats;
dev->change_mtu = veth_change_mtu;
dev->set_mac_address = NULL;
dev->set_multicast_list = veth_set_multicast_list;
SET_ETHTOOL_OPS(dev, &ops);
SET_NETDEV_DEV(dev, vdev);
rc = register_netdev(dev);
if (rc != 0) {
veth_error("Failed registering net device for vlan%d.\n", vlan);
free_netdev(dev);
return NULL;
}
kobject_init(&port->kobject);
port->kobject.parent = &dev->class_dev.kobj;
port->kobject.ktype = &veth_port_ktype;
kobject_set_name(&port->kobject, "veth_port");
if (0 != kobject_add(&port->kobject))
veth_error("Failed adding port for %s to sysfs.\n", dev->name);
veth_info("%s attached to iSeries vlan %d (LPAR map = 0x%.4X)\n",
dev->name, vlan, port->lpar_map);
return dev;
}
/*
* Tx path
*/
static int veth_transmit_to_one(struct sk_buff *skb, HvLpIndex rlp,
struct net_device *dev)
{
struct veth_lpar_connection *cnx = veth_cnx[rlp];
struct veth_port *port = (struct veth_port *) dev->priv;
HvLpEvent_Rc rc;
struct veth_msg *msg = NULL;
unsigned long flags;
if (! cnx)
return 0;
spin_lock_irqsave(&cnx->lock, flags);
if (! (cnx->state & VETH_STATE_READY))
goto no_error;
if ((skb->len - ETH_HLEN) > VETH_MAX_MTU)
goto drop;
msg = veth_stack_pop(cnx);
if (! msg)
goto drop;
msg->in_use = 1;
msg->skb = skb_get(skb);
msg->data.addr[0] = dma_map_single(port->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(msg->data.addr[0]))
goto recycle_and_drop;
msg->dev = port->dev;
msg->data.len[0] = skb->len;
msg->data.eofmask = 1 << VETH_EOF_SHIFT;
rc = veth_signaldata(cnx, VETH_EVENT_FRAMES, msg->token, &msg->data);
if (rc != HvLpEvent_Rc_Good)
goto recycle_and_drop;
/* If the timer's not already running, start it now. */
if (0 == cnx->outstanding_tx)
mod_timer(&cnx->reset_timer, jiffies + cnx->reset_timeout);
cnx->last_contact = jiffies;
cnx->outstanding_tx++;
if (veth_stack_is_empty(cnx))
veth_stop_queues(cnx);
no_error:
spin_unlock_irqrestore(&cnx->lock, flags);
return 0;
recycle_and_drop:
veth_recycle_msg(cnx, msg);
drop:
spin_unlock_irqrestore(&cnx->lock, flags);
return 1;
}
static void veth_transmit_to_many(struct sk_buff *skb,
HvLpIndexMap lpmask,
struct net_device *dev)
{
struct veth_port *port = (struct veth_port *) dev->priv;
int i, success, error;
success = error = 0;
for (i = 0; i < HVMAXARCHITECTEDLPS; i++) {
if ((lpmask & (1 << i)) == 0)
continue;
if (veth_transmit_to_one(skb, i, dev))
error = 1;
else
success = 1;
}
if (error)
port->stats.tx_errors++;
if (success) {
port->stats.tx_packets++;
port->stats.tx_bytes += skb->len;
}
}
static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned char *frame = skb->data;
struct veth_port *port = (struct veth_port *) dev->priv;
HvLpIndexMap lpmask;
if (! (frame[0] & 0x01)) {
/* unicast packet */
HvLpIndex rlp = frame[5];
if ( ! ((1 << rlp) & port->lpar_map) ) {
dev_kfree_skb(skb);
return 0;
}
lpmask = 1 << rlp;
} else {
lpmask = port->lpar_map;
}
veth_transmit_to_many(skb, lpmask, dev);
dev_kfree_skb(skb);
return 0;
}
/* You must hold the connection's lock when you call this function. */
static void veth_recycle_msg(struct veth_lpar_connection *cnx,
struct veth_msg *msg)
{
u32 dma_address, dma_length;
if (msg->in_use) {
msg->in_use = 0;
dma_address = msg->data.addr[0];
dma_length = msg->data.len[0];
if (!dma_mapping_error(dma_address))
dma_unmap_single(msg->dev, dma_address, dma_length,
DMA_TO_DEVICE);
if (msg->skb) {
dev_kfree_skb_any(msg->skb);
msg->skb = NULL;
}
memset(&msg->data, 0, sizeof(msg->data));
veth_stack_push(cnx, msg);
} else if (cnx->state & VETH_STATE_OPEN) {
veth_error("Non-pending frame (# %d) acked by LPAR %d.\n",
cnx->remote_lp, msg->token);
}
}
static void veth_wake_queues(struct veth_lpar_connection *cnx)
{
int i;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
struct net_device *dev = veth_dev[i];
struct veth_port *port;
unsigned long flags;
if (! dev)
continue;
port = (struct veth_port *)dev->priv;
if (! (port->lpar_map & (1<<cnx->remote_lp)))
continue;
spin_lock_irqsave(&port->queue_lock, flags);
port->stopped_map &= ~(1 << cnx->remote_lp);
if (0 == port->stopped_map && netif_queue_stopped(dev)) {
veth_debug("cnx %d: woke queue for %s.\n",
cnx->remote_lp, dev->name);
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&port->queue_lock, flags);
}
}
static void veth_stop_queues(struct veth_lpar_connection *cnx)
{
int i;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
struct net_device *dev = veth_dev[i];
struct veth_port *port;
if (! dev)
continue;
port = (struct veth_port *)dev->priv;
/* If this cnx is not on the vlan for this port, continue */
if (! (port->lpar_map & (1 << cnx->remote_lp)))
continue;
spin_lock(&port->queue_lock);
netif_stop_queue(dev);
port->stopped_map |= (1 << cnx->remote_lp);
veth_debug("cnx %d: stopped queue for %s, map = 0x%x.\n",
cnx->remote_lp, dev->name, port->stopped_map);
spin_unlock(&port->queue_lock);
}
}
static void veth_timed_reset(unsigned long ptr)
{
struct veth_lpar_connection *cnx = (struct veth_lpar_connection *)ptr;
unsigned long trigger_time, flags;
/* FIXME is it possible this fires after veth_stop_connection()?
* That would reschedule the statemachine for 5 seconds and probably
* execute it after the module's been unloaded. Hmm. */
spin_lock_irqsave(&cnx->lock, flags);
if (cnx->outstanding_tx > 0) {
trigger_time = cnx->last_contact + cnx->reset_timeout;
if (trigger_time < jiffies) {
cnx->state |= VETH_STATE_RESET;
veth_kick_statemachine(cnx);
veth_error("%d packets not acked by LPAR %d within %d "
"seconds, resetting.\n",
cnx->outstanding_tx, cnx->remote_lp,
cnx->reset_timeout / HZ);
} else {
/* Reschedule the timer */
trigger_time = jiffies + cnx->reset_timeout;
mod_timer(&cnx->reset_timer, trigger_time);
}
}
spin_unlock_irqrestore(&cnx->lock, flags);
}
/*
* Rx path
*/
static inline int veth_frame_wanted(struct veth_port *port, u64 mac_addr)
{
int wanted = 0;
int i;
unsigned long flags;
if ( (mac_addr == port->mac_addr) || (mac_addr == 0xffffffffffff0000) )
return 1;
read_lock_irqsave(&port->mcast_gate, flags);
if (port->promiscuous) {
wanted = 1;
goto out;
}
for (i = 0; i < port->num_mcast; ++i) {
if (port->mcast_addr[i] == mac_addr) {
wanted = 1;
break;
}
}
out:
read_unlock_irqrestore(&port->mcast_gate, flags);
return wanted;
}
struct dma_chunk {
u64 addr;
u64 size;
};
#define VETH_MAX_PAGES_PER_FRAME ( (VETH_MAX_MTU+PAGE_SIZE-2)/PAGE_SIZE + 1 )
static inline void veth_build_dma_list(struct dma_chunk *list,
unsigned char *p, unsigned long length)
{
unsigned long done;
int i = 1;
/* FIXME: skbs are continguous in real addresses. Do we
* really need to break it into PAGE_SIZE chunks, or can we do
* it just at the granularity of iSeries real->absolute
* mapping? Indeed, given the way the allocator works, can we
* count on them being absolutely contiguous? */
list[0].addr = iseries_hv_addr(p);
list[0].size = min(length,
PAGE_SIZE - ((unsigned long)p & ~PAGE_MASK));
done = list[0].size;
while (done < length) {
list[i].addr = iseries_hv_addr(p + done);
list[i].size = min(length-done, PAGE_SIZE);
done += list[i].size;
i++;
}
}
static void veth_flush_acks(struct veth_lpar_connection *cnx)
{
HvLpEvent_Rc rc;
rc = veth_signaldata(cnx, VETH_EVENT_FRAMES_ACK,
0, &cnx->pending_acks);
if (rc != HvLpEvent_Rc_Good)
veth_error("Failed acking frames from LPAR %d, rc = %d\n",
cnx->remote_lp, (int)rc);
cnx->num_pending_acks = 0;
memset(&cnx->pending_acks, 0xff, sizeof(cnx->pending_acks));
}
static void veth_receive(struct veth_lpar_connection *cnx,
struct veth_lpevent *event)
{
struct veth_frames_data *senddata = &event->u.frames_data;
int startchunk = 0;
int nchunks;
unsigned long flags;
HvLpDma_Rc rc;
do {
u16 length = 0;
struct sk_buff *skb;
struct dma_chunk local_list[VETH_MAX_PAGES_PER_FRAME];
struct dma_chunk remote_list[VETH_MAX_FRAMES_PER_MSG];
u64 dest;
HvLpVirtualLanIndex vlan;
struct net_device *dev;
struct veth_port *port;
/* FIXME: do we need this? */
memset(local_list, 0, sizeof(local_list));
memset(remote_list, 0, sizeof(VETH_MAX_FRAMES_PER_MSG));
/* a 0 address marks the end of the valid entries */
if (senddata->addr[startchunk] == 0)
break;
/* make sure that we have at least 1 EOF entry in the
* remaining entries */
if (! (senddata->eofmask >> (startchunk + VETH_EOF_SHIFT))) {
veth_error("Missing EOF fragment in event "
"eofmask = 0x%x startchunk = %d\n",
(unsigned)senddata->eofmask,
startchunk);
break;
}
/* build list of chunks in this frame */
nchunks = 0;
do {
remote_list[nchunks].addr =
(u64) senddata->addr[startchunk+nchunks] << 32;
remote_list[nchunks].size =
senddata->len[startchunk+nchunks];
length += remote_list[nchunks].size;
} while (! (senddata->eofmask &
(1 << (VETH_EOF_SHIFT + startchunk + nchunks++))));
/* length == total length of all chunks */
/* nchunks == # of chunks in this frame */
if ((length - ETH_HLEN) > VETH_MAX_MTU) {
veth_error("Received oversize frame from LPAR %d "
"(length = %d)\n",
cnx->remote_lp, length);
continue;
}
skb = alloc_skb(length, GFP_ATOMIC);
if (!skb)
continue;
veth_build_dma_list(local_list, skb->data, length);
rc = HvCallEvent_dmaBufList(HvLpEvent_Type_VirtualLan,
event->base_event.xSourceLp,
HvLpDma_Direction_RemoteToLocal,
cnx->src_inst,
cnx->dst_inst,
HvLpDma_AddressType_RealAddress,
HvLpDma_AddressType_TceIndex,
iseries_hv_addr(&local_list),
iseries_hv_addr(&remote_list),
length);
if (rc != HvLpDma_Rc_Good) {
dev_kfree_skb_irq(skb);
continue;
}
vlan = skb->data[9];
dev = veth_dev[vlan];
if (! dev) {
/*
* Some earlier versions of the driver sent
* broadcasts down all connections, even to lpars
* that weren't on the relevant vlan. So ignore
* packets belonging to a vlan we're not on.
* We can also be here if we receive packets while
* the driver is going down, because then dev is NULL.
*/
dev_kfree_skb_irq(skb);
continue;
}
port = (struct veth_port *)dev->priv;
dest = *((u64 *) skb->data) & 0xFFFFFFFFFFFF0000;
if ((vlan > HVMAXARCHITECTEDVIRTUALLANS) || !port) {
dev_kfree_skb_irq(skb);
continue;
}
if (! veth_frame_wanted(port, dest)) {
dev_kfree_skb_irq(skb);
continue;
}
skb_put(skb, length);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_NONE;
netif_rx(skb); /* send it up */
port->stats.rx_packets++;
port->stats.rx_bytes += length;
} while (startchunk += nchunks, startchunk < VETH_MAX_FRAMES_PER_MSG);
/* Ack it */
spin_lock_irqsave(&cnx->lock, flags);
BUG_ON(cnx->num_pending_acks > VETH_MAX_ACKS_PER_MSG);
cnx->pending_acks[cnx->num_pending_acks++] =
event->base_event.xCorrelationToken;
if ( (cnx->num_pending_acks >= cnx->remote_caps.ack_threshold)
|| (cnx->num_pending_acks >= VETH_MAX_ACKS_PER_MSG) )
veth_flush_acks(cnx);
spin_unlock_irqrestore(&cnx->lock, flags);
}
static void veth_timed_ack(unsigned long ptr)
{
struct veth_lpar_connection *cnx = (struct veth_lpar_connection *) ptr;
unsigned long flags;
/* Ack all the events */
spin_lock_irqsave(&cnx->lock, flags);
if (cnx->num_pending_acks > 0)
veth_flush_acks(cnx);
/* Reschedule the timer */
cnx->ack_timer.expires = jiffies + cnx->ack_timeout;
add_timer(&cnx->ack_timer);
spin_unlock_irqrestore(&cnx->lock, flags);
}
static int veth_remove(struct vio_dev *vdev)
{
struct veth_lpar_connection *cnx;
struct net_device *dev;
struct veth_port *port;
int i;
dev = veth_dev[vdev->unit_address];
if (! dev)
return 0;
port = netdev_priv(dev);
for (i = 0; i < HVMAXARCHITECTEDLPS; i++) {
cnx = veth_cnx[i];
if (cnx && (port->lpar_map & (1 << i))) {
/* Drop our reference to connections on our VLAN */
kobject_put(&cnx->kobject);
}
}
veth_dev[vdev->unit_address] = NULL;
kobject_del(&port->kobject);
kobject_put(&port->kobject);
unregister_netdev(dev);
free_netdev(dev);
return 0;
}
static int veth_probe(struct vio_dev *vdev, const struct vio_device_id *id)
{
int i = vdev->unit_address;
struct net_device *dev;
struct veth_port *port;
dev = veth_probe_one(i, &vdev->dev);
if (dev == NULL) {
veth_remove(vdev);
return 1;
}
veth_dev[i] = dev;
port = (struct veth_port*)netdev_priv(dev);
/* Start the state machine on each connection on this vlan. If we're
* the first dev to do so this will commence link negotiation */
for (i = 0; i < HVMAXARCHITECTEDLPS; i++) {
struct veth_lpar_connection *cnx;
if (! (port->lpar_map & (1 << i)))
continue;
cnx = veth_cnx[i];
if (!cnx)
continue;
kobject_get(&cnx->kobject);
veth_kick_statemachine(cnx);
}
return 0;
}
/**
* veth_device_table: Used by vio.c to match devices that we
* support.
*/
static struct vio_device_id veth_device_table[] __devinitdata = {
{ "vlan", "" },
{ "", "" }
};
MODULE_DEVICE_TABLE(vio, veth_device_table);
static struct vio_driver veth_driver = {
.id_table = veth_device_table,
.probe = veth_probe,
.remove = veth_remove,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
}
};
/*
* Module initialization/cleanup
*/
void __exit veth_module_cleanup(void)
{
int i;
struct veth_lpar_connection *cnx;
/* Disconnect our "irq" to stop events coming from the Hypervisor. */
HvLpEvent_unregisterHandler(HvLpEvent_Type_VirtualLan);
/* Make sure any work queued from Hypervisor callbacks is finished. */
flush_scheduled_work();
for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) {
cnx = veth_cnx[i];
if (!cnx)
continue;
/* Remove the connection from sysfs */
kobject_del(&cnx->kobject);
/* Drop the driver's reference to the connection */
kobject_put(&cnx->kobject);
}
/* Unregister the driver, which will close all the netdevs and stop
* the connections when they're no longer referenced. */
vio_unregister_driver(&veth_driver);
}
module_exit(veth_module_cleanup);
int __init veth_module_init(void)
{
int i;
int rc;
this_lp = HvLpConfig_getLpIndex_outline();
for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) {
rc = veth_init_connection(i);
if (rc != 0)
goto error;
}
HvLpEvent_registerHandler(HvLpEvent_Type_VirtualLan,
&veth_handle_event);
rc = vio_register_driver(&veth_driver);
if (rc != 0)
goto error;
for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) {
struct kobject *kobj;
if (!veth_cnx[i])
continue;
kobj = &veth_cnx[i]->kobject;
kobj->parent = &veth_driver.driver.kobj;
/* If the add failes, complain but otherwise continue */
if (0 != kobject_add(kobj))
veth_error("cnx %d: Failed adding to sysfs.\n", i);
}
return 0;
error:
for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) {
veth_destroy_connection(veth_cnx[i]);
}
return rc;
}
module_init(veth_module_init);