/*
* Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
*
* 2005-2009 (c) Aeroflex Gaisler AB
*
* This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
* available in the GRLIB VHDL IP core library.
*
* Full documentation of both cores can be found here:
* http://www.gaisler.com/products/grlib/grip.pdf
*
* The Gigabit version supports scatter/gather DMA, any alignment of
* buffers and checksum offloading.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Contributors: Kristoffer Glembo
* Daniel Hellstrom
* Marko Isomaki
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/io.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <asm/cacheflush.h>
#include <asm/byteorder.h>
#ifdef CONFIG_SPARC
#include <asm/idprom.h>
#endif
#include "greth.h"
#define GRETH_DEF_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
module_param(greth_debug, int, 0);
MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
/* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
static int macaddr[6];
module_param_array(macaddr, int, NULL, 0);
MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
static int greth_edcl = 1;
module_param(greth_edcl, int, 0);
MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
static int greth_open(struct net_device *dev);
static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
struct net_device *dev);
static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
struct net_device *dev);
static int greth_rx(struct net_device *dev, int limit);
static int greth_rx_gbit(struct net_device *dev, int limit);
static void greth_clean_tx(struct net_device *dev);
static void greth_clean_tx_gbit(struct net_device *dev);
static irqreturn_t greth_interrupt(int irq, void *dev_id);
static int greth_close(struct net_device *dev);
static int greth_set_mac_add(struct net_device *dev, void *p);
static void greth_set_multicast_list(struct net_device *dev);
#define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
#define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
#define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
#define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
#define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
#define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
#define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
static void greth_print_rx_packet(void *addr, int len)
{
print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
addr, len, true);
}
static void greth_print_tx_packet(struct sk_buff *skb)
{
int i;
int length;
if (skb_shinfo(skb)->nr_frags == 0)
length = skb->len;
else
length = skb_headlen(skb);
print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, length, true);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
skb_shinfo(skb)->frags[i].page_offset,
length, true);
}
}
static inline void greth_enable_tx(struct greth_private *greth)
{
wmb();
GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
}
static inline void greth_disable_tx(struct greth_private *greth)
{
GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
}
static inline void greth_enable_rx(struct greth_private *greth)
{
wmb();
GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
}
static inline void greth_disable_rx(struct greth_private *greth)
{
GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
}
static inline void greth_enable_irqs(struct greth_private *greth)
{
GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
}
static inline void greth_disable_irqs(struct greth_private *greth)
{
GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
}
static inline void greth_write_bd(u32 *bd, u32 val)
{
__raw_writel(cpu_to_be32(val), bd);
}
static inline u32 greth_read_bd(u32 *bd)
{
return be32_to_cpu(__raw_readl(bd));
}
static void greth_clean_rings(struct greth_private *greth)
{
int i;
struct greth_bd *rx_bdp = greth->rx_bd_base;
struct greth_bd *tx_bdp = greth->tx_bd_base;
if (greth->gbit_mac) {
/* Free and unmap RX buffers */
for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
if (greth->rx_skbuff[i] != NULL) {
dev_kfree_skb(greth->rx_skbuff[i]);
dma_unmap_single(greth->dev,
greth_read_bd(&rx_bdp->addr),
MAX_FRAME_SIZE+NET_IP_ALIGN,
DMA_FROM_DEVICE);
}
}
/* TX buffers */
while (greth->tx_free < GRETH_TXBD_NUM) {
struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
int nr_frags = skb_shinfo(skb)->nr_frags;
tx_bdp = greth->tx_bd_base + greth->tx_last;
greth->tx_last = NEXT_TX(greth->tx_last);
dma_unmap_single(greth->dev,
greth_read_bd(&tx_bdp->addr),
skb_headlen(skb),
DMA_TO_DEVICE);
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
tx_bdp = greth->tx_bd_base + greth->tx_last;
dma_unmap_page(greth->dev,
greth_read_bd(&tx_bdp->addr),
frag->size,
DMA_TO_DEVICE);
greth->tx_last = NEXT_TX(greth->tx_last);
}
greth->tx_free += nr_frags+1;
dev_kfree_skb(skb);
}
} else { /* 10/100 Mbps MAC */
for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
kfree(greth->rx_bufs[i]);
dma_unmap_single(greth->dev,
greth_read_bd(&rx_bdp->addr),
MAX_FRAME_SIZE,
DMA_FROM_DEVICE);
}
for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
kfree(greth->tx_bufs[i]);
dma_unmap_single(greth->dev,
greth_read_bd(&tx_bdp->addr),
MAX_FRAME_SIZE,
DMA_TO_DEVICE);
}
}
}
static int greth_init_rings(struct greth_private *greth)
{
struct sk_buff *skb;
struct greth_bd *rx_bd, *tx_bd;
u32 dma_addr;
int i;
rx_bd = greth->rx_bd_base;
tx_bd = greth->tx_bd_base;
/* Initialize descriptor rings and buffers */
if (greth->gbit_mac) {
for (i = 0; i < GRETH_RXBD_NUM; i++) {
skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
if (skb == NULL) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Error allocating DMA ring.\n");
goto cleanup;
}
skb_reserve(skb, NET_IP_ALIGN);
dma_addr = dma_map_single(greth->dev,
skb->data,
MAX_FRAME_SIZE+NET_IP_ALIGN,
DMA_FROM_DEVICE);
if (dma_mapping_error(greth->dev, dma_addr)) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Could not create initial DMA mapping\n");
goto cleanup;
}
greth->rx_skbuff[i] = skb;
greth_write_bd(&rx_bd[i].addr, dma_addr);
greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
}
} else {
/* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
for (i = 0; i < GRETH_RXBD_NUM; i++) {
greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
if (greth->rx_bufs[i] == NULL) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Error allocating DMA ring.\n");
goto cleanup;
}
dma_addr = dma_map_single(greth->dev,
greth->rx_bufs[i],
MAX_FRAME_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(greth->dev, dma_addr)) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Could not create initial DMA mapping\n");
goto cleanup;
}
greth_write_bd(&rx_bd[i].addr, dma_addr);
greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
}
for (i = 0; i < GRETH_TXBD_NUM; i++) {
greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
if (greth->tx_bufs[i] == NULL) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Error allocating DMA ring.\n");
goto cleanup;
}
dma_addr = dma_map_single(greth->dev,
greth->tx_bufs[i],
MAX_FRAME_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(greth->dev, dma_addr)) {
if (netif_msg_ifup(greth))
dev_err(greth->dev, "Could not create initial DMA mapping\n");
goto cleanup;
}
greth_write_bd(&tx_bd[i].addr, dma_addr);
greth_write_bd(&tx_bd[i].stat, 0);
}
}
greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
/* Initialize pointers. */
greth->rx_cur = 0;
greth->tx_next = 0;
greth->tx_last = 0;
greth->tx_free = GRETH_TXBD_NUM;
/* Initialize descriptor base address */
GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
return 0;
cleanup:
greth_clean_rings(greth);
return -ENOMEM;
}
static int greth_open(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
int err;
err = greth_init_rings(greth);
if (err) {
if (netif_msg_ifup(greth))
dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
return err;
}
err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
if (err) {
if (netif_msg_ifup(greth))
dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
greth_clean_rings(greth);
return err;
}
if (netif_msg_ifup(greth))
dev_dbg(&dev->dev, " starting queue\n");
netif_start_queue(dev);
napi_enable(&greth->napi);
greth_enable_irqs(greth);
greth_enable_tx(greth);
greth_enable_rx(greth);
return 0;
}
static int greth_close(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
napi_disable(&greth->napi);
greth_disable_tx(greth);
netif_stop_queue(dev);
free_irq(greth->irq, (void *) dev);
greth_clean_rings(greth);
return 0;
}
static netdev_tx_t
greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
struct greth_bd *bdp;
int err = NETDEV_TX_OK;
u32 status, dma_addr;
bdp = greth->tx_bd_base + greth->tx_next;
if (unlikely(greth->tx_free <= 0)) {
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
if (netif_msg_pktdata(greth))
greth_print_tx_packet(skb);
if (unlikely(skb->len > MAX_FRAME_SIZE)) {
dev->stats.tx_errors++;
goto out;
}
dma_addr = greth_read_bd(&bdp->addr);
memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
/* Wrap around descriptor ring */
if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
status |= GRETH_BD_WR;
}
greth->tx_next = NEXT_TX(greth->tx_next);
greth->tx_free--;
/* No more descriptors */
if (unlikely(greth->tx_free == 0)) {
/* Free transmitted descriptors */
greth_clean_tx(dev);
/* If nothing was cleaned, stop queue & wait for irq */
if (unlikely(greth->tx_free == 0)) {
status |= GRETH_BD_IE;
netif_stop_queue(dev);
}
}
/* Write descriptor control word and enable transmission */
greth_write_bd(&bdp->stat, status);
greth_enable_tx(greth);
out:
dev_kfree_skb(skb);
return err;
}
static netdev_tx_t
greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
struct greth_bd *bdp;
u32 status = 0, dma_addr;
int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
nr_frags = skb_shinfo(skb)->nr_frags;
if (greth->tx_free < nr_frags + 1) {
netif_stop_queue(dev);
err = NETDEV_TX_BUSY;
goto out;
}
if (netif_msg_pktdata(greth))
greth_print_tx_packet(skb);
if (unlikely(skb->len > MAX_FRAME_SIZE)) {
dev->stats.tx_errors++;
goto out;
}
/* Save skb pointer. */
greth->tx_skbuff[greth->tx_next] = skb;
/* Linear buf */
if (nr_frags != 0)
status = GRETH_TXBD_MORE;
status |= GRETH_TXBD_CSALL;
status |= skb_headlen(skb) & GRETH_BD_LEN;
if (greth->tx_next == GRETH_TXBD_NUM_MASK)
status |= GRETH_BD_WR;
bdp = greth->tx_bd_base + greth->tx_next;
greth_write_bd(&bdp->stat, status);
dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
goto map_error;
greth_write_bd(&bdp->addr, dma_addr);
curr_tx = NEXT_TX(greth->tx_next);
/* Frags */
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
greth->tx_skbuff[curr_tx] = NULL;
bdp = greth->tx_bd_base + curr_tx;
status = GRETH_TXBD_CSALL;
status |= frag->size & GRETH_BD_LEN;
/* Wrap around descriptor ring */
if (curr_tx == GRETH_TXBD_NUM_MASK)
status |= GRETH_BD_WR;
/* More fragments left */
if (i < nr_frags - 1)
status |= GRETH_TXBD_MORE;
/* ... last fragment, check if out of descriptors */
else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
/* Enable interrupts and stop queue */
status |= GRETH_BD_IE;
netif_stop_queue(dev);
}
greth_write_bd(&bdp->stat, status);
dma_addr = dma_map_page(greth->dev,
frag->page,
frag->page_offset,
frag->size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
goto frag_map_error;
greth_write_bd(&bdp->addr, dma_addr);
curr_tx = NEXT_TX(curr_tx);
}
wmb();
/* Enable the descriptors that we configured ... */
for (i = 0; i < nr_frags + 1; i++) {
bdp = greth->tx_bd_base + greth->tx_next;
greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
greth->tx_next = NEXT_TX(greth->tx_next);
greth->tx_free--;
}
greth_enable_tx(greth);
return NETDEV_TX_OK;
frag_map_error:
/* Unmap SKB mappings that succeeded */
for (i = 0; greth->tx_next + i != curr_tx; i++) {
bdp = greth->tx_bd_base + greth->tx_next + i;
dma_unmap_single(greth->dev,
greth_read_bd(&bdp->addr),
greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
DMA_TO_DEVICE);
}
map_error:
if (net_ratelimit())
dev_warn(greth->dev, "Could not create TX DMA mapping\n");
dev_kfree_skb(skb);
out:
return err;
}
static irqreturn_t greth_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct greth_private *greth;
u32 status;
irqreturn_t retval = IRQ_NONE;
greth = netdev_priv(dev);
spin_lock(&greth->devlock);
/* Get the interrupt events that caused us to be here. */
status = GRETH_REGLOAD(greth->regs->status);
/* Handle rx and tx interrupts through poll */
if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
/* Clear interrupt status */
GRETH_REGORIN(greth->regs->status,
status & (GRETH_INT_RX | GRETH_INT_TX));
retval = IRQ_HANDLED;
/* Disable interrupts and schedule poll() */
greth_disable_irqs(greth);
napi_schedule(&greth->napi);
}
mmiowb();
spin_unlock(&greth->devlock);
return retval;
}
static void greth_clean_tx(struct net_device *dev)
{
struct greth_private *greth;
struct greth_bd *bdp;
u32 stat;
greth = netdev_priv(dev);
while (1) {
bdp = greth->tx_bd_base + greth->tx_last;
stat = greth_read_bd(&bdp->stat);
if (unlikely(stat & GRETH_BD_EN))
break;
if (greth->tx_free == GRETH_TXBD_NUM)
break;
/* Check status for errors */
if (unlikely(stat & GRETH_TXBD_STATUS)) {
dev->stats.tx_errors++;
if (stat & GRETH_TXBD_ERR_AL)
dev->stats.tx_aborted_errors++;
if (stat & GRETH_TXBD_ERR_UE)
dev->stats.tx_fifo_errors++;
}
dev->stats.tx_packets++;
greth->tx_last = NEXT_TX(greth->tx_last);
greth->tx_free++;
}
if (greth->tx_free > 0) {
netif_wake_queue(dev);
}
}
static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
{
/* Check status for errors */
if (unlikely(stat & GRETH_TXBD_STATUS)) {
dev->stats.tx_errors++;
if (stat & GRETH_TXBD_ERR_AL)
dev->stats.tx_aborted_errors++;
if (stat & GRETH_TXBD_ERR_UE)
dev->stats.tx_fifo_errors++;
if (stat & GRETH_TXBD_ERR_LC)
dev->stats.tx_aborted_errors++;
}
dev->stats.tx_packets++;
}
static void greth_clean_tx_gbit(struct net_device *dev)
{
struct greth_private *greth;
struct greth_bd *bdp, *bdp_last_frag;
struct sk_buff *skb;
u32 stat;
int nr_frags, i;
greth = netdev_priv(dev);
while (greth->tx_free < GRETH_TXBD_NUM) {
skb = greth->tx_skbuff[greth->tx_last];
nr_frags = skb_shinfo(skb)->nr_frags;
/* We only clean fully completed SKBs */
bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
stat = bdp_last_frag->stat;
if (stat & GRETH_BD_EN)
break;
greth->tx_skbuff[greth->tx_last] = NULL;
greth_update_tx_stats(dev, stat);
bdp = greth->tx_bd_base + greth->tx_last;
greth->tx_last = NEXT_TX(greth->tx_last);
dma_unmap_single(greth->dev,
greth_read_bd(&bdp->addr),
skb_headlen(skb),
DMA_TO_DEVICE);
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
bdp = greth->tx_bd_base + greth->tx_last;
dma_unmap_page(greth->dev,
greth_read_bd(&bdp->addr),
frag->size,
DMA_TO_DEVICE);
greth->tx_last = NEXT_TX(greth->tx_last);
}
greth->tx_free += nr_frags+1;
dev_kfree_skb(skb);
}
if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
netif_wake_queue(dev);
}
}
static int greth_pending_packets(struct greth_private *greth)
{
struct greth_bd *bdp;
u32 status;
bdp = greth->rx_bd_base + greth->rx_cur;
status = greth_read_bd(&bdp->stat);
if (status & GRETH_BD_EN)
return 0;
else
return 1;
}
static int greth_rx(struct net_device *dev, int limit)
{
struct greth_private *greth;
struct greth_bd *bdp;
struct sk_buff *skb;
int pkt_len;
int bad, count;
u32 status, dma_addr;
greth = netdev_priv(dev);
for (count = 0; count < limit; ++count) {
bdp = greth->rx_bd_base + greth->rx_cur;
status = greth_read_bd(&bdp->stat);
dma_addr = greth_read_bd(&bdp->addr);
bad = 0;
if (unlikely(status & GRETH_BD_EN)) {
break;
}
/* Check status for errors. */
if (unlikely(status & GRETH_RXBD_STATUS)) {
if (status & GRETH_RXBD_ERR_FT) {
dev->stats.rx_length_errors++;
bad = 1;
}
if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
dev->stats.rx_frame_errors++;
bad = 1;
}
if (status & GRETH_RXBD_ERR_CRC) {
dev->stats.rx_crc_errors++;
bad = 1;
}
}
if (unlikely(bad)) {
dev->stats.rx_errors++;
} else {
pkt_len = status & GRETH_BD_LEN;
skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
if (unlikely(skb == NULL)) {
if (net_ratelimit())
dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
dev->stats.rx_dropped++;
} else {
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = dev;
dma_sync_single_for_cpu(greth->dev,
dma_addr,
pkt_len,
DMA_FROM_DEVICE);
if (netif_msg_pktdata(greth))
greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
netif_receive_skb(skb);
}
}
status = GRETH_BD_EN | GRETH_BD_IE;
if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
status |= GRETH_BD_WR;
}
wmb();
greth_write_bd(&bdp->stat, status);
dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
greth_enable_rx(greth);
greth->rx_cur = NEXT_RX(greth->rx_cur);
}
return count;
}
static inline int hw_checksummed(u32 status)
{
if (status & GRETH_RXBD_IP_FRAG)
return 0;
if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
return 0;
if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
return 0;
if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
return 0;
return 1;
}
static int greth_rx_gbit(struct net_device *dev, int limit)
{
struct greth_private *greth;
struct greth_bd *bdp;
struct sk_buff *skb, *newskb;
int pkt_len;
int bad, count = 0;
u32 status, dma_addr;
greth = netdev_priv(dev);
for (count = 0; count < limit; ++count) {
bdp = greth->rx_bd_base + greth->rx_cur;
skb = greth->rx_skbuff[greth->rx_cur];
status = greth_read_bd(&bdp->stat);
bad = 0;
if (status & GRETH_BD_EN)
break;
/* Check status for errors. */
if (unlikely(status & GRETH_RXBD_STATUS)) {
if (status & GRETH_RXBD_ERR_FT) {
dev->stats.rx_length_errors++;
bad = 1;
} else if (status &
(GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
dev->stats.rx_frame_errors++;
bad = 1;
} else if (status & GRETH_RXBD_ERR_CRC) {
dev->stats.rx_crc_errors++;
bad = 1;
}
}
/* Allocate new skb to replace current */
newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
if (!bad && newskb) {
skb_reserve(newskb, NET_IP_ALIGN);
dma_addr = dma_map_single(greth->dev,
newskb->data,
MAX_FRAME_SIZE + NET_IP_ALIGN,
DMA_FROM_DEVICE);
if (!dma_mapping_error(greth->dev, dma_addr)) {
/* Process the incoming frame. */
pkt_len = status & GRETH_BD_LEN;
dma_unmap_single(greth->dev,
greth_read_bd(&bdp->addr),
MAX_FRAME_SIZE + NET_IP_ALIGN,
DMA_FROM_DEVICE);
if (netif_msg_pktdata(greth))
greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
skb_put(skb, pkt_len);
if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
netif_receive_skb(skb);
greth->rx_skbuff[greth->rx_cur] = newskb;
greth_write_bd(&bdp->addr, dma_addr);
} else {
if (net_ratelimit())
dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
dev_kfree_skb(newskb);
dev->stats.rx_dropped++;
}
} else {
if (net_ratelimit())
dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
dev->stats.rx_dropped++;
}
status = GRETH_BD_EN | GRETH_BD_IE;
if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
status |= GRETH_BD_WR;
}
wmb();
greth_write_bd(&bdp->stat, status);
greth_enable_rx(greth);
greth->rx_cur = NEXT_RX(greth->rx_cur);
}
return count;
}
static int greth_poll(struct napi_struct *napi, int budget)
{
struct greth_private *greth;
int work_done = 0;
greth = container_of(napi, struct greth_private, napi);
if (greth->gbit_mac) {
greth_clean_tx_gbit(greth->netdev);
} else {
greth_clean_tx(greth->netdev);
}
restart_poll:
if (greth->gbit_mac) {
work_done += greth_rx_gbit(greth->netdev, budget - work_done);
} else {
work_done += greth_rx(greth->netdev, budget - work_done);
}
if (work_done < budget) {
napi_complete(napi);
if (greth_pending_packets(greth)) {
napi_reschedule(napi);
goto restart_poll;
}
}
greth_enable_irqs(greth);
return work_done;
}
static int greth_set_mac_add(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct greth_private *greth;
struct greth_regs *regs;
greth = netdev_priv(dev);
regs = (struct greth_regs *) greth->regs;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
GRETH_REGSAVE(regs->esa_lsb,
addr->sa_data[2] << 24 | addr->
sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
return 0;
}
static u32 greth_hash_get_index(__u8 *addr)
{
return (ether_crc(6, addr)) & 0x3F;
}
static void greth_set_hash_filter(struct net_device *dev)
{
struct dev_mc_list *curr;
struct greth_private *greth = netdev_priv(dev);
struct greth_regs *regs = (struct greth_regs *) greth->regs;
u32 mc_filter[2];
unsigned int bitnr;
mc_filter[0] = mc_filter[1] = 0;
netdev_for_each_mc_addr(curr, dev) {
bitnr = greth_hash_get_index(curr->dmi_addr);
mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
}
GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
}
static void greth_set_multicast_list(struct net_device *dev)
{
int cfg;
struct greth_private *greth = netdev_priv(dev);
struct greth_regs *regs = (struct greth_regs *) greth->regs;
cfg = GRETH_REGLOAD(regs->control);
if (dev->flags & IFF_PROMISC)
cfg |= GRETH_CTRL_PR;
else
cfg &= ~GRETH_CTRL_PR;
if (greth->multicast) {
if (dev->flags & IFF_ALLMULTI) {
GRETH_REGSAVE(regs->hash_msb, -1);
GRETH_REGSAVE(regs->hash_lsb, -1);
cfg |= GRETH_CTRL_MCEN;
GRETH_REGSAVE(regs->control, cfg);
return;
}
if (netdev_mc_empty(dev)) {
cfg &= ~GRETH_CTRL_MCEN;
GRETH_REGSAVE(regs->control, cfg);
return;
}
/* Setup multicast filter */
greth_set_hash_filter(dev);
cfg |= GRETH_CTRL_MCEN;
}
GRETH_REGSAVE(regs->control, cfg);
}
static u32 greth_get_msglevel(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
return greth->msg_enable;
}
static void greth_set_msglevel(struct net_device *dev, u32 value)
{
struct greth_private *greth = netdev_priv(dev);
greth->msg_enable = value;
}
static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct greth_private *greth = netdev_priv(dev);
struct phy_device *phy = greth->phy;
if (!phy)
return -ENODEV;
return phy_ethtool_gset(phy, cmd);
}
static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct greth_private *greth = netdev_priv(dev);
struct phy_device *phy = greth->phy;
if (!phy)
return -ENODEV;
return phy_ethtool_sset(phy, cmd);
}
static int greth_get_regs_len(struct net_device *dev)
{
return sizeof(struct greth_regs);
}
static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct greth_private *greth = netdev_priv(dev);
strncpy(info->driver, dev_driver_string(greth->dev), 32);
strncpy(info->version, "revision: 1.0", 32);
strncpy(info->bus_info, greth->dev->bus->name, 32);
strncpy(info->fw_version, "N/A", 32);
info->eedump_len = 0;
info->regdump_len = sizeof(struct greth_regs);
}
static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
{
int i;
struct greth_private *greth = netdev_priv(dev);
u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
u32 *buff = p;
for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
buff[i] = greth_read_bd(&greth_regs[i]);
}
static u32 greth_get_rx_csum(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
}
static int greth_set_rx_csum(struct net_device *dev, u32 data)
{
struct greth_private *greth = netdev_priv(dev);
spin_lock_bh(&greth->devlock);
if (data)
greth->flags |= GRETH_FLAG_RX_CSUM;
else
greth->flags &= ~GRETH_FLAG_RX_CSUM;
spin_unlock_bh(&greth->devlock);
return 0;
}
static u32 greth_get_tx_csum(struct net_device *dev)
{
return (dev->features & NETIF_F_IP_CSUM) != 0;
}
static int greth_set_tx_csum(struct net_device *dev, u32 data)
{
netif_tx_lock_bh(dev);
ethtool_op_set_tx_csum(dev, data);
netif_tx_unlock_bh(dev);
return 0;
}
static const struct ethtool_ops greth_ethtool_ops = {
.get_msglevel = greth_get_msglevel,
.set_msglevel = greth_set_msglevel,
.get_settings = greth_get_settings,
.set_settings = greth_set_settings,
.get_drvinfo = greth_get_drvinfo,
.get_regs_len = greth_get_regs_len,
.get_regs = greth_get_regs,
.get_rx_csum = greth_get_rx_csum,
.set_rx_csum = greth_set_rx_csum,
.get_tx_csum = greth_get_tx_csum,
.set_tx_csum = greth_set_tx_csum,
.get_link = ethtool_op_get_link,
};
static struct net_device_ops greth_netdev_ops = {
.ndo_open = greth_open,
.ndo_stop = greth_close,
.ndo_start_xmit = greth_start_xmit,
.ndo_set_mac_address = greth_set_mac_add,
.ndo_validate_addr = eth_validate_addr,
};
static inline int wait_for_mdio(struct greth_private *greth)
{
unsigned long timeout = jiffies + 4*HZ/100;
while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
if (time_after(jiffies, timeout))
return 0;
}
return 1;
}
static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
{
struct greth_private *greth = bus->priv;
int data;
if (!wait_for_mdio(greth))
return -EBUSY;
GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
if (!wait_for_mdio(greth))
return -EBUSY;
if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
return data;
} else {
return -1;
}
}
static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
{
struct greth_private *greth = bus->priv;
if (!wait_for_mdio(greth))
return -EBUSY;
GRETH_REGSAVE(greth->regs->mdio,
((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
if (!wait_for_mdio(greth))
return -EBUSY;
return 0;
}
static int greth_mdio_reset(struct mii_bus *bus)
{
return 0;
}
static void greth_link_change(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
struct phy_device *phydev = greth->phy;
unsigned long flags;
int status_change = 0;
spin_lock_irqsave(&greth->devlock, flags);
if (phydev->link) {
if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
GRETH_REGANDIN(greth->regs->control,
~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
if (phydev->duplex)
GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
if (phydev->speed == SPEED_100) {
GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
}
else if (phydev->speed == SPEED_1000)
GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
greth->speed = phydev->speed;
greth->duplex = phydev->duplex;
status_change = 1;
}
}
if (phydev->link != greth->link) {
if (!phydev->link) {
greth->speed = 0;
greth->duplex = -1;
}
greth->link = phydev->link;
status_change = 1;
}
spin_unlock_irqrestore(&greth->devlock, flags);
if (status_change) {
if (phydev->link)
pr_debug("%s: link up (%d/%s)\n",
dev->name, phydev->speed,
DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
else
pr_debug("%s: link down\n", dev->name);
}
}
static int greth_mdio_probe(struct net_device *dev)
{
struct greth_private *greth = netdev_priv(dev);
struct phy_device *phy = NULL;
int ret;
/* Find the first PHY */
phy = phy_find_first(greth->mdio);
if (!phy) {
if (netif_msg_probe(greth))
dev_err(&dev->dev, "no PHY found\n");
return -ENXIO;
}
ret = phy_connect_direct(dev, phy, &greth_link_change,
0, greth->gbit_mac ?
PHY_INTERFACE_MODE_GMII :
PHY_INTERFACE_MODE_MII);
if (ret) {
if (netif_msg_ifup(greth))
dev_err(&dev->dev, "could not attach to PHY\n");
return ret;
}
if (greth->gbit_mac)
phy->supported &= PHY_GBIT_FEATURES;
else
phy->supported &= PHY_BASIC_FEATURES;
phy->advertising = phy->supported;
greth->link = 0;
greth->speed = 0;
greth->duplex = -1;
greth->phy = phy;
return 0;
}
static inline int phy_aneg_done(struct phy_device *phydev)
{
int retval;
retval = phy_read(phydev, MII_BMSR);
return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
}
static int greth_mdio_init(struct greth_private *greth)
{
int ret, phy;
unsigned long timeout;
greth->mdio = mdiobus_alloc();
if (!greth->mdio) {
return -ENOMEM;
}
greth->mdio->name = "greth-mdio";
snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
greth->mdio->read = greth_mdio_read;
greth->mdio->write = greth_mdio_write;
greth->mdio->reset = greth_mdio_reset;
greth->mdio->priv = greth;
greth->mdio->irq = greth->mdio_irqs;
for (phy = 0; phy < PHY_MAX_ADDR; phy++)
greth->mdio->irq[phy] = PHY_POLL;
ret = mdiobus_register(greth->mdio);
if (ret) {
goto error;
}
ret = greth_mdio_probe(greth->netdev);
if (ret) {
if (netif_msg_probe(greth))
dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
goto unreg_mdio;
}
phy_start(greth->phy);
/* If Ethernet debug link is used make autoneg happen right away */
if (greth->edcl && greth_edcl == 1) {
phy_start_aneg(greth->phy);
timeout = jiffies + 6*HZ;
while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
}
genphy_read_status(greth->phy);
greth_link_change(greth->netdev);
}
return 0;
unreg_mdio:
mdiobus_unregister(greth->mdio);
error:
mdiobus_free(greth->mdio);
return ret;
}
/* Initialize the GRETH MAC */
static int __devinit greth_of_probe(struct of_device *ofdev, const struct of_device_id *match)
{
struct net_device *dev;
struct greth_private *greth;
struct greth_regs *regs;
int i;
int err;
int tmp;
unsigned long timeout;
dev = alloc_etherdev(sizeof(struct greth_private));
if (dev == NULL)
return -ENOMEM;
greth = netdev_priv(dev);
greth->netdev = dev;
greth->dev = &ofdev->dev;
if (greth_debug > 0)
greth->msg_enable = greth_debug;
else
greth->msg_enable = GRETH_DEF_MSG_ENABLE;
spin_lock_init(&greth->devlock);
greth->regs = of_ioremap(&ofdev->resource[0], 0,
resource_size(&ofdev->resource[0]),
"grlib-greth regs");
if (greth->regs == NULL) {
if (netif_msg_probe(greth))
dev_err(greth->dev, "ioremap failure.\n");
err = -EIO;
goto error1;
}
regs = (struct greth_regs *) greth->regs;
greth->irq = ofdev->irqs[0];
dev_set_drvdata(greth->dev, dev);
SET_NETDEV_DEV(dev, greth->dev);
if (netif_msg_probe(greth))
dev_dbg(greth->dev, "reseting controller.\n");
/* Reset the controller. */
GRETH_REGSAVE(regs->control, GRETH_RESET);
/* Wait for MAC to reset itself */
timeout = jiffies + HZ/100;
while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
if (time_after(jiffies, timeout)) {
err = -EIO;
if (netif_msg_probe(greth))
dev_err(greth->dev, "timeout when waiting for reset.\n");
goto error2;
}
}
/* Get default PHY address */
greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
/* Check if we have GBIT capable MAC */
tmp = GRETH_REGLOAD(regs->control);
greth->gbit_mac = (tmp >> 27) & 1;
/* Check for multicast capability */
greth->multicast = (tmp >> 25) & 1;
greth->edcl = (tmp >> 31) & 1;
/* If we have EDCL we disable the EDCL speed-duplex FSM so
* it doesn't interfere with the software */
if (greth->edcl != 0)
GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
/* Check if MAC can handle MDIO interrupts */
greth->mdio_int_en = (tmp >> 26) & 1;
err = greth_mdio_init(greth);
if (err) {
if (netif_msg_probe(greth))
dev_err(greth->dev, "failed to register MDIO bus\n");
goto error2;
}
/* Allocate TX descriptor ring in coherent memory */
greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1024,
&greth->tx_bd_base_phys,
GFP_KERNEL);
if (!greth->tx_bd_base) {
if (netif_msg_probe(greth))
dev_err(&dev->dev, "could not allocate descriptor memory.\n");
err = -ENOMEM;
goto error3;
}
memset(greth->tx_bd_base, 0, 1024);
/* Allocate RX descriptor ring in coherent memory */
greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1024,
&greth->rx_bd_base_phys,
GFP_KERNEL);
if (!greth->rx_bd_base) {
if (netif_msg_probe(greth))
dev_err(greth->dev, "could not allocate descriptor memory.\n");
err = -ENOMEM;
goto error4;
}
memset(greth->rx_bd_base, 0, 1024);
/* Get MAC address from: module param, OF property or ID prom */
for (i = 0; i < 6; i++) {
if (macaddr[i] != 0)
break;
}
if (i == 6) {
const unsigned char *addr;
int len;
addr = of_get_property(ofdev->node, "local-mac-address", &len);
if (addr != NULL && len == 6) {
for (i = 0; i < 6; i++)
macaddr[i] = (unsigned int) addr[i];
} else {
#ifdef CONFIG_SPARC
for (i = 0; i < 6; i++)
macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
#endif
}
}
for (i = 0; i < 6; i++)
dev->dev_addr[i] = macaddr[i];
macaddr[5]++;
if (!is_valid_ether_addr(&dev->dev_addr[0])) {
if (netif_msg_probe(greth))
dev_err(greth->dev, "no valid ethernet address, aborting.\n");
err = -EINVAL;
goto error5;
}
GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
dev->dev_addr[4] << 8 | dev->dev_addr[5]);
/* Clear all pending interrupts except PHY irq */
GRETH_REGSAVE(regs->status, 0xFF);
if (greth->gbit_mac) {
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
greth->flags = GRETH_FLAG_RX_CSUM;
}
if (greth->multicast) {
greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
dev->flags |= IFF_MULTICAST;
} else {
dev->flags &= ~IFF_MULTICAST;
}
dev->netdev_ops = &greth_netdev_ops;
dev->ethtool_ops = &greth_ethtool_ops;
if (register_netdev(dev)) {
if (netif_msg_probe(greth))
dev_err(greth->dev, "netdevice registration failed.\n");
err = -ENOMEM;
goto error5;
}
/* setup NAPI */
memset(&greth->napi, 0, sizeof(greth->napi));
netif_napi_add(dev, &greth->napi, greth_poll, 64);
return 0;
error5:
dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
error4:
dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
error3:
mdiobus_unregister(greth->mdio);
error2:
of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
error1:
free_netdev(dev);
return err;
}
static int __devexit greth_of_remove(struct of_device *of_dev)
{
struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
struct greth_private *greth = netdev_priv(ndev);
/* Free descriptor areas */
dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
dev_set_drvdata(&of_dev->dev, NULL);
if (greth->phy)
phy_stop(greth->phy);
mdiobus_unregister(greth->mdio);
unregister_netdev(ndev);
free_netdev(ndev);
of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
return 0;
}
static struct of_device_id greth_of_match[] = {
{
.name = "GAISLER_ETHMAC",
},
{},
};
MODULE_DEVICE_TABLE(of, greth_of_match);
static struct of_platform_driver greth_of_driver = {
.name = "grlib-greth",
.match_table = greth_of_match,
.probe = greth_of_probe,
.remove = __devexit_p(greth_of_remove),
.driver = {
.owner = THIS_MODULE,
.name = "grlib-greth",
},
};
static int __init greth_init(void)
{
return of_register_platform_driver(&greth_of_driver);
}
static void __exit greth_cleanup(void)
{
of_unregister_platform_driver(&greth_of_driver);
}
module_init(greth_init);
module_exit(greth_cleanup);
MODULE_AUTHOR("Aeroflex Gaisler AB.");
MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
MODULE_LICENSE("GPL");