/*
* Copyright 2010-2011 Calxeda, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/circ_buf.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
/* XGMAC Register definitions */
#define XGMAC_CONTROL 0x00000000 /* MAC Configuration */
#define XGMAC_FRAME_FILTER 0x00000004 /* MAC Frame Filter */
#define XGMAC_FLOW_CTRL 0x00000018 /* MAC Flow Control */
#define XGMAC_VLAN_TAG 0x0000001C /* VLAN Tags */
#define XGMAC_VERSION 0x00000020 /* Version */
#define XGMAC_VLAN_INCL 0x00000024 /* VLAN tag for tx frames */
#define XGMAC_LPI_CTRL 0x00000028 /* LPI Control and Status */
#define XGMAC_LPI_TIMER 0x0000002C /* LPI Timers Control */
#define XGMAC_TX_PACE 0x00000030 /* Transmit Pace and Stretch */
#define XGMAC_VLAN_HASH 0x00000034 /* VLAN Hash Table */
#define XGMAC_DEBUG 0x00000038 /* Debug */
#define XGMAC_INT_STAT 0x0000003C /* Interrupt and Control */
#define XGMAC_ADDR_HIGH(reg) (0x00000040 + ((reg) * 8))
#define XGMAC_ADDR_LOW(reg) (0x00000044 + ((reg) * 8))
#define XGMAC_HASH(n) (0x00000300 + (n) * 4) /* HASH table regs */
#define XGMAC_NUM_HASH 16
#define XGMAC_OMR 0x00000400
#define XGMAC_REMOTE_WAKE 0x00000700 /* Remote Wake-Up Frm Filter */
#define XGMAC_PMT 0x00000704 /* PMT Control and Status */
#define XGMAC_MMC_CTRL 0x00000800 /* XGMAC MMC Control */
#define XGMAC_MMC_INTR_RX 0x00000804 /* Recieve Interrupt */
#define XGMAC_MMC_INTR_TX 0x00000808 /* Transmit Interrupt */
#define XGMAC_MMC_INTR_MASK_RX 0x0000080c /* Recieve Interrupt Mask */
#define XGMAC_MMC_INTR_MASK_TX 0x00000810 /* Transmit Interrupt Mask */
/* Hardware TX Statistics Counters */
#define XGMAC_MMC_TXOCTET_GB_LO 0x00000814
#define XGMAC_MMC_TXOCTET_GB_HI 0x00000818
#define XGMAC_MMC_TXFRAME_GB_LO 0x0000081C
#define XGMAC_MMC_TXFRAME_GB_HI 0x00000820
#define XGMAC_MMC_TXBCFRAME_G 0x00000824
#define XGMAC_MMC_TXMCFRAME_G 0x0000082C
#define XGMAC_MMC_TXUCFRAME_GB 0x00000864
#define XGMAC_MMC_TXMCFRAME_GB 0x0000086C
#define XGMAC_MMC_TXBCFRAME_GB 0x00000874
#define XGMAC_MMC_TXUNDERFLOW 0x0000087C
#define XGMAC_MMC_TXOCTET_G_LO 0x00000884
#define XGMAC_MMC_TXOCTET_G_HI 0x00000888
#define XGMAC_MMC_TXFRAME_G_LO 0x0000088C
#define XGMAC_MMC_TXFRAME_G_HI 0x00000890
#define XGMAC_MMC_TXPAUSEFRAME 0x00000894
#define XGMAC_MMC_TXVLANFRAME 0x0000089C
/* Hardware RX Statistics Counters */
#define XGMAC_MMC_RXFRAME_GB_LO 0x00000900
#define XGMAC_MMC_RXFRAME_GB_HI 0x00000904
#define XGMAC_MMC_RXOCTET_GB_LO 0x00000908
#define XGMAC_MMC_RXOCTET_GB_HI 0x0000090C
#define XGMAC_MMC_RXOCTET_G_LO 0x00000910
#define XGMAC_MMC_RXOCTET_G_HI 0x00000914
#define XGMAC_MMC_RXBCFRAME_G 0x00000918
#define XGMAC_MMC_RXMCFRAME_G 0x00000920
#define XGMAC_MMC_RXCRCERR 0x00000928
#define XGMAC_MMC_RXRUNT 0x00000930
#define XGMAC_MMC_RXJABBER 0x00000934
#define XGMAC_MMC_RXUCFRAME_G 0x00000970
#define XGMAC_MMC_RXLENGTHERR 0x00000978
#define XGMAC_MMC_RXPAUSEFRAME 0x00000988
#define XGMAC_MMC_RXOVERFLOW 0x00000990
#define XGMAC_MMC_RXVLANFRAME 0x00000998
#define XGMAC_MMC_RXWATCHDOG 0x000009a0
/* DMA Control and Status Registers */
#define XGMAC_DMA_BUS_MODE 0x00000f00 /* Bus Mode */
#define XGMAC_DMA_TX_POLL 0x00000f04 /* Transmit Poll Demand */
#define XGMAC_DMA_RX_POLL 0x00000f08 /* Received Poll Demand */
#define XGMAC_DMA_RX_BASE_ADDR 0x00000f0c /* Receive List Base */
#define XGMAC_DMA_TX_BASE_ADDR 0x00000f10 /* Transmit List Base */
#define XGMAC_DMA_STATUS 0x00000f14 /* Status Register */
#define XGMAC_DMA_CONTROL 0x00000f18 /* Ctrl (Operational Mode) */
#define XGMAC_DMA_INTR_ENA 0x00000f1c /* Interrupt Enable */
#define XGMAC_DMA_MISS_FRAME_CTR 0x00000f20 /* Missed Frame Counter */
#define XGMAC_DMA_RI_WDOG_TIMER 0x00000f24 /* RX Intr Watchdog Timer */
#define XGMAC_DMA_AXI_BUS 0x00000f28 /* AXI Bus Mode */
#define XGMAC_DMA_AXI_STATUS 0x00000f2C /* AXI Status */
#define XGMAC_DMA_HW_FEATURE 0x00000f58 /* Enabled Hardware Features */
#define XGMAC_ADDR_AE 0x80000000
#define XGMAC_MAX_FILTER_ADDR 31
/* PMT Control and Status */
#define XGMAC_PMT_POINTER_RESET 0x80000000
#define XGMAC_PMT_GLBL_UNICAST 0x00000200
#define XGMAC_PMT_WAKEUP_RX_FRM 0x00000040
#define XGMAC_PMT_MAGIC_PKT 0x00000020
#define XGMAC_PMT_WAKEUP_FRM_EN 0x00000004
#define XGMAC_PMT_MAGIC_PKT_EN 0x00000002
#define XGMAC_PMT_POWERDOWN 0x00000001
#define XGMAC_CONTROL_SPD 0x40000000 /* Speed control */
#define XGMAC_CONTROL_SPD_MASK 0x60000000
#define XGMAC_CONTROL_SPD_1G 0x60000000
#define XGMAC_CONTROL_SPD_2_5G 0x40000000
#define XGMAC_CONTROL_SPD_10G 0x00000000
#define XGMAC_CONTROL_SARC 0x10000000 /* Source Addr Insert/Replace */
#define XGMAC_CONTROL_SARK_MASK 0x18000000
#define XGMAC_CONTROL_CAR 0x04000000 /* CRC Addition/Replacement */
#define XGMAC_CONTROL_CAR_MASK 0x06000000
#define XGMAC_CONTROL_DP 0x01000000 /* Disable Padding */
#define XGMAC_CONTROL_WD 0x00800000 /* Disable Watchdog on rx */
#define XGMAC_CONTROL_JD 0x00400000 /* Jabber disable */
#define XGMAC_CONTROL_JE 0x00100000 /* Jumbo frame */
#define XGMAC_CONTROL_LM 0x00001000 /* Loop-back mode */
#define XGMAC_CONTROL_IPC 0x00000400 /* Checksum Offload */
#define XGMAC_CONTROL_ACS 0x00000080 /* Automatic Pad/FCS Strip */
#define XGMAC_CONTROL_DDIC 0x00000010 /* Disable Deficit Idle Count */
#define XGMAC_CONTROL_TE 0x00000008 /* Transmitter Enable */
#define XGMAC_CONTROL_RE 0x00000004 /* Receiver Enable */
/* XGMAC Frame Filter defines */
#define XGMAC_FRAME_FILTER_PR 0x00000001 /* Promiscuous Mode */
#define XGMAC_FRAME_FILTER_HUC 0x00000002 /* Hash Unicast */
#define XGMAC_FRAME_FILTER_HMC 0x00000004 /* Hash Multicast */
#define XGMAC_FRAME_FILTER_DAIF 0x00000008 /* DA Inverse Filtering */
#define XGMAC_FRAME_FILTER_PM 0x00000010 /* Pass all multicast */
#define XGMAC_FRAME_FILTER_DBF 0x00000020 /* Disable Broadcast frames */
#define XGMAC_FRAME_FILTER_SAIF 0x00000100 /* Inverse Filtering */
#define XGMAC_FRAME_FILTER_SAF 0x00000200 /* Source Address Filter */
#define XGMAC_FRAME_FILTER_HPF 0x00000400 /* Hash or perfect Filter */
#define XGMAC_FRAME_FILTER_VHF 0x00000800 /* VLAN Hash Filter */
#define XGMAC_FRAME_FILTER_VPF 0x00001000 /* VLAN Perfect Filter */
#define XGMAC_FRAME_FILTER_RA 0x80000000 /* Receive all mode */
/* XGMAC FLOW CTRL defines */
#define XGMAC_FLOW_CTRL_PT_MASK 0xffff0000 /* Pause Time Mask */
#define XGMAC_FLOW_CTRL_PT_SHIFT 16
#define XGMAC_FLOW_CTRL_DZQP 0x00000080 /* Disable Zero-Quanta Phase */
#define XGMAC_FLOW_CTRL_PLT 0x00000020 /* Pause Low Threshhold */
#define XGMAC_FLOW_CTRL_PLT_MASK 0x00000030 /* PLT MASK */
#define XGMAC_FLOW_CTRL_UP 0x00000008 /* Unicast Pause Frame Detect */
#define XGMAC_FLOW_CTRL_RFE 0x00000004 /* Rx Flow Control Enable */
#define XGMAC_FLOW_CTRL_TFE 0x00000002 /* Tx Flow Control Enable */
#define XGMAC_FLOW_CTRL_FCB_BPA 0x00000001 /* Flow Control Busy ... */
/* XGMAC_INT_STAT reg */
#define XGMAC_INT_STAT_PMT 0x0080 /* PMT Interrupt Status */
#define XGMAC_INT_STAT_LPI 0x0040 /* LPI Interrupt Status */
/* DMA Bus Mode register defines */
#define DMA_BUS_MODE_SFT_RESET 0x00000001 /* Software Reset */
#define DMA_BUS_MODE_DSL_MASK 0x0000007c /* Descriptor Skip Length */
#define DMA_BUS_MODE_DSL_SHIFT 2 /* (in DWORDS) */
#define DMA_BUS_MODE_ATDS 0x00000080 /* Alternate Descriptor Size */
/* Programmable burst length */
#define DMA_BUS_MODE_PBL_MASK 0x00003f00 /* Programmable Burst Len */
#define DMA_BUS_MODE_PBL_SHIFT 8
#define DMA_BUS_MODE_FB 0x00010000 /* Fixed burst */
#define DMA_BUS_MODE_RPBL_MASK 0x003e0000 /* Rx-Programmable Burst Len */
#define DMA_BUS_MODE_RPBL_SHIFT 17
#define DMA_BUS_MODE_USP 0x00800000
#define DMA_BUS_MODE_8PBL 0x01000000
#define DMA_BUS_MODE_AAL 0x02000000
/* DMA Bus Mode register defines */
#define DMA_BUS_PR_RATIO_MASK 0x0000c000 /* Rx/Tx priority ratio */
#define DMA_BUS_PR_RATIO_SHIFT 14
#define DMA_BUS_FB 0x00010000 /* Fixed Burst */
/* DMA Control register defines */
#define DMA_CONTROL_ST 0x00002000 /* Start/Stop Transmission */
#define DMA_CONTROL_SR 0x00000002 /* Start/Stop Receive */
#define DMA_CONTROL_DFF 0x01000000 /* Disable flush of rx frames */
/* DMA Normal interrupt */
#define DMA_INTR_ENA_NIE 0x00010000 /* Normal Summary */
#define DMA_INTR_ENA_AIE 0x00008000 /* Abnormal Summary */
#define DMA_INTR_ENA_ERE 0x00004000 /* Early Receive */
#define DMA_INTR_ENA_FBE 0x00002000 /* Fatal Bus Error */
#define DMA_INTR_ENA_ETE 0x00000400 /* Early Transmit */
#define DMA_INTR_ENA_RWE 0x00000200 /* Receive Watchdog */
#define DMA_INTR_ENA_RSE 0x00000100 /* Receive Stopped */
#define DMA_INTR_ENA_RUE 0x00000080 /* Receive Buffer Unavailable */
#define DMA_INTR_ENA_RIE 0x00000040 /* Receive Interrupt */
#define DMA_INTR_ENA_UNE 0x00000020 /* Tx Underflow */
#define DMA_INTR_ENA_OVE 0x00000010 /* Receive Overflow */
#define DMA_INTR_ENA_TJE 0x00000008 /* Transmit Jabber */
#define DMA_INTR_ENA_TUE 0x00000004 /* Transmit Buffer Unavail */
#define DMA_INTR_ENA_TSE 0x00000002 /* Transmit Stopped */
#define DMA_INTR_ENA_TIE 0x00000001 /* Transmit Interrupt */
#define DMA_INTR_NORMAL (DMA_INTR_ENA_NIE | DMA_INTR_ENA_RIE | \
DMA_INTR_ENA_TUE)
#define DMA_INTR_ABNORMAL (DMA_INTR_ENA_AIE | DMA_INTR_ENA_FBE | \
DMA_INTR_ENA_RWE | DMA_INTR_ENA_RSE | \
DMA_INTR_ENA_RUE | DMA_INTR_ENA_UNE | \
DMA_INTR_ENA_OVE | DMA_INTR_ENA_TJE | \
DMA_INTR_ENA_TSE)
/* DMA default interrupt mask */
#define DMA_INTR_DEFAULT_MASK (DMA_INTR_NORMAL | DMA_INTR_ABNORMAL)
/* DMA Status register defines */
#define DMA_STATUS_GMI 0x08000000 /* MMC interrupt */
#define DMA_STATUS_GLI 0x04000000 /* GMAC Line interface int */
#define DMA_STATUS_EB_MASK 0x00380000 /* Error Bits Mask */
#define DMA_STATUS_EB_TX_ABORT 0x00080000 /* Error Bits - TX Abort */
#define DMA_STATUS_EB_RX_ABORT 0x00100000 /* Error Bits - RX Abort */
#define DMA_STATUS_TS_MASK 0x00700000 /* Transmit Process State */
#define DMA_STATUS_TS_SHIFT 20
#define DMA_STATUS_RS_MASK 0x000e0000 /* Receive Process State */
#define DMA_STATUS_RS_SHIFT 17
#define DMA_STATUS_NIS 0x00010000 /* Normal Interrupt Summary */
#define DMA_STATUS_AIS 0x00008000 /* Abnormal Interrupt Summary */
#define DMA_STATUS_ERI 0x00004000 /* Early Receive Interrupt */
#define DMA_STATUS_FBI 0x00002000 /* Fatal Bus Error Interrupt */
#define DMA_STATUS_ETI 0x00000400 /* Early Transmit Interrupt */
#define DMA_STATUS_RWT 0x00000200 /* Receive Watchdog Timeout */
#define DMA_STATUS_RPS 0x00000100 /* Receive Process Stopped */
#define DMA_STATUS_RU 0x00000080 /* Receive Buffer Unavailable */
#define DMA_STATUS_RI 0x00000040 /* Receive Interrupt */
#define DMA_STATUS_UNF 0x00000020 /* Transmit Underflow */
#define DMA_STATUS_OVF 0x00000010 /* Receive Overflow */
#define DMA_STATUS_TJT 0x00000008 /* Transmit Jabber Timeout */
#define DMA_STATUS_TU 0x00000004 /* Transmit Buffer Unavail */
#define DMA_STATUS_TPS 0x00000002 /* Transmit Process Stopped */
#define DMA_STATUS_TI 0x00000001 /* Transmit Interrupt */
/* Common MAC defines */
#define MAC_ENABLE_TX 0x00000008 /* Transmitter Enable */
#define MAC_ENABLE_RX 0x00000004 /* Receiver Enable */
/* XGMAC Operation Mode Register */
#define XGMAC_OMR_TSF 0x00200000 /* TX FIFO Store and Forward */
#define XGMAC_OMR_FTF 0x00100000 /* Flush Transmit FIFO */
#define XGMAC_OMR_TTC 0x00020000 /* Transmit Threshhold Ctrl */
#define XGMAC_OMR_TTC_MASK 0x00030000
#define XGMAC_OMR_RFD 0x00006000 /* FC Deactivation Threshhold */
#define XGMAC_OMR_RFD_MASK 0x00007000 /* FC Deact Threshhold MASK */
#define XGMAC_OMR_RFA 0x00000600 /* FC Activation Threshhold */
#define XGMAC_OMR_RFA_MASK 0x00000E00 /* FC Act Threshhold MASK */
#define XGMAC_OMR_EFC 0x00000100 /* Enable Hardware FC */
#define XGMAC_OMR_FEF 0x00000080 /* Forward Error Frames */
#define XGMAC_OMR_DT 0x00000040 /* Drop TCP/IP csum Errors */
#define XGMAC_OMR_RSF 0x00000020 /* RX FIFO Store and Forward */
#define XGMAC_OMR_RTC_256 0x00000018 /* RX Threshhold Ctrl */
#define XGMAC_OMR_RTC_MASK 0x00000018 /* RX Threshhold Ctrl MASK */
/* XGMAC HW Features Register */
#define DMA_HW_FEAT_TXCOESEL 0x00010000 /* TX Checksum offload */
#define XGMAC_MMC_CTRL_CNT_FRZ 0x00000008
/* XGMAC Descriptor Defines */
#define MAX_DESC_BUF_SZ (0x2000 - 8)
#define RXDESC_EXT_STATUS 0x00000001
#define RXDESC_CRC_ERR 0x00000002
#define RXDESC_RX_ERR 0x00000008
#define RXDESC_RX_WDOG 0x00000010
#define RXDESC_FRAME_TYPE 0x00000020
#define RXDESC_GIANT_FRAME 0x00000080
#define RXDESC_LAST_SEG 0x00000100
#define RXDESC_FIRST_SEG 0x00000200
#define RXDESC_VLAN_FRAME 0x00000400
#define RXDESC_OVERFLOW_ERR 0x00000800
#define RXDESC_LENGTH_ERR 0x00001000
#define RXDESC_SA_FILTER_FAIL 0x00002000
#define RXDESC_DESCRIPTOR_ERR 0x00004000
#define RXDESC_ERROR_SUMMARY 0x00008000
#define RXDESC_FRAME_LEN_OFFSET 16
#define RXDESC_FRAME_LEN_MASK 0x3fff0000
#define RXDESC_DA_FILTER_FAIL 0x40000000
#define RXDESC1_END_RING 0x00008000
#define RXDESC_IP_PAYLOAD_MASK 0x00000003
#define RXDESC_IP_PAYLOAD_UDP 0x00000001
#define RXDESC_IP_PAYLOAD_TCP 0x00000002
#define RXDESC_IP_PAYLOAD_ICMP 0x00000003
#define RXDESC_IP_HEADER_ERR 0x00000008
#define RXDESC_IP_PAYLOAD_ERR 0x00000010
#define RXDESC_IPV4_PACKET 0x00000040
#define RXDESC_IPV6_PACKET 0x00000080
#define TXDESC_UNDERFLOW_ERR 0x00000001
#define TXDESC_JABBER_TIMEOUT 0x00000002
#define TXDESC_LOCAL_FAULT 0x00000004
#define TXDESC_REMOTE_FAULT 0x00000008
#define TXDESC_VLAN_FRAME 0x00000010
#define TXDESC_FRAME_FLUSHED 0x00000020
#define TXDESC_IP_HEADER_ERR 0x00000040
#define TXDESC_PAYLOAD_CSUM_ERR 0x00000080
#define TXDESC_ERROR_SUMMARY 0x00008000
#define TXDESC_SA_CTRL_INSERT 0x00040000
#define TXDESC_SA_CTRL_REPLACE 0x00080000
#define TXDESC_2ND_ADDR_CHAINED 0x00100000
#define TXDESC_END_RING 0x00200000
#define TXDESC_CSUM_IP 0x00400000
#define TXDESC_CSUM_IP_PAYLD 0x00800000
#define TXDESC_CSUM_ALL 0x00C00000
#define TXDESC_CRC_EN_REPLACE 0x01000000
#define TXDESC_CRC_EN_APPEND 0x02000000
#define TXDESC_DISABLE_PAD 0x04000000
#define TXDESC_FIRST_SEG 0x10000000
#define TXDESC_LAST_SEG 0x20000000
#define TXDESC_INTERRUPT 0x40000000
#define DESC_OWN 0x80000000
#define DESC_BUFFER1_SZ_MASK 0x00001fff
#define DESC_BUFFER2_SZ_MASK 0x1fff0000
#define DESC_BUFFER2_SZ_OFFSET 16
struct xgmac_dma_desc {
__le32 flags;
__le32 buf_size;
__le32 buf1_addr; /* Buffer 1 Address Pointer */
__le32 buf2_addr; /* Buffer 2 Address Pointer */
__le32 ext_status;
__le32 res[3];
};
struct xgmac_extra_stats {
/* Transmit errors */
unsigned long tx_jabber;
unsigned long tx_frame_flushed;
unsigned long tx_payload_error;
unsigned long tx_ip_header_error;
unsigned long tx_local_fault;
unsigned long tx_remote_fault;
/* Receive errors */
unsigned long rx_watchdog;
unsigned long rx_da_filter_fail;
unsigned long rx_sa_filter_fail;
unsigned long rx_payload_error;
unsigned long rx_ip_header_error;
/* Tx/Rx IRQ errors */
unsigned long tx_undeflow;
unsigned long tx_process_stopped;
unsigned long rx_buf_unav;
unsigned long rx_process_stopped;
unsigned long tx_early;
unsigned long fatal_bus_error;
};
struct xgmac_priv {
struct xgmac_dma_desc *dma_rx;
struct sk_buff **rx_skbuff;
unsigned int rx_tail;
unsigned int rx_head;
struct xgmac_dma_desc *dma_tx;
struct sk_buff **tx_skbuff;
unsigned int tx_head;
unsigned int tx_tail;
void __iomem *base;
struct sk_buff_head rx_recycle;
unsigned int dma_buf_sz;
dma_addr_t dma_rx_phy;
dma_addr_t dma_tx_phy;
struct net_device *dev;
struct device *device;
struct napi_struct napi;
struct xgmac_extra_stats xstats;
spinlock_t stats_lock;
int pmt_irq;
char rx_pause;
char tx_pause;
int wolopts;
};
/* XGMAC Configuration Settings */
#define MAX_MTU 9000
#define PAUSE_TIME 0x400
#define DMA_RX_RING_SZ 256
#define DMA_TX_RING_SZ 128
/* minimum number of free TX descriptors required to wake up TX process */
#define TX_THRESH (DMA_TX_RING_SZ/4)
/* DMA descriptor ring helpers */
#define dma_ring_incr(n, s) (((n) + 1) & ((s) - 1))
#define dma_ring_space(h, t, s) CIRC_SPACE(h, t, s)
#define dma_ring_cnt(h, t, s) CIRC_CNT(h, t, s)
/* XGMAC Descriptor Access Helpers */
static inline void desc_set_buf_len(struct xgmac_dma_desc *p, u32 buf_sz)
{
if (buf_sz > MAX_DESC_BUF_SZ)
p->buf_size = cpu_to_le32(MAX_DESC_BUF_SZ |
(buf_sz - MAX_DESC_BUF_SZ) << DESC_BUFFER2_SZ_OFFSET);
else
p->buf_size = cpu_to_le32(buf_sz);
}
static inline int desc_get_buf_len(struct xgmac_dma_desc *p)
{
u32 len = cpu_to_le32(p->flags);
return (len & DESC_BUFFER1_SZ_MASK) +
((len & DESC_BUFFER2_SZ_MASK) >> DESC_BUFFER2_SZ_OFFSET);
}
static inline void desc_init_rx_desc(struct xgmac_dma_desc *p, int ring_size,
int buf_sz)
{
struct xgmac_dma_desc *end = p + ring_size - 1;
memset(p, 0, sizeof(*p) * ring_size);
for (; p <= end; p++)
desc_set_buf_len(p, buf_sz);
end->buf_size |= cpu_to_le32(RXDESC1_END_RING);
}
static inline void desc_init_tx_desc(struct xgmac_dma_desc *p, u32 ring_size)
{
memset(p, 0, sizeof(*p) * ring_size);
p[ring_size - 1].flags = cpu_to_le32(TXDESC_END_RING);
}
static inline int desc_get_owner(struct xgmac_dma_desc *p)
{
return le32_to_cpu(p->flags) & DESC_OWN;
}
static inline void desc_set_rx_owner(struct xgmac_dma_desc *p)
{
/* Clear all fields and set the owner */
p->flags = cpu_to_le32(DESC_OWN);
}
static inline void desc_set_tx_owner(struct xgmac_dma_desc *p, u32 flags)
{
u32 tmpflags = le32_to_cpu(p->flags);
tmpflags &= TXDESC_END_RING;
tmpflags |= flags | DESC_OWN;
p->flags = cpu_to_le32(tmpflags);
}
static inline int desc_get_tx_ls(struct xgmac_dma_desc *p)
{
return le32_to_cpu(p->flags) & TXDESC_LAST_SEG;
}
static inline u32 desc_get_buf_addr(struct xgmac_dma_desc *p)
{
return le32_to_cpu(p->buf1_addr);
}
static inline void desc_set_buf_addr(struct xgmac_dma_desc *p,
u32 paddr, int len)
{
p->buf1_addr = cpu_to_le32(paddr);
if (len > MAX_DESC_BUF_SZ)
p->buf2_addr = cpu_to_le32(paddr + MAX_DESC_BUF_SZ);
}
static inline void desc_set_buf_addr_and_size(struct xgmac_dma_desc *p,
u32 paddr, int len)
{
desc_set_buf_len(p, len);
desc_set_buf_addr(p, paddr, len);
}
static inline int desc_get_rx_frame_len(struct xgmac_dma_desc *p)
{
u32 data = le32_to_cpu(p->flags);
u32 len = (data & RXDESC_FRAME_LEN_MASK) >> RXDESC_FRAME_LEN_OFFSET;
if (data & RXDESC_FRAME_TYPE)
len -= ETH_FCS_LEN;
return len;
}
static void xgmac_dma_flush_tx_fifo(void __iomem *ioaddr)
{
int timeout = 1000;
u32 reg = readl(ioaddr + XGMAC_OMR);
writel(reg | XGMAC_OMR_FTF, ioaddr + XGMAC_OMR);
while ((timeout-- > 0) && readl(ioaddr + XGMAC_OMR) & XGMAC_OMR_FTF)
udelay(1);
}
static int desc_get_tx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p)
{
struct xgmac_extra_stats *x = &priv->xstats;
u32 status = le32_to_cpu(p->flags);
if (!(status & TXDESC_ERROR_SUMMARY))
return 0;
netdev_dbg(priv->dev, "tx desc error = 0x%08x\n", status);
if (status & TXDESC_JABBER_TIMEOUT)
x->tx_jabber++;
if (status & TXDESC_FRAME_FLUSHED)
x->tx_frame_flushed++;
if (status & TXDESC_UNDERFLOW_ERR)
xgmac_dma_flush_tx_fifo(priv->base);
if (status & TXDESC_IP_HEADER_ERR)
x->tx_ip_header_error++;
if (status & TXDESC_LOCAL_FAULT)
x->tx_local_fault++;
if (status & TXDESC_REMOTE_FAULT)
x->tx_remote_fault++;
if (status & TXDESC_PAYLOAD_CSUM_ERR)
x->tx_payload_error++;
return -1;
}
static int desc_get_rx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p)
{
struct xgmac_extra_stats *x = &priv->xstats;
int ret = CHECKSUM_UNNECESSARY;
u32 status = le32_to_cpu(p->flags);
u32 ext_status = le32_to_cpu(p->ext_status);
if (status & RXDESC_DA_FILTER_FAIL) {
netdev_dbg(priv->dev, "XGMAC RX : Dest Address filter fail\n");
x->rx_da_filter_fail++;
return -1;
}
/* Check if packet has checksum already */
if ((status & RXDESC_FRAME_TYPE) && (status & RXDESC_EXT_STATUS) &&
!(ext_status & RXDESC_IP_PAYLOAD_MASK))
ret = CHECKSUM_NONE;
netdev_dbg(priv->dev, "rx status - frame type=%d, csum = %d, ext stat %08x\n",
(status & RXDESC_FRAME_TYPE) ? 1 : 0, ret, ext_status);
if (!(status & RXDESC_ERROR_SUMMARY))
return ret;
/* Handle any errors */
if (status & (RXDESC_DESCRIPTOR_ERR | RXDESC_OVERFLOW_ERR |
RXDESC_GIANT_FRAME | RXDESC_LENGTH_ERR | RXDESC_CRC_ERR))
return -1;
if (status & RXDESC_EXT_STATUS) {
if (ext_status & RXDESC_IP_HEADER_ERR)
x->rx_ip_header_error++;
if (ext_status & RXDESC_IP_PAYLOAD_ERR)
x->rx_payload_error++;
netdev_dbg(priv->dev, "IP checksum error - stat %08x\n",
ext_status);
return CHECKSUM_NONE;
}
return ret;
}
static inline void xgmac_mac_enable(void __iomem *ioaddr)
{
u32 value = readl(ioaddr + XGMAC_CONTROL);
value |= MAC_ENABLE_RX | MAC_ENABLE_TX;
writel(value, ioaddr + XGMAC_CONTROL);
value = readl(ioaddr + XGMAC_DMA_CONTROL);
value |= DMA_CONTROL_ST | DMA_CONTROL_SR;
writel(value, ioaddr + XGMAC_DMA_CONTROL);
}
static inline void xgmac_mac_disable(void __iomem *ioaddr)
{
u32 value = readl(ioaddr + XGMAC_DMA_CONTROL);
value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR);
writel(value, ioaddr + XGMAC_DMA_CONTROL);
value = readl(ioaddr + XGMAC_CONTROL);
value &= ~(MAC_ENABLE_TX | MAC_ENABLE_RX);
writel(value, ioaddr + XGMAC_CONTROL);
}
static void xgmac_set_mac_addr(void __iomem *ioaddr, unsigned char *addr,
int num)
{
u32 data;
data = (addr[5] << 8) | addr[4] | (num ? XGMAC_ADDR_AE : 0);
writel(data, ioaddr + XGMAC_ADDR_HIGH(num));
data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
writel(data, ioaddr + XGMAC_ADDR_LOW(num));
}
static void xgmac_get_mac_addr(void __iomem *ioaddr, unsigned char *addr,
int num)
{
u32 hi_addr, lo_addr;
/* Read the MAC address from the hardware */
hi_addr = readl(ioaddr + XGMAC_ADDR_HIGH(num));
lo_addr = readl(ioaddr + XGMAC_ADDR_LOW(num));
/* Extract the MAC address from the high and low words */
addr[0] = lo_addr & 0xff;
addr[1] = (lo_addr >> 8) & 0xff;
addr[2] = (lo_addr >> 16) & 0xff;
addr[3] = (lo_addr >> 24) & 0xff;
addr[4] = hi_addr & 0xff;
addr[5] = (hi_addr >> 8) & 0xff;
}
static int xgmac_set_flow_ctrl(struct xgmac_priv *priv, int rx, int tx)
{
u32 reg;
unsigned int flow = 0;
priv->rx_pause = rx;
priv->tx_pause = tx;
if (rx || tx) {
if (rx)
flow |= XGMAC_FLOW_CTRL_RFE;
if (tx)
flow |= XGMAC_FLOW_CTRL_TFE;
flow |= XGMAC_FLOW_CTRL_PLT | XGMAC_FLOW_CTRL_UP;
flow |= (PAUSE_TIME << XGMAC_FLOW_CTRL_PT_SHIFT);
writel(flow, priv->base + XGMAC_FLOW_CTRL);
reg = readl(priv->base + XGMAC_OMR);
reg |= XGMAC_OMR_EFC;
writel(reg, priv->base + XGMAC_OMR);
} else {
writel(0, priv->base + XGMAC_FLOW_CTRL);
reg = readl(priv->base + XGMAC_OMR);
reg &= ~XGMAC_OMR_EFC;
writel(reg, priv->base + XGMAC_OMR);
}
return 0;
}
static void xgmac_rx_refill(struct xgmac_priv *priv)
{
struct xgmac_dma_desc *p;
dma_addr_t paddr;
while (dma_ring_space(priv->rx_head, priv->rx_tail, DMA_RX_RING_SZ) > 1) {
int entry = priv->rx_head;
struct sk_buff *skb;
p = priv->dma_rx + entry;
if (priv->rx_skbuff[entry] == NULL) {
skb = __skb_dequeue(&priv->rx_recycle);
if (skb == NULL)
skb = netdev_alloc_skb(priv->dev, priv->dma_buf_sz);
if (unlikely(skb == NULL))
break;
priv->rx_skbuff[entry] = skb;
paddr = dma_map_single(priv->device, skb->data,
priv->dma_buf_sz, DMA_FROM_DEVICE);
desc_set_buf_addr(p, paddr, priv->dma_buf_sz);
}
netdev_dbg(priv->dev, "rx ring: head %d, tail %d\n",
priv->rx_head, priv->rx_tail);
priv->rx_head = dma_ring_incr(priv->rx_head, DMA_RX_RING_SZ);
desc_set_rx_owner(p);
}
}
/**
* init_xgmac_dma_desc_rings - init the RX/TX descriptor rings
* @dev: net device structure
* Description: this function initializes the DMA RX/TX descriptors
* and allocates the socket buffers.
*/
static int xgmac_dma_desc_rings_init(struct net_device *dev)
{
struct xgmac_priv *priv = netdev_priv(dev);
unsigned int bfsize;
/* Set the Buffer size according to the MTU;
* indeed, in case of jumbo we need to bump-up the buffer sizes.
*/
bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN + 64,
64);
netdev_dbg(priv->dev, "mtu [%d] bfsize [%d]\n", dev->mtu, bfsize);
priv->rx_skbuff = kzalloc(sizeof(struct sk_buff *) * DMA_RX_RING_SZ,
GFP_KERNEL);
if (!priv->rx_skbuff)
return -ENOMEM;
priv->dma_rx = dma_alloc_coherent(priv->device,
DMA_RX_RING_SZ *
sizeof(struct xgmac_dma_desc),
&priv->dma_rx_phy,
GFP_KERNEL);
if (!priv->dma_rx)
goto err_dma_rx;
priv->tx_skbuff = kzalloc(sizeof(struct sk_buff *) * DMA_TX_RING_SZ,
GFP_KERNEL);
if (!priv->tx_skbuff)
goto err_tx_skb;
priv->dma_tx = dma_alloc_coherent(priv->device,
DMA_TX_RING_SZ *
sizeof(struct xgmac_dma_desc),
&priv->dma_tx_phy,
GFP_KERNEL);
if (!priv->dma_tx)
goto err_dma_tx;
netdev_dbg(priv->dev, "DMA desc rings: virt addr (Rx %p, "
"Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
priv->dma_rx, priv->dma_tx,
(unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
priv->rx_tail = 0;
priv->rx_head = 0;
priv->dma_buf_sz = bfsize;
desc_init_rx_desc(priv->dma_rx, DMA_RX_RING_SZ, priv->dma_buf_sz);
xgmac_rx_refill(priv);
priv->tx_tail = 0;
priv->tx_head = 0;
desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ);
writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR);
writel(priv->dma_rx_phy, priv->base + XGMAC_DMA_RX_BASE_ADDR);
return 0;
err_dma_tx:
kfree(priv->tx_skbuff);
err_tx_skb:
dma_free_coherent(priv->device,
DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc),
priv->dma_rx, priv->dma_rx_phy);
err_dma_rx:
kfree(priv->rx_skbuff);
return -ENOMEM;
}
static void xgmac_free_rx_skbufs(struct xgmac_priv *priv)
{
int i;
struct xgmac_dma_desc *p;
if (!priv->rx_skbuff)
return;
for (i = 0; i < DMA_RX_RING_SZ; i++) {
if (priv->rx_skbuff[i] == NULL)
continue;
p = priv->dma_rx + i;
dma_unmap_single(priv->device, desc_get_buf_addr(p),
priv->dma_buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]);
priv->rx_skbuff[i] = NULL;
}
}
static void xgmac_free_tx_skbufs(struct xgmac_priv *priv)
{
int i, f;
struct xgmac_dma_desc *p;
if (!priv->tx_skbuff)
return;
for (i = 0; i < DMA_TX_RING_SZ; i++) {
if (priv->tx_skbuff[i] == NULL)
continue;
p = priv->dma_tx + i;
dma_unmap_single(priv->device, desc_get_buf_addr(p),
desc_get_buf_len(p), DMA_TO_DEVICE);
for (f = 0; f < skb_shinfo(priv->tx_skbuff[i])->nr_frags; f++) {
p = priv->dma_tx + i++;
dma_unmap_page(priv->device, desc_get_buf_addr(p),
desc_get_buf_len(p), DMA_TO_DEVICE);
}
dev_kfree_skb_any(priv->tx_skbuff[i]);
priv->tx_skbuff[i] = NULL;
}
}
static void xgmac_free_dma_desc_rings(struct xgmac_priv *priv)
{
/* Release the DMA TX/RX socket buffers */
xgmac_free_rx_skbufs(priv);
xgmac_free_tx_skbufs(priv);
/* Free the consistent memory allocated for descriptor rings */
if (priv->dma_tx) {
dma_free_coherent(priv->device,
DMA_TX_RING_SZ * sizeof(struct xgmac_dma_desc),
priv->dma_tx, priv->dma_tx_phy);
priv->dma_tx = NULL;
}
if (priv->dma_rx) {
dma_free_coherent(priv->device,
DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc),
priv->dma_rx, priv->dma_rx_phy);
priv->dma_rx = NULL;
}
kfree(priv->rx_skbuff);
priv->rx_skbuff = NULL;
kfree(priv->tx_skbuff);
priv->tx_skbuff = NULL;
}
/**
* xgmac_tx:
* @priv: private driver structure
* Description: it reclaims resources after transmission completes.
*/
static void xgmac_tx_complete(struct xgmac_priv *priv)
{
int i;
void __iomem *ioaddr = priv->base;
writel(DMA_STATUS_TU | DMA_STATUS_NIS, ioaddr + XGMAC_DMA_STATUS);
while (dma_ring_cnt(priv->tx_head, priv->tx_tail, DMA_TX_RING_SZ)) {
unsigned int entry = priv->tx_tail;
struct sk_buff *skb = priv->tx_skbuff[entry];
struct xgmac_dma_desc *p = priv->dma_tx + entry;
/* Check if the descriptor is owned by the DMA. */
if (desc_get_owner(p))
break;
/* Verify tx error by looking at the last segment */
if (desc_get_tx_ls(p))
desc_get_tx_status(priv, p);
netdev_dbg(priv->dev, "tx ring: curr %d, dirty %d\n",
priv->tx_head, priv->tx_tail);
dma_unmap_single(priv->device, desc_get_buf_addr(p),
desc_get_buf_len(p), DMA_TO_DEVICE);
priv->tx_skbuff[entry] = NULL;
priv->tx_tail = dma_ring_incr(entry, DMA_TX_RING_SZ);
if (!skb) {
continue;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
entry = priv->tx_tail = dma_ring_incr(priv->tx_tail,
DMA_TX_RING_SZ);
p = priv->dma_tx + priv->tx_tail;
dma_unmap_page(priv->device, desc_get_buf_addr(p),
desc_get_buf_len(p), DMA_TO_DEVICE);
}
/*
* If there's room in the queue (limit it to size)
* we add this skb back into the pool,
* if it's the right size.
*/
if ((skb_queue_len(&priv->rx_recycle) <
DMA_RX_RING_SZ) &&
skb_recycle_check(skb, priv->dma_buf_sz))
__skb_queue_head(&priv->rx_recycle, skb);
else
dev_kfree_skb(skb);
}
if (dma_ring_space(priv->tx_head, priv->tx_tail, DMA_TX_RING_SZ) >
TX_THRESH)
netif_wake_queue(priv->dev);
}
/**
* xgmac_tx_err:
* @priv: pointer to the private device structure
* Description: it cleans the descriptors and restarts the transmission
* in case of errors.
*/
static void xgmac_tx_err(struct xgmac_priv *priv)
{
u32 reg, value, inten;
netif_stop_queue(priv->dev);
inten = readl(priv->base + XGMAC_DMA_INTR_ENA);
writel(0, priv->base + XGMAC_DMA_INTR_ENA);
reg = readl(priv->base + XGMAC_DMA_CONTROL);
writel(reg & ~DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL);
do {
value = readl(priv->base + XGMAC_DMA_STATUS) & 0x700000;
} while (value && (value != 0x600000));
xgmac_free_tx_skbufs(priv);
desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ);
priv->tx_tail = 0;
priv->tx_head = 0;
writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR);
writel(reg | DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL);
writel(DMA_STATUS_TU | DMA_STATUS_TPS | DMA_STATUS_NIS | DMA_STATUS_AIS,
priv->base + XGMAC_DMA_STATUS);
writel(inten, priv->base + XGMAC_DMA_INTR_ENA);
netif_wake_queue(priv->dev);
}
static int xgmac_hw_init(struct net_device *dev)
{
u32 value, ctrl;
int limit;
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
/* Save the ctrl register value */
ctrl = readl(ioaddr + XGMAC_CONTROL) & XGMAC_CONTROL_SPD_MASK;
/* SW reset */
value = DMA_BUS_MODE_SFT_RESET;
writel(value, ioaddr + XGMAC_DMA_BUS_MODE);
limit = 15000;
while (limit-- &&
(readl(ioaddr + XGMAC_DMA_BUS_MODE) & DMA_BUS_MODE_SFT_RESET))
cpu_relax();
if (limit < 0)
return -EBUSY;
value = (0x10 << DMA_BUS_MODE_PBL_SHIFT) |
(0x10 << DMA_BUS_MODE_RPBL_SHIFT) |
DMA_BUS_MODE_FB | DMA_BUS_MODE_ATDS | DMA_BUS_MODE_AAL;
writel(value, ioaddr + XGMAC_DMA_BUS_MODE);
/* Enable interrupts */
writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS);
writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA);
/* XGMAC requires AXI bus init. This is a 'magic number' for now */
writel(0x0077000E, ioaddr + XGMAC_DMA_AXI_BUS);
ctrl |= XGMAC_CONTROL_DDIC | XGMAC_CONTROL_JE | XGMAC_CONTROL_ACS |
XGMAC_CONTROL_CAR;
if (dev->features & NETIF_F_RXCSUM)
ctrl |= XGMAC_CONTROL_IPC;
writel(ctrl, ioaddr + XGMAC_CONTROL);
value = DMA_CONTROL_DFF;
writel(value, ioaddr + XGMAC_DMA_CONTROL);
/* Set the HW DMA mode and the COE */
writel(XGMAC_OMR_TSF | XGMAC_OMR_RFD | XGMAC_OMR_RFA |
XGMAC_OMR_RTC_256,
ioaddr + XGMAC_OMR);
/* Reset the MMC counters */
writel(1, ioaddr + XGMAC_MMC_CTRL);
return 0;
}
/**
* xgmac_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int xgmac_open(struct net_device *dev)
{
int ret;
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
/* Check that the MAC address is valid. If its not, refuse
* to bring the device up. The user must specify an
* address using the following linux command:
* ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
netdev_dbg(priv->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
skb_queue_head_init(&priv->rx_recycle);
memset(&priv->xstats, 0, sizeof(struct xgmac_extra_stats));
/* Initialize the XGMAC and descriptors */
xgmac_hw_init(dev);
xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0);
xgmac_set_flow_ctrl(priv, priv->rx_pause, priv->tx_pause);
ret = xgmac_dma_desc_rings_init(dev);
if (ret < 0)
return ret;
/* Enable the MAC Rx/Tx */
xgmac_mac_enable(ioaddr);
napi_enable(&priv->napi);
netif_start_queue(dev);
return 0;
}
/**
* xgmac_release - close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver.
*/
static int xgmac_stop(struct net_device *dev)
{
struct xgmac_priv *priv = netdev_priv(dev);
netif_stop_queue(dev);
if (readl(priv->base + XGMAC_DMA_INTR_ENA))
napi_disable(&priv->napi);
writel(0, priv->base + XGMAC_DMA_INTR_ENA);
skb_queue_purge(&priv->rx_recycle);
/* Disable the MAC core */
xgmac_mac_disable(priv->base);
/* Release and free the Rx/Tx resources */
xgmac_free_dma_desc_rings(priv);
return 0;
}
/**
* xgmac_xmit:
* @skb : the socket buffer
* @dev : device pointer
* Description : Tx entry point of the driver.
*/
static netdev_tx_t xgmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct xgmac_priv *priv = netdev_priv(dev);
unsigned int entry;
int i;
int nfrags = skb_shinfo(skb)->nr_frags;
struct xgmac_dma_desc *desc, *first;
unsigned int desc_flags;
unsigned int len;
dma_addr_t paddr;
if (dma_ring_space(priv->tx_head, priv->tx_tail, DMA_TX_RING_SZ) <
(nfrags + 1)) {
writel(DMA_INTR_DEFAULT_MASK | DMA_INTR_ENA_TIE,
priv->base + XGMAC_DMA_INTR_ENA);
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
desc_flags = (skb->ip_summed == CHECKSUM_PARTIAL) ?
TXDESC_CSUM_ALL : 0;
entry = priv->tx_head;
desc = priv->dma_tx + entry;
first = desc;
len = skb_headlen(skb);
paddr = dma_map_single(priv->device, skb->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, paddr)) {
dev_kfree_skb(skb);
return -EIO;
}
priv->tx_skbuff[entry] = skb;
desc_set_buf_addr_and_size(desc, paddr, len);
for (i = 0; i < nfrags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = frag->size;
paddr = skb_frag_dma_map(priv->device, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, paddr)) {
dev_kfree_skb(skb);
return -EIO;
}
entry = dma_ring_incr(entry, DMA_TX_RING_SZ);
desc = priv->dma_tx + entry;
priv->tx_skbuff[entry] = NULL;
desc_set_buf_addr_and_size(desc, paddr, len);
if (i < (nfrags - 1))
desc_set_tx_owner(desc, desc_flags);
}
/* Interrupt on completition only for the latest segment */
if (desc != first)
desc_set_tx_owner(desc, desc_flags |
TXDESC_LAST_SEG | TXDESC_INTERRUPT);
else
desc_flags |= TXDESC_LAST_SEG | TXDESC_INTERRUPT;
/* Set owner on first desc last to avoid race condition */
wmb();
desc_set_tx_owner(first, desc_flags | TXDESC_FIRST_SEG);
priv->tx_head = dma_ring_incr(entry, DMA_TX_RING_SZ);
writel(1, priv->base + XGMAC_DMA_TX_POLL);
return NETDEV_TX_OK;
}
static int xgmac_rx(struct xgmac_priv *priv, int limit)
{
unsigned int entry;
unsigned int count = 0;
struct xgmac_dma_desc *p;
while (count < limit) {
int ip_checksum;
struct sk_buff *skb;
int frame_len;
writel(DMA_STATUS_RI | DMA_STATUS_NIS,
priv->base + XGMAC_DMA_STATUS);
entry = priv->rx_tail;
p = priv->dma_rx + entry;
if (desc_get_owner(p))
break;
count++;
priv->rx_tail = dma_ring_incr(priv->rx_tail, DMA_RX_RING_SZ);
/* read the status of the incoming frame */
ip_checksum = desc_get_rx_status(priv, p);
if (ip_checksum < 0)
continue;
skb = priv->rx_skbuff[entry];
if (unlikely(!skb)) {
netdev_err(priv->dev, "Inconsistent Rx descriptor chain\n");
break;
}
priv->rx_skbuff[entry] = NULL;
frame_len = desc_get_rx_frame_len(p);
netdev_dbg(priv->dev, "RX frame size %d, COE status: %d\n",
frame_len, ip_checksum);
skb_put(skb, frame_len);
dma_unmap_single(priv->device, desc_get_buf_addr(p),
frame_len, DMA_FROM_DEVICE);
skb->protocol = eth_type_trans(skb, priv->dev);
skb->ip_summed = ip_checksum;
if (ip_checksum == CHECKSUM_NONE)
netif_receive_skb(skb);
else
napi_gro_receive(&priv->napi, skb);
}
xgmac_rx_refill(priv);
writel(1, priv->base + XGMAC_DMA_RX_POLL);
return count;
}
/**
* xgmac_poll - xgmac poll method (NAPI)
* @napi : pointer to the napi structure.
* @budget : maximum number of packets that the current CPU can receive from
* all interfaces.
* Description :
* This function implements the the reception process.
* Also it runs the TX completion thread
*/
static int xgmac_poll(struct napi_struct *napi, int budget)
{
struct xgmac_priv *priv = container_of(napi,
struct xgmac_priv, napi);
int work_done = 0;
xgmac_tx_complete(priv);
work_done = xgmac_rx(priv, budget);
if (work_done < budget) {
napi_complete(napi);
writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_INTR_ENA);
}
return work_done;
}
/**
* xgmac_tx_timeout
* @dev : Pointer to net device structure
* Description: this function is called when a packet transmission fails to
* complete within a reasonable tmrate. The driver will mark the error in the
* netdev structure and arrange for the device to be reset to a sane state
* in order to transmit a new packet.
*/
static void xgmac_tx_timeout(struct net_device *dev)
{
struct xgmac_priv *priv = netdev_priv(dev);
/* Clear Tx resources and restart transmitting again */
xgmac_tx_err(priv);
}
/**
* xgmac_set_rx_mode - entry point for multicast addressing
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled.
* Return value:
* void.
*/
static void xgmac_set_rx_mode(struct net_device *dev)
{
int i;
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
unsigned int value = 0;
u32 hash_filter[XGMAC_NUM_HASH];
int reg = 1;
struct netdev_hw_addr *ha;
bool use_hash = false;
netdev_dbg(priv->dev, "# mcasts %d, # unicast %d\n",
netdev_mc_count(dev), netdev_uc_count(dev));
if (dev->flags & IFF_PROMISC) {
writel(XGMAC_FRAME_FILTER_PR, ioaddr + XGMAC_FRAME_FILTER);
return;
}
memset(hash_filter, 0, sizeof(hash_filter));
if (netdev_uc_count(dev) > XGMAC_MAX_FILTER_ADDR) {
use_hash = true;
value |= XGMAC_FRAME_FILTER_HUC | XGMAC_FRAME_FILTER_HPF;
}
netdev_for_each_uc_addr(ha, dev) {
if (use_hash) {
u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23;
/* The most significant 4 bits determine the register to
* use (H/L) while the other 5 bits determine the bit
* within the register. */
hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
} else {
xgmac_set_mac_addr(ioaddr, ha->addr, reg);
reg++;
}
}
if (dev->flags & IFF_ALLMULTI) {
value |= XGMAC_FRAME_FILTER_PM;
goto out;
}
if ((netdev_mc_count(dev) + reg - 1) > XGMAC_MAX_FILTER_ADDR) {
use_hash = true;
value |= XGMAC_FRAME_FILTER_HMC | XGMAC_FRAME_FILTER_HPF;
}
netdev_for_each_mc_addr(ha, dev) {
if (use_hash) {
u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23;
/* The most significant 4 bits determine the register to
* use (H/L) while the other 5 bits determine the bit
* within the register. */
hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
} else {
xgmac_set_mac_addr(ioaddr, ha->addr, reg);
reg++;
}
}
out:
for (i = 0; i < XGMAC_NUM_HASH; i++)
writel(hash_filter[i], ioaddr + XGMAC_HASH(i));
writel(value, ioaddr + XGMAC_FRAME_FILTER);
}
/**
* xgmac_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: the Maximum Transfer Unit (MTU) is used by the network layer
* to drive packet transmission. Ethernet has an MTU of 1500 octets
* (ETH_DATA_LEN). This value can be changed with ifconfig.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int xgmac_change_mtu(struct net_device *dev, int new_mtu)
{
struct xgmac_priv *priv = netdev_priv(dev);
int old_mtu;
if ((new_mtu < 46) || (new_mtu > MAX_MTU)) {
netdev_err(priv->dev, "invalid MTU, max MTU is: %d\n", MAX_MTU);
return -EINVAL;
}
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu == new_mtu)
return 0;
/* Stop everything, get ready to change the MTU */
if (!netif_running(dev))
return 0;
/* Bring the interface down and then back up */
xgmac_stop(dev);
return xgmac_open(dev);
}
static irqreturn_t xgmac_pmt_interrupt(int irq, void *dev_id)
{
u32 intr_status;
struct net_device *dev = (struct net_device *)dev_id;
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
intr_status = readl(ioaddr + XGMAC_INT_STAT);
if (intr_status & XGMAC_INT_STAT_PMT) {
netdev_dbg(priv->dev, "received Magic frame\n");
/* clear the PMT bits 5 and 6 by reading the PMT */
readl(ioaddr + XGMAC_PMT);
}
return IRQ_HANDLED;
}
static irqreturn_t xgmac_interrupt(int irq, void *dev_id)
{
u32 intr_status;
bool tx_err = false;
struct net_device *dev = (struct net_device *)dev_id;
struct xgmac_priv *priv = netdev_priv(dev);
struct xgmac_extra_stats *x = &priv->xstats;
/* read the status register (CSR5) */
intr_status = readl(priv->base + XGMAC_DMA_STATUS);
intr_status &= readl(priv->base + XGMAC_DMA_INTR_ENA);
writel(intr_status, priv->base + XGMAC_DMA_STATUS);
/* It displays the DMA process states (CSR5 register) */
/* ABNORMAL interrupts */
if (unlikely(intr_status & DMA_STATUS_AIS)) {
if (intr_status & DMA_STATUS_TJT) {
netdev_err(priv->dev, "transmit jabber\n");
x->tx_jabber++;
}
if (intr_status & DMA_STATUS_RU)
x->rx_buf_unav++;
if (intr_status & DMA_STATUS_RPS) {
netdev_err(priv->dev, "receive process stopped\n");
x->rx_process_stopped++;
}
if (intr_status & DMA_STATUS_ETI) {
netdev_err(priv->dev, "transmit early interrupt\n");
x->tx_early++;
}
if (intr_status & DMA_STATUS_TPS) {
netdev_err(priv->dev, "transmit process stopped\n");
x->tx_process_stopped++;
tx_err = true;
}
if (intr_status & DMA_STATUS_FBI) {
netdev_err(priv->dev, "fatal bus error\n");
x->fatal_bus_error++;
tx_err = true;
}
if (tx_err)
xgmac_tx_err(priv);
}
/* TX/RX NORMAL interrupts */
if (intr_status & (DMA_STATUS_RI | DMA_STATUS_TU)) {
writel(DMA_INTR_ABNORMAL, priv->base + XGMAC_DMA_INTR_ENA);
napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
* to allow network I/O with interrupts disabled. */
static void xgmac_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
xgmac_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
static struct rtnl_link_stats64 *
xgmac_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *base = priv->base;
u32 count;
spin_lock_bh(&priv->stats_lock);
writel(XGMAC_MMC_CTRL_CNT_FRZ, base + XGMAC_MMC_CTRL);
storage->rx_bytes = readl(base + XGMAC_MMC_RXOCTET_G_LO);
storage->rx_bytes |= (u64)(readl(base + XGMAC_MMC_RXOCTET_G_HI)) << 32;
storage->rx_packets = readl(base + XGMAC_MMC_RXFRAME_GB_LO);
storage->multicast = readl(base + XGMAC_MMC_RXMCFRAME_G);
storage->rx_crc_errors = readl(base + XGMAC_MMC_RXCRCERR);
storage->rx_length_errors = readl(base + XGMAC_MMC_RXLENGTHERR);
storage->rx_missed_errors = readl(base + XGMAC_MMC_RXOVERFLOW);
storage->tx_bytes = readl(base + XGMAC_MMC_TXOCTET_G_LO);
storage->tx_bytes |= (u64)(readl(base + XGMAC_MMC_TXOCTET_G_HI)) << 32;
count = readl(base + XGMAC_MMC_TXFRAME_GB_LO);
storage->tx_errors = count - readl(base + XGMAC_MMC_TXFRAME_G_LO);
storage->tx_packets = count;
storage->tx_fifo_errors = readl(base + XGMAC_MMC_TXUNDERFLOW);
writel(0, base + XGMAC_MMC_CTRL);
spin_unlock_bh(&priv->stats_lock);
return storage;
}
static int xgmac_set_mac_address(struct net_device *dev, void *p)
{
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
dev->addr_assign_type &= ~NET_ADDR_RANDOM;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0);
return 0;
}
static int xgmac_set_features(struct net_device *dev, netdev_features_t features)
{
u32 ctrl;
struct xgmac_priv *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
u32 changed = dev->features ^ features;
if (!(changed & NETIF_F_RXCSUM))
return 0;
ctrl = readl(ioaddr + XGMAC_CONTROL);
if (features & NETIF_F_RXCSUM)
ctrl |= XGMAC_CONTROL_IPC;
else
ctrl &= ~XGMAC_CONTROL_IPC;
writel(ctrl, ioaddr + XGMAC_CONTROL);
return 0;
}
static const struct net_device_ops xgmac_netdev_ops = {
.ndo_open = xgmac_open,
.ndo_start_xmit = xgmac_xmit,
.ndo_stop = xgmac_stop,
.ndo_change_mtu = xgmac_change_mtu,
.ndo_set_rx_mode = xgmac_set_rx_mode,
.ndo_tx_timeout = xgmac_tx_timeout,
.ndo_get_stats64 = xgmac_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = xgmac_poll_controller,
#endif
.ndo_set_mac_address = xgmac_set_mac_address,
.ndo_set_features = xgmac_set_features,
};
static int xgmac_ethtool_getsettings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
cmd->autoneg = 0;
cmd->duplex = DUPLEX_FULL;
ethtool_cmd_speed_set(cmd, 10000);
cmd->supported = 0;
cmd->advertising = 0;
cmd->transceiver = XCVR_INTERNAL;
return 0;
}
static void xgmac_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct xgmac_priv *priv = netdev_priv(netdev);
pause->rx_pause = priv->rx_pause;
pause->tx_pause = priv->tx_pause;
}
static int xgmac_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct xgmac_priv *priv = netdev_priv(netdev);
if (pause->autoneg)
return -EINVAL;
return xgmac_set_flow_ctrl(priv, pause->rx_pause, pause->tx_pause);
}
struct xgmac_stats {
char stat_string[ETH_GSTRING_LEN];
int stat_offset;
bool is_reg;
};
#define XGMAC_STAT(m) \
{ #m, offsetof(struct xgmac_priv, xstats.m), false }
#define XGMAC_HW_STAT(m, reg_offset) \
{ #m, reg_offset, true }
static const struct xgmac_stats xgmac_gstrings_stats[] = {
XGMAC_STAT(tx_frame_flushed),
XGMAC_STAT(tx_payload_error),
XGMAC_STAT(tx_ip_header_error),
XGMAC_STAT(tx_local_fault),
XGMAC_STAT(tx_remote_fault),
XGMAC_STAT(tx_early),
XGMAC_STAT(tx_process_stopped),
XGMAC_STAT(tx_jabber),
XGMAC_STAT(rx_buf_unav),
XGMAC_STAT(rx_process_stopped),
XGMAC_STAT(rx_payload_error),
XGMAC_STAT(rx_ip_header_error),
XGMAC_STAT(rx_da_filter_fail),
XGMAC_STAT(rx_sa_filter_fail),
XGMAC_STAT(fatal_bus_error),
XGMAC_HW_STAT(rx_watchdog, XGMAC_MMC_RXWATCHDOG),
XGMAC_HW_STAT(tx_vlan, XGMAC_MMC_TXVLANFRAME),
XGMAC_HW_STAT(rx_vlan, XGMAC_MMC_RXVLANFRAME),
XGMAC_HW_STAT(tx_pause, XGMAC_MMC_TXPAUSEFRAME),
XGMAC_HW_STAT(rx_pause, XGMAC_MMC_RXPAUSEFRAME),
};
#define XGMAC_STATS_LEN ARRAY_SIZE(xgmac_gstrings_stats)
static void xgmac_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *dummy,
u64 *data)
{
struct xgmac_priv *priv = netdev_priv(dev);
void *p = priv;
int i;
for (i = 0; i < XGMAC_STATS_LEN; i++) {
if (xgmac_gstrings_stats[i].is_reg)
*data++ = readl(priv->base +
xgmac_gstrings_stats[i].stat_offset);
else
*data++ = *(u32 *)(p +
xgmac_gstrings_stats[i].stat_offset);
}
}
static int xgmac_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return XGMAC_STATS_LEN;
default:
return -EINVAL;
}
}
static void xgmac_get_strings(struct net_device *dev, u32 stringset,
u8 *data)
{
int i;
u8 *p = data;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < XGMAC_STATS_LEN; i++) {
memcpy(p, xgmac_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
default:
WARN_ON(1);
break;
}
}
static void xgmac_get_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct xgmac_priv *priv = netdev_priv(dev);
if (device_can_wakeup(priv->device)) {
wol->supported = WAKE_MAGIC | WAKE_UCAST;
wol->wolopts = priv->wolopts;
}
}
static int xgmac_set_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct xgmac_priv *priv = netdev_priv(dev);
u32 support = WAKE_MAGIC | WAKE_UCAST;
if (!device_can_wakeup(priv->device))
return -ENOTSUPP;
if (wol->wolopts & ~support)
return -EINVAL;
priv->wolopts = wol->wolopts;
if (wol->wolopts) {
device_set_wakeup_enable(priv->device, 1);
enable_irq_wake(dev->irq);
} else {
device_set_wakeup_enable(priv->device, 0);
disable_irq_wake(dev->irq);
}
return 0;
}
static const struct ethtool_ops xgmac_ethtool_ops = {
.get_settings = xgmac_ethtool_getsettings,
.get_link = ethtool_op_get_link,
.get_pauseparam = xgmac_get_pauseparam,
.set_pauseparam = xgmac_set_pauseparam,
.get_ethtool_stats = xgmac_get_ethtool_stats,
.get_strings = xgmac_get_strings,
.get_wol = xgmac_get_wol,
.set_wol = xgmac_set_wol,
.get_sset_count = xgmac_get_sset_count,
};
/**
* xgmac_probe
* @pdev: platform device pointer
* Description: the driver is initialized through platform_device.
*/
static int xgmac_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res;
struct net_device *ndev = NULL;
struct xgmac_priv *priv = NULL;
u32 uid;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
if (!request_mem_region(res->start, resource_size(res), pdev->name))
return -EBUSY;
ndev = alloc_etherdev(sizeof(struct xgmac_priv));
if (!ndev) {
ret = -ENOMEM;
goto err_alloc;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
priv = netdev_priv(ndev);
platform_set_drvdata(pdev, ndev);
ether_setup(ndev);
ndev->netdev_ops = &xgmac_netdev_ops;
SET_ETHTOOL_OPS(ndev, &xgmac_ethtool_ops);
spin_lock_init(&priv->stats_lock);
priv->device = &pdev->dev;
priv->dev = ndev;
priv->rx_pause = 1;
priv->tx_pause = 1;
priv->base = ioremap(res->start, resource_size(res));
if (!priv->base) {
netdev_err(ndev, "ioremap failed\n");
ret = -ENOMEM;
goto err_io;
}
uid = readl(priv->base + XGMAC_VERSION);
netdev_info(ndev, "h/w version is 0x%x\n", uid);
writel(0, priv->base + XGMAC_DMA_INTR_ENA);
ndev->irq = platform_get_irq(pdev, 0);
if (ndev->irq == -ENXIO) {
netdev_err(ndev, "No irq resource\n");
ret = ndev->irq;
goto err_irq;
}
ret = request_irq(ndev->irq, xgmac_interrupt, 0,
dev_name(&pdev->dev), ndev);
if (ret < 0) {
netdev_err(ndev, "Could not request irq %d - ret %d)\n",
ndev->irq, ret);
goto err_irq;
}
priv->pmt_irq = platform_get_irq(pdev, 1);
if (priv->pmt_irq == -ENXIO) {
netdev_err(ndev, "No pmt irq resource\n");
ret = priv->pmt_irq;
goto err_pmt_irq;
}
ret = request_irq(priv->pmt_irq, xgmac_pmt_interrupt, 0,
dev_name(&pdev->dev), ndev);
if (ret < 0) {
netdev_err(ndev, "Could not request irq %d - ret %d)\n",
priv->pmt_irq, ret);
goto err_pmt_irq;
}
device_set_wakeup_capable(&pdev->dev, 1);
if (device_can_wakeup(priv->device))
priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
ndev->hw_features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
if (readl(priv->base + XGMAC_DMA_HW_FEATURE) & DMA_HW_FEAT_TXCOESEL)
ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
ndev->features |= ndev->hw_features;
ndev->priv_flags |= IFF_UNICAST_FLT;
/* Get the MAC address */
xgmac_get_mac_addr(priv->base, ndev->dev_addr, 0);
if (!is_valid_ether_addr(ndev->dev_addr))
netdev_warn(ndev, "MAC address %pM not valid",
ndev->dev_addr);
netif_napi_add(ndev, &priv->napi, xgmac_poll, 64);
ret = register_netdev(ndev);
if (ret)
goto err_reg;
return 0;
err_reg:
netif_napi_del(&priv->napi);
free_irq(priv->pmt_irq, ndev);
err_pmt_irq:
free_irq(ndev->irq, ndev);
err_irq:
iounmap(priv->base);
err_io:
free_netdev(ndev);
err_alloc:
release_mem_region(res->start, resource_size(res));
platform_set_drvdata(pdev, NULL);
return ret;
}
/**
* xgmac_dvr_remove
* @pdev: platform device pointer
* Description: this function resets the TX/RX processes, disables the MAC RX/TX
* changes the link status, releases the DMA descriptor rings,
* unregisters the MDIO bus and unmaps the allocated memory.
*/
static int xgmac_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct xgmac_priv *priv = netdev_priv(ndev);
struct resource *res;
xgmac_mac_disable(priv->base);
/* Free the IRQ lines */
free_irq(ndev->irq, ndev);
free_irq(priv->pmt_irq, ndev);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
netif_napi_del(&priv->napi);
iounmap(priv->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
free_netdev(ndev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static void xgmac_pmt(void __iomem *ioaddr, unsigned long mode)
{
unsigned int pmt = 0;
if (mode & WAKE_MAGIC)
pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_MAGIC_PKT;
if (mode & WAKE_UCAST)
pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_GLBL_UNICAST;
writel(pmt, ioaddr + XGMAC_PMT);
}
static int xgmac_suspend(struct device *dev)
{
struct net_device *ndev = platform_get_drvdata(to_platform_device(dev));
struct xgmac_priv *priv = netdev_priv(ndev);
u32 value;
if (!ndev || !netif_running(ndev))
return 0;
netif_device_detach(ndev);
napi_disable(&priv->napi);
writel(0, priv->base + XGMAC_DMA_INTR_ENA);
if (device_may_wakeup(priv->device)) {
/* Stop TX/RX DMA Only */
value = readl(priv->base + XGMAC_DMA_CONTROL);
value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR);
writel(value, priv->base + XGMAC_DMA_CONTROL);
xgmac_pmt(priv->base, priv->wolopts);
} else
xgmac_mac_disable(priv->base);
return 0;
}
static int xgmac_resume(struct device *dev)
{
struct net_device *ndev = platform_get_drvdata(to_platform_device(dev));
struct xgmac_priv *priv = netdev_priv(ndev);
void __iomem *ioaddr = priv->base;
if (!netif_running(ndev))
return 0;
xgmac_pmt(ioaddr, 0);
/* Enable the MAC and DMA */
xgmac_mac_enable(ioaddr);
writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS);
writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA);
netif_device_attach(ndev);
napi_enable(&priv->napi);
return 0;
}
static SIMPLE_DEV_PM_OPS(xgmac_pm_ops, xgmac_suspend, xgmac_resume);
#define XGMAC_PM_OPS (&xgmac_pm_ops)
#else
#define XGMAC_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static const struct of_device_id xgmac_of_match[] = {
{ .compatible = "calxeda,hb-xgmac", },
{},
};
MODULE_DEVICE_TABLE(of, xgmac_of_match);
static struct platform_driver xgmac_driver = {
.driver = {
.name = "calxedaxgmac",
.of_match_table = xgmac_of_match,
},
.probe = xgmac_probe,
.remove = xgmac_remove,
.driver.pm = XGMAC_PM_OPS,
};
module_platform_driver(xgmac_driver);
MODULE_AUTHOR("Calxeda, Inc.");
MODULE_DESCRIPTION("Calxeda 10G XGMAC driver");
MODULE_LICENSE("GPL v2");