/*******************************************************************************
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include "e1000.h"
/* Change Log
* 7.0.33 3-Feb-2006
* o Added another fix for the pass false carrier bit
* 7.0.32 24-Jan-2006
* o Need to rebuild with noew version number for the pass false carrier
* fix in e1000_hw.c
* 7.0.30 18-Jan-2006
* o fixup for tso workaround to disable it for pci-x
* o fix mem leak on 82542
* o fixes for 10 Mb/s connections and incorrect stats
* 7.0.28 01/06/2006
* o hardware workaround to only set "speed mode" bit for 1G link.
* 7.0.26 12/23/2005
* o wake on lan support modified for device ID 10B5
* o fix dhcp + vlan issue not making it to the iAMT firmware
* 7.0.24 12/9/2005
* o New hardware support for the Gigabit NIC embedded in the south bridge
* o Fixes to the recycling logic (skb->tail) from IBM LTC
* 6.3.9 12/16/2005
* o incorporate fix for recycled skbs from IBM LTC
* 6.3.7 11/18/2005
* o Honor eeprom setting for enabling/disabling Wake On Lan
* 6.3.5 11/17/2005
* o Fix memory leak in rx ring handling for PCI Express adapters
* 6.3.4 11/8/05
* o Patch from Jesper Juhl to remove redundant NULL checks for kfree
* 6.3.2 9/20/05
* o Render logic that sets/resets DRV_LOAD as inline functions to
* avoid code replication. If f/w is AMT then set DRV_LOAD only when
* network interface is open.
* o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
* o Adjust PBA partioning for Jumbo frames using MTU size and not
* rx_buffer_len
* 6.3.1 9/19/05
* o Use adapter->tx_timeout_factor in Tx Hung Detect logic
* (e1000_clean_tx_irq)
* o Support for 8086:10B5 device (Quad Port)
*/
char e1000_driver_name[] = "e1000";
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#ifndef CONFIG_E1000_NAPI
#define DRIVERNAPI
#else
#define DRIVERNAPI "-NAPI"
#endif
#define DRV_VERSION "7.0.33-k2"DRIVERNAPI
char e1000_driver_version[] = DRV_VERSION;
static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
/* e1000_pci_tbl - PCI Device ID Table
*
* Last entry must be all 0s
*
* Macro expands to...
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
*/
static struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x1000),
INTEL_E1000_ETHERNET_DEVICE(0x1001),
INTEL_E1000_ETHERNET_DEVICE(0x1004),
INTEL_E1000_ETHERNET_DEVICE(0x1008),
INTEL_E1000_ETHERNET_DEVICE(0x1009),
INTEL_E1000_ETHERNET_DEVICE(0x100C),
INTEL_E1000_ETHERNET_DEVICE(0x100D),
INTEL_E1000_ETHERNET_DEVICE(0x100E),
INTEL_E1000_ETHERNET_DEVICE(0x100F),
INTEL_E1000_ETHERNET_DEVICE(0x1010),
INTEL_E1000_ETHERNET_DEVICE(0x1011),
INTEL_E1000_ETHERNET_DEVICE(0x1012),
INTEL_E1000_ETHERNET_DEVICE(0x1013),
INTEL_E1000_ETHERNET_DEVICE(0x1014),
INTEL_E1000_ETHERNET_DEVICE(0x1015),
INTEL_E1000_ETHERNET_DEVICE(0x1016),
INTEL_E1000_ETHERNET_DEVICE(0x1017),
INTEL_E1000_ETHERNET_DEVICE(0x1018),
INTEL_E1000_ETHERNET_DEVICE(0x1019),
INTEL_E1000_ETHERNET_DEVICE(0x101A),
INTEL_E1000_ETHERNET_DEVICE(0x101D),
INTEL_E1000_ETHERNET_DEVICE(0x101E),
INTEL_E1000_ETHERNET_DEVICE(0x1026),
INTEL_E1000_ETHERNET_DEVICE(0x1027),
INTEL_E1000_ETHERNET_DEVICE(0x1028),
INTEL_E1000_ETHERNET_DEVICE(0x105E),
INTEL_E1000_ETHERNET_DEVICE(0x105F),
INTEL_E1000_ETHERNET_DEVICE(0x1060),
INTEL_E1000_ETHERNET_DEVICE(0x1075),
INTEL_E1000_ETHERNET_DEVICE(0x1076),
INTEL_E1000_ETHERNET_DEVICE(0x1077),
INTEL_E1000_ETHERNET_DEVICE(0x1078),
INTEL_E1000_ETHERNET_DEVICE(0x1079),
INTEL_E1000_ETHERNET_DEVICE(0x107A),
INTEL_E1000_ETHERNET_DEVICE(0x107B),
INTEL_E1000_ETHERNET_DEVICE(0x107C),
INTEL_E1000_ETHERNET_DEVICE(0x107D),
INTEL_E1000_ETHERNET_DEVICE(0x107E),
INTEL_E1000_ETHERNET_DEVICE(0x107F),
INTEL_E1000_ETHERNET_DEVICE(0x108A),
INTEL_E1000_ETHERNET_DEVICE(0x108B),
INTEL_E1000_ETHERNET_DEVICE(0x108C),
INTEL_E1000_ETHERNET_DEVICE(0x1096),
INTEL_E1000_ETHERNET_DEVICE(0x1098),
INTEL_E1000_ETHERNET_DEVICE(0x1099),
INTEL_E1000_ETHERNET_DEVICE(0x109A),
INTEL_E1000_ETHERNET_DEVICE(0x10B5),
INTEL_E1000_ETHERNET_DEVICE(0x10B9),
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
int e1000_up(struct e1000_adapter *adapter);
void e1000_down(struct e1000_adapter *adapter);
void e1000_reset(struct e1000_adapter *adapter);
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *txdr);
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr);
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
void e1000_update_stats(struct e1000_adapter *adapter);
/* Local Function Prototypes */
static int e1000_init_module(void);
static void e1000_exit_module(void);
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void __devexit e1000_remove(struct pci_dev *pdev);
static int e1000_alloc_queues(struct e1000_adapter *adapter);
static int e1000_sw_init(struct e1000_adapter *adapter);
static int e1000_open(struct net_device *netdev);
static int e1000_close(struct net_device *netdev);
static void e1000_configure_tx(struct e1000_adapter *adapter);
static void e1000_configure_rx(struct e1000_adapter *adapter);
static void e1000_setup_rctl(struct e1000_adapter *adapter);
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
static void e1000_set_multi(struct net_device *netdev);
static void e1000_update_phy_info(unsigned long data);
static void e1000_watchdog(unsigned long data);
static void e1000_watchdog_task(struct e1000_adapter *adapter);
static void e1000_82547_tx_fifo_stall(unsigned long data);
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
#ifdef CONFIG_E1000_NAPI
static int e1000_clean(struct net_device *poll_dev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do);
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
#endif
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count);
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd);
void e1000_set_ethtool_ops(struct net_device *netdev);
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
static void e1000_tx_timeout(struct net_device *dev);
static void e1000_reset_task(struct net_device *dev);
static void e1000_smartspeed(struct e1000_adapter *adapter);
static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
struct sk_buff *skb);
static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);
#ifdef CONFIG_PM
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
static int e1000_resume(struct pci_dev *pdev);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *netdev);
#endif
/* Exported from other modules */
extern void e1000_check_options(struct e1000_adapter *adapter);
static struct pci_driver e1000_driver = {
.name = e1000_driver_name,
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = __devexit_p(e1000_remove),
/* Power Managment Hooks */
#ifdef CONFIG_PM
.suspend = e1000_suspend,
.resume = e1000_resume
#endif
};
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
/**
* e1000_init_module - Driver Registration Routine
*
* e1000_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init
e1000_init_module(void)
{
int ret;
printk(KERN_INFO "%s - version %s\n",
e1000_driver_string, e1000_driver_version);
printk(KERN_INFO "%s\n", e1000_copyright);
ret = pci_module_init(&e1000_driver);
return ret;
}
module_init(e1000_init_module);
/**
* e1000_exit_module - Driver Exit Cleanup Routine
*
* e1000_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit
e1000_exit_module(void)
{
pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static inline void
e1000_irq_disable(struct e1000_adapter *adapter)
{
atomic_inc(&adapter->irq_sem);
E1000_WRITE_REG(&adapter->hw, IMC, ~0);
E1000_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
/**
* e1000_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static inline void
e1000_irq_enable(struct e1000_adapter *adapter)
{
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
E1000_WRITE_FLUSH(&adapter->hw);
}
}
static void
e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
uint16_t vid = adapter->hw.mng_cookie.vlan_id;
uint16_t old_vid = adapter->mng_vlan_id;
if (adapter->vlgrp) {
if (!adapter->vlgrp->vlan_devices[vid]) {
if (adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
e1000_vlan_rx_add_vid(netdev, vid);
adapter->mng_vlan_id = vid;
} else
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
(vid != old_vid) &&
!adapter->vlgrp->vlan_devices[old_vid])
e1000_vlan_rx_kill_vid(netdev, old_vid);
} else
adapter->mng_vlan_id = vid;
}
}
/**
* e1000_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the netowrk i/f is closed.
*
**/
static inline void
e1000_release_hw_control(struct e1000_adapter *adapter)
{
uint32_t ctrl_ext;
uint32_t swsm;
/* Let firmware taken over control of h/w */
switch (adapter->hw.mac_type) {
case e1000_82571:
case e1000_82572:
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
break;
case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, SWSM);
E1000_WRITE_REG(&adapter->hw, SWSM,
swsm & ~E1000_SWSM_DRV_LOAD);
default:
break;
}
}
/**
* e1000_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the netowrk i/f is open.
*
**/
static inline void
e1000_get_hw_control(struct e1000_adapter *adapter)
{
uint32_t ctrl_ext;
uint32_t swsm;
/* Let firmware know the driver has taken over */
switch (adapter->hw.mac_type) {
case e1000_82571:
case e1000_82572:
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
break;
case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, SWSM);
E1000_WRITE_REG(&adapter->hw, SWSM,
swsm | E1000_SWSM_DRV_LOAD);
break;
default:
break;
}
}
int
e1000_up(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i, err;
/* hardware has been reset, we need to reload some things */
/* Reset the PHY if it was previously powered down */
if (adapter->hw.media_type == e1000_media_type_copper) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
if (mii_reg & MII_CR_POWER_DOWN)
e1000_phy_reset(&adapter->hw);
}
e1000_set_multi(netdev);
e1000_restore_vlan(adapter);
e1000_configure_tx(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
/* call E1000_DESC_UNUSED which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct e1000_rx_ring *ring = &adapter->rx_ring[i];
adapter->alloc_rx_buf(adapter, ring,
E1000_DESC_UNUSED(ring));
}
#ifdef CONFIG_PCI_MSI
if (adapter->hw.mac_type > e1000_82547_rev_2) {
adapter->have_msi = TRUE;
if ((err = pci_enable_msi(adapter->pdev))) {
DPRINTK(PROBE, ERR,
"Unable to allocate MSI interrupt Error: %d\n", err);
adapter->have_msi = FALSE;
}
}
#endif
if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
SA_SHIRQ | SA_SAMPLE_RANDOM,
netdev->name, netdev))) {
DPRINTK(PROBE, ERR,
"Unable to allocate interrupt Error: %d\n", err);
return err;
}
adapter->tx_queue_len = netdev->tx_queue_len;
mod_timer(&adapter->watchdog_timer, jiffies);
#ifdef CONFIG_E1000_NAPI
netif_poll_enable(netdev);
#endif
e1000_irq_enable(adapter);
return 0;
}
void
e1000_down(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
e1000_check_mng_mode(&adapter->hw);
e1000_irq_disable(adapter);
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->hw.mac_type > e1000_82547_rev_2 &&
adapter->have_msi == TRUE)
pci_disable_msi(adapter->pdev);
#endif
del_timer_sync(&adapter->tx_fifo_stall_timer);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
#ifdef CONFIG_E1000_NAPI
netif_poll_disable(netdev);
#endif
netdev->tx_queue_len = adapter->tx_queue_len;
adapter->link_speed = 0;
adapter->link_duplex = 0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
e1000_reset(adapter);
e1000_clean_all_tx_rings(adapter);
e1000_clean_all_rx_rings(adapter);
/* Power down the PHY so no link is implied when interface is down *
* The PHY cannot be powered down if any of the following is TRUE *
* (a) WoL is enabled
* (b) AMT is active
* (c) SoL/IDER session is active */
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper &&
!(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
!mng_mode_enabled &&
!e1000_check_phy_reset_block(&adapter->hw)) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
mdelay(1);
}
}
void
e1000_reset(struct e1000_adapter *adapter)
{
uint32_t pba, manc;
uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (adapter->hw.mac_type) {
case e1000_82547:
case e1000_82547_rev_2:
pba = E1000_PBA_30K;
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
pba = E1000_PBA_38K;
break;
case e1000_82573:
pba = E1000_PBA_12K;
break;
default:
pba = E1000_PBA_48K;
break;
}
if ((adapter->hw.mac_type != e1000_82573) &&
(adapter->netdev->mtu > E1000_RXBUFFER_8192))
pba -= 8; /* allocate more FIFO for Tx */
if (adapter->hw.mac_type == e1000_82547) {
adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
adapter->tx_fifo_size =
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
atomic_set(&adapter->tx_fifo_stall, 0);
}
E1000_WRITE_REG(&adapter->hw, PBA, pba);
/* flow control settings */
/* Set the FC high water mark to 90% of the FIFO size.
* Required to clear last 3 LSB */
fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
adapter->hw.fc_high_water = fc_high_water_mark;
adapter->hw.fc_low_water = fc_high_water_mark - 8;
if (adapter->hw.mac_type == e1000_80003es2lan)
adapter->hw.fc_pause_time = 0xFFFF;
else
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
adapter->hw.fc_send_xon = 1;
adapter->hw.fc = adapter->hw.original_fc;
/* Allow time for pending master requests to run */
e1000_reset_hw(&adapter->hw);
if (adapter->hw.mac_type >= e1000_82544)
E1000_WRITE_REG(&adapter->hw, WUC, 0);
if (e1000_init_hw(&adapter->hw))
DPRINTK(PROBE, ERR, "Hardware Error\n");
e1000_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
e1000_reset_adaptive(&adapter->hw);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
if (adapter->en_mng_pt) {
manc = E1000_READ_REG(&adapter->hw, MANC);
manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
E1000_WRITE_REG(&adapter->hw, MANC, manc);
}
}
/**
* e1000_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in e1000_pci_tbl
*
* Returns 0 on success, negative on failure
*
* e1000_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int __devinit
e1000_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct e1000_adapter *adapter;
unsigned long mmio_start, mmio_len;
static int cards_found = 0;
static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
int i, err, pci_using_dac;
uint16_t eeprom_data;
uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
if ((err = pci_enable_device(pdev)))
return err;
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
pci_using_dac = 1;
} else {
if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
E1000_ERR("No usable DMA configuration, aborting\n");
return err;
}
pci_using_dac = 0;
}
if ((err = pci_request_regions(pdev, e1000_driver_name)))
return err;
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
adapter->msg_enable = (1 << debug) - 1;
mmio_start = pci_resource_start(pdev, BAR_0);
mmio_len = pci_resource_len(pdev, BAR_0);
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_ioremap;
}
for (i = BAR_1; i <= BAR_5; i++) {
if (pci_resource_len(pdev, i) == 0)
continue;
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
adapter->hw.io_base = pci_resource_start(pdev, i);
break;
}
}
netdev->open = &e1000_open;
netdev->stop = &e1000_close;
netdev->hard_start_xmit = &e1000_xmit_frame;
netdev->get_stats = &e1000_get_stats;
netdev->set_multicast_list = &e1000_set_multi;
netdev->set_mac_address = &e1000_set_mac;
netdev->change_mtu = &e1000_change_mtu;
netdev->do_ioctl = &e1000_ioctl;
e1000_set_ethtool_ops(netdev);
netdev->tx_timeout = &e1000_tx_timeout;
netdev->watchdog_timeo = 5 * HZ;
#ifdef CONFIG_E1000_NAPI
netdev->poll = &e1000_clean;
netdev->weight = 64;
#endif
netdev->vlan_rx_register = e1000_vlan_rx_register;
netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = e1000_netpoll;
#endif
strcpy(netdev->name, pci_name(pdev));
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
netdev->base_addr = adapter->hw.io_base;
adapter->bd_number = cards_found;
/* setup the private structure */
if ((err = e1000_sw_init(adapter)))
goto err_sw_init;
if ((err = e1000_check_phy_reset_block(&adapter->hw)))
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
/* if ksp3, indicate if it's port a being setup */
if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
e1000_ksp3_port_a == 0)
adapter->ksp3_port_a = 1;
e1000_ksp3_port_a++;
/* Reset for multiple KP3 adapters */
if (e1000_ksp3_port_a == 4)
e1000_ksp3_port_a = 0;
if (adapter->hw.mac_type >= e1000_82543) {
netdev->features = NETIF_F_SG |
NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER;
}
#ifdef NETIF_F_TSO
if ((adapter->hw.mac_type >= e1000_82544) &&
(adapter->hw.mac_type != e1000_82547))
netdev->features |= NETIF_F_TSO;
#ifdef NETIF_F_TSO_IPV6
if (adapter->hw.mac_type > e1000_82547_rev_2)
netdev->features |= NETIF_F_TSO_IPV6;
#endif
#endif
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
/* hard_start_xmit is safe against parallel locking */
netdev->features |= NETIF_F_LLTX;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
/* before reading the EEPROM, reset the controller to
* put the device in a known good starting state */
e1000_reset_hw(&adapter->hw);
/* make sure the EEPROM is good */
if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
/* copy the MAC address out of the EEPROM */
if (e1000_read_mac_addr(&adapter->hw))
DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
e1000_read_part_num(&adapter->hw, &(adapter->part_num));
e1000_get_bus_info(&adapter->hw);
init_timer(&adapter->tx_fifo_stall_timer);
adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = &e1000_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->watchdog_task,
(void (*)(void *))e1000_watchdog_task, adapter);
init_timer(&adapter->phy_info_timer);
adapter->phy_info_timer.function = &e1000_update_phy_info;
adapter->phy_info_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task,
(void (*)(void *))e1000_reset_task, netdev);
/* we're going to reset, so assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
e1000_check_options(adapter);
/* Initial Wake on LAN setting
* If APM wake is enabled in the EEPROM,
* enable the ACPI Magic Packet filter
*/
switch (adapter->hw.mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
break;
case e1000_82544:
e1000_read_eeprom(&adapter->hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_82544_APM;
break;
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82571:
case e1000_80003es2lan:
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
e1000_read_eeprom(&adapter->hw,
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
break;
}
/* Fall Through */
default:
e1000_read_eeprom(&adapter->hw,
EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break;
}
if (eeprom_data & eeprom_apme_mask)
adapter->wol |= E1000_WUFC_MAG;
/* print bus type/speed/width info */
{
struct e1000_hw *hw = &adapter->hw;
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
(hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
(hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
(hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
(hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
(hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
(hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
(hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
"32-bit"));
}
for (i = 0; i < 6; i++)
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
/* reset the hardware with the new settings */
e1000_reset(adapter);
/* If the controller is 82573 and f/w is AMT, do not set
* DRV_LOAD until the interface is up. For all other cases,
* let the f/w know that the h/w is now under the control
* of the driver. */
if (adapter->hw.mac_type != e1000_82573 ||
!e1000_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter);
strcpy(netdev->name, "eth%d");
if ((err = register_netdev(netdev)))
goto err_register;
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
cards_found++;
return 0;
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
return err;
}
/**
* e1000_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* e1000_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit
e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t manc;
#ifdef CONFIG_E1000_NAPI
int i;
#endif
flush_scheduled_work();
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
if (manc & E1000_MANC_SMBUS_EN) {
manc |= E1000_MANC_ARP_EN;
E1000_WRITE_REG(&adapter->hw, MANC, manc);
}
}
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
e1000_release_hw_control(adapter);
unregister_netdev(netdev);
#ifdef CONFIG_E1000_NAPI
for (i = 0; i < adapter->num_rx_queues; i++)
__dev_put(&adapter->polling_netdev[i]);
#endif
if (!e1000_check_phy_reset_block(&adapter->hw))
e1000_phy_hw_reset(&adapter->hw);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
#ifdef CONFIG_E1000_NAPI
kfree(adapter->polling_netdev);
#endif
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int __devinit
e1000_sw_init(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
#ifdef CONFIG_E1000_NAPI
int i;
#endif
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
hw->max_frame_size = netdev->mtu +
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
/* identify the MAC */
if (e1000_set_mac_type(hw)) {
DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
return -EIO;
}
/* initialize eeprom parameters */
if (e1000_init_eeprom_params(hw)) {
E1000_ERR("EEPROM initialization failed\n");
return -EIO;
}
switch (hw->mac_type) {
default:
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->phy_init_script = 1;
break;
}
e1000_set_media_type(hw);
hw->wait_autoneg_complete = FALSE;
hw->tbi_compatibility_en = TRUE;
hw->adaptive_ifs = TRUE;
/* Copper options */
if (hw->media_type == e1000_media_type_copper) {
hw->mdix = AUTO_ALL_MODES;
hw->disable_polarity_correction = FALSE;
hw->master_slave = E1000_MASTER_SLAVE;
}
adapter->num_tx_queues = 1;
adapter->num_rx_queues = 1;
if (e1000_alloc_queues(adapter)) {
DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
#ifdef CONFIG_E1000_NAPI
for (i = 0; i < adapter->num_rx_queues; i++) {
adapter->polling_netdev[i].priv = adapter;
adapter->polling_netdev[i].poll = &e1000_clean;
adapter->polling_netdev[i].weight = 64;
dev_hold(&adapter->polling_netdev[i]);
set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
}
spin_lock_init(&adapter->tx_queue_lock);
#endif
atomic_set(&adapter->irq_sem, 1);
spin_lock_init(&adapter->stats_lock);
return 0;
}
/**
* e1000_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
* We allocate one ring per queue at run-time since we don't know the
* number of queues at compile-time. The polling_netdev array is
* intended for Multiqueue, but should work fine with a single queue.
**/
static int __devinit
e1000_alloc_queues(struct e1000_adapter *adapter)
{
int size;
size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
adapter->tx_ring = kmalloc(size, GFP_KERNEL);
if (!adapter->tx_ring)
return -ENOMEM;
memset(adapter->tx_ring, 0, size);
size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
adapter->rx_ring = kmalloc(size, GFP_KERNEL);
if (!adapter->rx_ring) {
kfree(adapter->tx_ring);
return -ENOMEM;
}
memset(adapter->rx_ring, 0, size);
#ifdef CONFIG_E1000_NAPI
size = sizeof(struct net_device) * adapter->num_rx_queues;
adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
if (!adapter->polling_netdev) {
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
return -ENOMEM;
}
memset(adapter->polling_netdev, 0, size);
#endif
return E1000_SUCCESS;
}
/**
* e1000_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int
e1000_open(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int err;
/* allocate transmit descriptors */
if ((err = e1000_setup_all_tx_resources(adapter)))
goto err_setup_tx;
/* allocate receive descriptors */
if ((err = e1000_setup_all_rx_resources(adapter)))
goto err_setup_rx;
if ((err = e1000_up(adapter)))
goto err_up;
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
e1000_update_mng_vlan(adapter);
}
/* If AMT is enabled, let the firmware know that the network
* interface is now open */
if (adapter->hw.mac_type == e1000_82573 &&
e1000_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter);
return E1000_SUCCESS;
err_up:
e1000_free_all_rx_resources(adapter);
err_setup_rx:
e1000_free_all_tx_resources(adapter);
err_setup_tx:
e1000_reset(adapter);
return err;
}
/**
* e1000_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int
e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_down(adapter);
e1000_free_all_tx_resources(adapter);
e1000_free_all_rx_resources(adapter);
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
}
/* If AMT is enabled, let the firmware know that the network
* interface is now closed */
if (adapter->hw.mac_type == e1000_82573 &&
e1000_check_mng_mode(&adapter->hw))
e1000_release_hw_control(adapter);
return 0;
}
/**
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
* @adapter: address of board private structure
* @start: address of beginning of memory
* @len: length of memory
**/
static inline boolean_t
e1000_check_64k_bound(struct e1000_adapter *adapter,
void *start, unsigned long len)
{
unsigned long begin = (unsigned long) start;
unsigned long end = begin + len;
/* First rev 82545 and 82546 need to not allow any memory
* write location to cross 64k boundary due to errata 23 */
if (adapter->hw.mac_type == e1000_82545 ||
adapter->hw.mac_type == e1000_82546) {
return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
}
return TRUE;
}
/**
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: board private structure
* @txdr: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
static int
e1000_setup_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *txdr)
{
struct pci_dev *pdev = adapter->pdev;
int size;
size = sizeof(struct e1000_buffer) * txdr->count;
txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
if (!txdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
memset(txdr->buffer_info, 0, size);
/* round up to nearest 4K */
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
E1000_ROUNDUP(txdr->size, 4096);
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
if (!txdr->desc) {
setup_tx_desc_die:
vfree(txdr->buffer_info);
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
void *olddesc = txdr->desc;
dma_addr_t olddma = txdr->dma;
DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
"at %p\n", txdr->size, txdr->desc);
/* Try again, without freeing the previous */
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
/* Failed allocation, critical failure */
if (!txdr->desc) {
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
goto setup_tx_desc_die;
}
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
/* give up */
pci_free_consistent(pdev, txdr->size, txdr->desc,
txdr->dma);
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
DPRINTK(PROBE, ERR,
"Unable to allocate aligned memory "
"for the transmit descriptor ring\n");
vfree(txdr->buffer_info);
return -ENOMEM;
} else {
/* Free old allocation, new allocation was successful */
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
}
}
memset(txdr->desc, 0, txdr->size);
txdr->next_to_use = 0;
txdr->next_to_clean = 0;
spin_lock_init(&txdr->tx_lock);
return 0;
}
/**
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
int
e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
if (err) {
DPRINTK(PROBE, ERR,
"Allocation for Tx Queue %u failed\n", i);
break;
}
}
return err;
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void
e1000_configure_tx(struct e1000_adapter *adapter)
{
uint64_t tdba;
struct e1000_hw *hw = &adapter->hw;
uint32_t tdlen, tctl, tipg, tarc;
uint32_t ipgr1, ipgr2;
/* Setup the HW Tx Head and Tail descriptor pointers */
switch (adapter->num_tx_queues) {
case 1:
default:
tdba = adapter->tx_ring[0].dma;
tdlen = adapter->tx_ring[0].count *
sizeof(struct e1000_tx_desc);
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
E1000_WRITE_REG(hw, TDLEN, tdlen);
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
adapter->tx_ring[0].tdh = E1000_TDH;
adapter->tx_ring[0].tdt = E1000_TDT;
break;
}
/* Set the default values for the Tx Inter Packet Gap timer */
if (hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes)
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
case e1000_80003es2lan:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
break;
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
E1000_WRITE_REG(hw, TIPG, tipg);
/* Set the Tx Interrupt Delay register */
E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
if (hw->mac_type >= e1000_82540)
E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
#ifdef DISABLE_MULR
/* disable Multiple Reads for debugging */
tctl &= ~E1000_TCTL_MULR;
#endif
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
tarc = E1000_READ_REG(hw, TARC0);
tarc |= ((1 << 25) | (1 << 21));
E1000_WRITE_REG(hw, TARC0, tarc);
tarc = E1000_READ_REG(hw, TARC1);
tarc |= (1 << 25);
if (tctl & E1000_TCTL_MULR)
tarc &= ~(1 << 28);
else
tarc |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, tarc);
} else if (hw->mac_type == e1000_80003es2lan) {
tarc = E1000_READ_REG(hw, TARC0);
tarc |= 1;
if (hw->media_type == e1000_media_type_internal_serdes)
tarc |= (1 << 20);
E1000_WRITE_REG(hw, TARC0, tarc);
tarc = E1000_READ_REG(hw, TARC1);
tarc |= 1;
E1000_WRITE_REG(hw, TARC1, tarc);
}
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS;
if (hw->mac_type < e1000_82543)
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
else
adapter->txd_cmd |= E1000_TXD_CMD_RS;
/* Cache if we're 82544 running in PCI-X because we'll
* need this to apply a workaround later in the send path. */
if (hw->mac_type == e1000_82544 &&
hw->bus_type == e1000_bus_type_pcix)
adapter->pcix_82544 = 1;
E1000_WRITE_REG(hw, TCTL, tctl);
}
/**
* e1000_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
* @rxdr: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
static int
e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr)
{
struct pci_dev *pdev = adapter->pdev;
int size, desc_len;
size = sizeof(struct e1000_buffer) * rxdr->count;
rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
if (!rxdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
memset(rxdr->buffer_info, 0, size);
size = sizeof(struct e1000_ps_page) * rxdr->count;
rxdr->ps_page = kmalloc(size, GFP_KERNEL);
if (!rxdr->ps_page) {
vfree(rxdr->buffer_info);
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
memset(rxdr->ps_page, 0, size);
size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
if (!rxdr->ps_page_dma) {
vfree(rxdr->buffer_info);
kfree(rxdr->ps_page);
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
memset(rxdr->ps_page_dma, 0, size);
if (adapter->hw.mac_type <= e1000_82547_rev_2)
desc_len = sizeof(struct e1000_rx_desc);
else
desc_len = sizeof(union e1000_rx_desc_packet_split);
/* Round up to nearest 4K */
rxdr->size = rxdr->count * desc_len;
E1000_ROUNDUP(rxdr->size, 4096);
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
if (!rxdr->desc) {
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
setup_rx_desc_die:
vfree(rxdr->buffer_info);
kfree(rxdr->ps_page);
kfree(rxdr->ps_page_dma);
return -ENOMEM;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
void *olddesc = rxdr->desc;
dma_addr_t olddma = rxdr->dma;
DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
"at %p\n", rxdr->size, rxdr->desc);
/* Try again, without freeing the previous */
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
/* Failed allocation, critical failure */
if (!rxdr->desc) {
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
DPRINTK(PROBE, ERR,
"Unable to allocate memory "
"for the receive descriptor ring\n");
goto setup_rx_desc_die;
}
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
/* give up */
pci_free_consistent(pdev, rxdr->size, rxdr->desc,
rxdr->dma);
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
DPRINTK(PROBE, ERR,
"Unable to allocate aligned memory "
"for the receive descriptor ring\n");
goto setup_rx_desc_die;
} else {
/* Free old allocation, new allocation was successful */
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
}
}
memset(rxdr->desc, 0, rxdr->size);
rxdr->next_to_clean = 0;
rxdr->next_to_use = 0;
return 0;
}
/**
* e1000_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
int
e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
if (err) {
DPRINTK(PROBE, ERR,
"Allocation for Rx Queue %u failed\n", i);
break;
}
}
return err;
}
/**
* e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void
e1000_setup_rctl(struct e1000_adapter *adapter)
{
uint32_t rctl, rfctl;
uint32_t psrctl = 0;
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
uint32_t pages = 0;
#endif
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
if (adapter->hw.mac_type > e1000_82543)
rctl |= E1000_RCTL_SECRC;
if (adapter->hw.tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
if (adapter->netdev->mtu <= ETH_DATA_LEN)
rctl &= ~E1000_RCTL_LPE;
else
rctl |= E1000_RCTL_LPE;
/* Setup buffer sizes */
if (adapter->hw.mac_type >= e1000_82571) {
/* We can now specify buffers in 1K increments.
* BSIZE and BSEX are ignored in this case. */
rctl |= adapter->rx_buffer_len << 0x11;
} else {
rctl &= ~E1000_RCTL_SZ_4096;
rctl |= E1000_RCTL_BSEX;
switch (adapter->rx_buffer_len) {
case E1000_RXBUFFER_2048:
default:
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
break;
case E1000_RXBUFFER_4096:
rctl |= E1000_RCTL_SZ_4096;
break;
case E1000_RXBUFFER_8192:
rctl |= E1000_RCTL_SZ_8192;
break;
case E1000_RXBUFFER_16384:
rctl |= E1000_RCTL_SZ_16384;
break;
}
}
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
/* 82571 and greater support packet-split where the protocol
* header is placed in skb->data and the packet data is
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
* In the case of a non-split, skb->data is linearly filled,
* followed by the page buffers. Therefore, skb->data is
* sized to hold the largest protocol header.
*/
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
PAGE_SIZE <= 16384)
adapter->rx_ps_pages = pages;
else
adapter->rx_ps_pages = 0;
#endif
if (adapter->rx_ps_pages) {
/* Configure extra packet-split registers */
rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
/* disable IPv6 packet split support */
rfctl |= E1000_RFCTL_IPV6_DIS;
E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
psrctl |= adapter->rx_ps_bsize0 >>
E1000_PSRCTL_BSIZE0_SHIFT;
switch (adapter->rx_ps_pages) {
case 3:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE3_SHIFT;
case 2:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE2_SHIFT;
case 1:
psrctl |= PAGE_SIZE >>
E1000_PSRCTL_BSIZE1_SHIFT;
break;
}
E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
}
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void
e1000_configure_rx(struct e1000_adapter *adapter)
{
uint64_t rdba;
struct e1000_hw *hw = &adapter->hw;
uint32_t rdlen, rctl, rxcsum, ctrl_ext;
if (adapter->rx_ps_pages) {
/* this is a 32 byte descriptor */
rdlen = adapter->rx_ring[0].count *
sizeof(union e1000_rx_desc_packet_split);
adapter->clean_rx = e1000_clean_rx_irq_ps;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
} else {
rdlen = adapter->rx_ring[0].count *
sizeof(struct e1000_rx_desc);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */
rctl = E1000_READ_REG(hw, RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
/* set the Receive Delay Timer Register */
E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
if (hw->mac_type >= e1000_82540) {
E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
if (adapter->itr > 1)
E1000_WRITE_REG(hw, ITR,
1000000000 / (adapter->itr * 256));
}
if (hw->mac_type >= e1000_82571) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
/* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_CANC;
#ifdef CONFIG_E1000_NAPI
/* Auto-Mask interrupts upon ICR read. */
ctrl_ext |= E1000_CTRL_EXT_IAME;
#endif
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_REG(hw, IAM, ~0);
E1000_WRITE_FLUSH(hw);
}
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring */
switch (adapter->num_rx_queues) {
case 1:
default:
rdba = adapter->rx_ring[0].dma;
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
E1000_WRITE_REG(hw, RDLEN, rdlen);
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
adapter->rx_ring[0].rdh = E1000_RDH;
adapter->rx_ring[0].rdt = E1000_RDT;
break;
}
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
if (hw->mac_type >= e1000_82543) {
rxcsum = E1000_READ_REG(hw, RXCSUM);
if (adapter->rx_csum == TRUE) {
rxcsum |= E1000_RXCSUM_TUOFL;
/* Enable 82571 IPv4 payload checksum for UDP fragments
* Must be used in conjunction with packet-split. */
if ((hw->mac_type >= e1000_82571) &&
(adapter->rx_ps_pages)) {
rxcsum |= E1000_RXCSUM_IPPCSE;
}
} else {
rxcsum &= ~E1000_RXCSUM_TUOFL;
/* don't need to clear IPPCSE as it defaults to 0 */
}
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
}
if (hw->mac_type == e1000_82573)
E1000_WRITE_REG(hw, ERT, 0x0100);
/* Enable Receives */
E1000_WRITE_REG(hw, RCTL, rctl);
}
/**
* e1000_free_tx_resources - Free Tx Resources per Queue
* @adapter: board private structure
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
static void
e1000_free_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct pci_dev *pdev = adapter->pdev;
e1000_clean_tx_ring(adapter, tx_ring);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* e1000_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
void
e1000_free_all_tx_resources(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
}
static inline void
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
struct e1000_buffer *buffer_info)
{
if (buffer_info->dma) {
pci_unmap_page(adapter->pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
}
if (buffer_info->skb)
dev_kfree_skb_any(buffer_info->skb);
memset(buffer_info, 0, sizeof(struct e1000_buffer));
}
/**
* e1000_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
* @tx_ring: ring to be cleaned
**/
static void
e1000_clean_tx_ring(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct e1000_buffer *buffer_info;
unsigned long size;
unsigned int i;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
}
size = sizeof(struct e1000_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->last_tx_tso = 0;
writel(0, adapter->hw.hw_addr + tx_ring->tdh);
writel(0, adapter->hw.hw_addr + tx_ring->tdt);
}
/**
* e1000_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void
e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
}
/**
* e1000_free_rx_resources - Free Rx Resources
* @adapter: board private structure
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
static void
e1000_free_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
{
struct pci_dev *pdev = adapter->pdev;
e1000_clean_rx_ring(adapter, rx_ring);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
kfree(rx_ring->ps_page);
rx_ring->ps_page = NULL;
kfree(rx_ring->ps_page_dma);
rx_ring->ps_page_dma = NULL;
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* e1000_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
void
e1000_free_all_rx_resources(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
}
/**
* e1000_clean_rx_ring - Free Rx Buffers per Queue
* @adapter: board private structure
* @rx_ring: ring to free buffers from
**/
static void
e1000_clean_rx_ring(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
{
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i, j;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->skb) {
pci_unmap_single(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
for (j = 0; j < adapter->rx_ps_pages; j++) {
if (!ps_page->ps_page[j]) break;
pci_unmap_page(pdev,
ps_page_dma->ps_page_dma[j],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ps_page_dma->ps_page_dma[j] = 0;
put_page(ps_page->ps_page[j]);
ps_page->ps_page[j] = NULL;
}
}
size = sizeof(struct e1000_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size);
size = sizeof(struct e1000_ps_page) * rx_ring->count;
memset(rx_ring->ps_page, 0, size);
size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
memset(rx_ring->ps_page_dma, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
writel(0, adapter->hw.hw_addr + rx_ring->rdh);
writel(0, adapter->hw.hw_addr + rx_ring->rdt);
}
/**
* e1000_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void
e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
}
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
* and memory write and invalidate disabled for certain operations
*/
static void
e1000_enter_82542_rst(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
uint32_t rctl;
e1000_pci_clear_mwi(&adapter->hw);
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
E1000_WRITE_FLUSH(&adapter->hw);
mdelay(5);
if (netif_running(netdev))
e1000_clean_all_rx_rings(adapter);
}
static void
e1000_leave_82542_rst(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
uint32_t rctl;
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
E1000_WRITE_FLUSH(&adapter->hw);
mdelay(5);
if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(&adapter->hw);
if (netif_running(netdev)) {
/* No need to loop, because 82542 supports only 1 queue */
struct e1000_rx_ring *ring = &adapter->rx_ring[0];
e1000_configure_rx(adapter);
adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
}
}
/**
* e1000_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int
e1000_set_mac(struct net_device *netdev, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* 82542 2.0 needs to be in reset to write receive address registers */
if (adapter->hw.mac_type == e1000_82542_rev2_0)
e1000_enter_82542_rst(adapter);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
/* With 82571 controllers, LAA may be overwritten (with the default)
* due to controller reset from the other port. */
if (adapter->hw.mac_type == e1000_82571) {
/* activate the work around */
adapter->hw.laa_is_present = 1;
/* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed (in e1000_watchdog), the actual LAA is in one
* of the RARs and no incoming packets directed to this port
* are dropped. Eventaully the LAA will be in RAR[0] and
* RAR[14] */
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
E1000_RAR_ENTRIES - 1);
}
if (adapter->hw.mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter);
return 0;
}
/**
* e1000_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
**/
static void
e1000_set_multi(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
uint32_t rctl;
uint32_t hash_value;
int i, rar_entries = E1000_RAR_ENTRIES;
/* reserve RAR[14] for LAA over-write work-around */
if (adapter->hw.mac_type == e1000_82571)
rar_entries--;
/* Check for Promiscuous and All Multicast modes */
rctl = E1000_READ_REG(hw, RCTL);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
} else if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
rctl &= ~E1000_RCTL_UPE;
} else {
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
}
E1000_WRITE_REG(hw, RCTL, rctl);
/* 82542 2.0 needs to be in reset to write receive address registers */
if (hw->mac_type == e1000_82542_rev2_0)
e1000_enter_82542_rst(adapter);
/* load the first 14 multicast address into the exact filters 1-14
* RAR 0 is used for the station MAC adddress
* if there are not 14 addresses, go ahead and clear the filters
* -- with 82571 controllers only 0-13 entries are filled here
*/
mc_ptr = netdev->mc_list;
for (i = 1; i < rar_entries; i++) {
if (mc_ptr) {
e1000_rar_set(hw, mc_ptr->dmi_addr, i);
mc_ptr = mc_ptr->next;
} else {
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
}
}
/* clear the old settings from the multicast hash table */
for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* load any remaining addresses into the hash table */
for (; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
e1000_mta_set(hw, hash_value);
}
if (hw->mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter);
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy */
static void
e1000_update_phy_info(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}
/**
* e1000_82547_tx_fifo_stall - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void
e1000_82547_tx_fifo_stall(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
struct net_device *netdev = adapter->netdev;
uint32_t tctl;
if (atomic_read(&adapter->tx_fifo_stall)) {
if ((E1000_READ_REG(&adapter->hw, TDT) ==
E1000_READ_REG(&adapter->hw, TDH)) &&
(E1000_READ_REG(&adapter->hw, TDFT) ==
E1000_READ_REG(&adapter->hw, TDFH)) &&
(E1000_READ_REG(&adapter->hw, TDFTS) ==
E1000_READ_REG(&adapter->hw, TDFHS))) {
tctl = E1000_READ_REG(&adapter->hw, TCTL);
E1000_WRITE_REG(&adapter->hw, TCTL,
tctl & ~E1000_TCTL_EN);
E1000_WRITE_REG(&adapter->hw, TDFT,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFH,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFTS,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFHS,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
E1000_WRITE_FLUSH(&adapter->hw);
adapter->tx_fifo_head = 0;
atomic_set(&adapter->tx_fifo_stall, 0);
netif_wake_queue(netdev);
} else {
mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
}
}
}
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void
e1000_watchdog(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void
e1000_watchdog_task(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_tx_ring *txdr = adapter->tx_ring;
uint32_t link, tctl;
e1000_check_for_link(&adapter->hw);
if (adapter->hw.mac_type == e1000_82573) {
e1000_enable_tx_pkt_filtering(&adapter->hw);
if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
e1000_update_mng_vlan(adapter);
}
if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
!(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
link = !adapter->hw.serdes_link_down;
else
link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
if (link) {
if (!netif_carrier_ok(netdev)) {
e1000_get_speed_and_duplex(&adapter->hw,
&adapter->link_speed,
&adapter->link_duplex);
DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
/* tweak tx_queue_len according to speed/duplex
* and adjust the timeout factor */
netdev->tx_queue_len = adapter->tx_queue_len;
adapter->tx_timeout_factor = 1;
adapter->txb2b = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->txb2b = 0;
netdev->tx_queue_len = 10;
adapter->tx_timeout_factor = 8;
break;
case SPEED_100:
adapter->txb2b = 0;
netdev->tx_queue_len = 100;
/* maybe add some timeout factor ? */
break;
}
if ((adapter->hw.mac_type == e1000_82571 ||
adapter->hw.mac_type == e1000_82572) &&
adapter->txb2b == 0) {
#define SPEED_MODE_BIT (1 << 21)
uint32_t tarc0;
tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
tarc0 &= ~SPEED_MODE_BIT;
E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
}
#ifdef NETIF_F_TSO
/* disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues */
if (!adapter->tso_force &&
adapter->hw.bus_type == e1000_bus_type_pci_express){
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
DPRINTK(PROBE,INFO,
"10/100 speed: disabling TSO\n");
netdev->features &= ~NETIF_F_TSO;
break;
case SPEED_1000:
netdev->features |= NETIF_F_TSO;
break;
default:
/* oops */
break;
}
}
#endif
/* enable transmits in the hardware, need to do this
* after setting TARC0 */
tctl = E1000_READ_REG(&adapter->hw, TCTL);
tctl |= E1000_TCTL_EN;
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
netif_carrier_on(netdev);
netif_wake_queue(netdev);
mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
adapter->smartspeed = 0;
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
DPRINTK(LINK, INFO, "NIC Link is Down\n");
netif_carrier_off(netdev);
netif_stop_queue(netdev);
mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
/* 80003ES2LAN workaround--
* For packet buffer work-around on link down event;
* disable receives in the ISR and
* reset device here in the watchdog
*/
if (adapter->hw.mac_type == e1000_80003es2lan) {
/* reset device */
schedule_work(&adapter->reset_task);
}
}
e1000_smartspeed(adapter);
}
e1000_update_stats(adapter);
adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt;
adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
adapter->gorcl_old = adapter->stats.gorcl;
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
adapter->gotcl_old = adapter->stats.gotcl;
e1000_update_adaptive(&adapter->hw);
if (!netif_carrier_ok(netdev)) {
if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context). */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
}
/* Dynamic mode for Interrupt Throttle Rate (ITR) */
if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
* asymmetrical Tx or Rx gets ITR=8000; everyone
* else is between 2000-8000. */
uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
uint32_t dif = (adapter->gotcl > adapter->gorcl ?
adapter->gotcl - adapter->gorcl :
adapter->gorcl - adapter->gotcl) / 10000;
uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
}
/* Cause software interrupt to ensure rx ring is cleaned */
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = TRUE;
/* With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0] */
if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
/* Reset the timer */
mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
}
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
static inline int
e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
struct sk_buff *skb)
{
#ifdef NETIF_F_TSO
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
uint32_t cmd_length = 0;
uint16_t ipcse = 0, tucse, mss;
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
int err;
if (skb_shinfo(skb)->tso_size) {
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
mss = skb_shinfo(skb)->tso_size;
if (skb->protocol == ntohs(ETH_P_IP)) {
skb->nh.iph->tot_len = 0;
skb->nh.iph->check = 0;
skb->h.th->check =
~csum_tcpudp_magic(skb->nh.iph->saddr,
skb->nh.iph->daddr,
0,
IPPROTO_TCP,
0);
cmd_length = E1000_TXD_CMD_IP;
ipcse = skb->h.raw - skb->data - 1;
#ifdef NETIF_F_TSO_IPV6
} else if (skb->protocol == ntohs(ETH_P_IPV6)) {
skb->nh.ipv6h->payload_len = 0;
skb->h.th->check =
~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
&skb->nh.ipv6h->daddr,
0,
IPPROTO_TCP,
0);
ipcse = 0;
#endif
}
ipcss = skb->nh.raw - skb->data;
ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
tucss = skb->h.raw - skb->data;
tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = tx_ring->next_to_use;
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
context_desc->lower_setup.ip_fields.ipcss = ipcss;
context_desc->lower_setup.ip_fields.ipcso = ipcso;
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
context_desc->upper_setup.tcp_fields.tucss = tucss;
context_desc->upper_setup.tcp_fields.tucso = tucso;
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
buffer_info->time_stamp = jiffies;
if (++i == tx_ring->count) i = 0;
tx_ring->next_to_use = i;
return TRUE;
}
#endif
return FALSE;
}
static inline boolean_t
e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
struct sk_buff *skb)
{
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
uint8_t css;
if (likely(skb->ip_summed == CHECKSUM_HW)) {
css = skb->h.raw - skb->data;
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
buffer_info->time_stamp = jiffies;
if (unlikely(++i == tx_ring->count)) i = 0;
tx_ring->next_to_use = i;
return TRUE;
}
return FALSE;
}
#define E1000_MAX_TXD_PWR 12
#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
static inline int
e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
unsigned int nr_frags, unsigned int mss)
{
struct e1000_buffer *buffer_info;
unsigned int len = skb->len;
unsigned int offset = 0, size, count = 0, i;
unsigned int f;
len -= skb->data_len;
i = tx_ring->next_to_use;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
/* Workaround for Controller erratum --
* descriptor for non-tso packet in a linear SKB that follows a
* tso gets written back prematurely before the data is fully
* DMA'd to the controller */
if (!skb->data_len && tx_ring->last_tx_tso &&
!skb_shinfo(skb)->tso_size) {
tx_ring->last_tx_tso = 0;
size -= 4;
}
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc */
if (unlikely(mss && !nr_frags && size == len && size > 8))
size -= 4;
#endif
/* work-around for errata 10 and it applies
* to all controllers in PCI-X mode
* The fix is to make sure that the first descriptor of a
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
*/
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
(size > 2015) && count == 0))
size = 2015;
/* Workaround for potential 82544 hang in PCI-X. Avoid
* terminating buffers within evenly-aligned dwords. */
if (unlikely(adapter->pcix_82544 &&
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
size > 4))
size -= 4;
buffer_info->length = size;
buffer_info->dma =
pci_map_single(adapter->pdev,
skb->data + offset,
size,
PCI_DMA_TODEVICE);
buffer_info->time_stamp = jiffies;
len -= size;
offset += size;
count++;
if (unlikely(++i == tx_ring->count)) i = 0;
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
len = frag->size;
offset = frag->page_offset;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc */
if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
size -= 4;
#endif
/* Workaround for potential 82544 hang in PCI-X.
* Avoid terminating buffers within evenly-aligned
* dwords. */
if (unlikely(adapter->pcix_82544 &&
!((unsigned long)(frag->page+offset+size-1) & 4) &&
size > 4))
size -= 4;
buffer_info->length = size;
buffer_info->dma =
pci_map_page(adapter->pdev,
frag->page,
offset,
size,
PCI_DMA_TODEVICE);
buffer_info->time_stamp = jiffies;
len -= size;
offset += size;
count++;
if (unlikely(++i == tx_ring->count)) i = 0;
}
}
i = (i == 0) ? tx_ring->count - 1 : i - 1;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
}
static inline void
e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
int tx_flags, int count)
{
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info;
uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
i = tx_ring->next_to_use;
while (count--) {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data =
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
if (unlikely(++i == tx_ring->count)) i = 0;
}
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
tx_ring->next_to_use = i;
writel(i, adapter->hw.hw_addr + tx_ring->tdt);
}
/**
* 82547 workaround to avoid controller hang in half-duplex environment.
* The workaround is to avoid queuing a large packet that would span
* the internal Tx FIFO ring boundary by notifying the stack to resend
* the packet at a later time. This gives the Tx FIFO an opportunity to
* flush all packets. When that occurs, we reset the Tx FIFO pointers
* to the beginning of the Tx FIFO.
**/
#define E1000_FIFO_HDR 0x10
#define E1000_82547_PAD_LEN 0x3E0
static inline int
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
{
uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
if (adapter->link_duplex != HALF_DUPLEX)
goto no_fifo_stall_required;
if (atomic_read(&adapter->tx_fifo_stall))
return 1;
if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
atomic_set(&adapter->tx_fifo_stall, 1);
return 1;
}
no_fifo_stall_required:
adapter->tx_fifo_head += skb_fifo_len;
if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
adapter->tx_fifo_head -= adapter->tx_fifo_size;
return 0;
}
#define MINIMUM_DHCP_PACKET_SIZE 282
static inline int
e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
uint16_t length, offset;
if (vlan_tx_tag_present(skb)) {
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
( adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
return 0;
}
if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
struct ethhdr *eth = (struct ethhdr *) skb->data;
if ((htons(ETH_P_IP) == eth->h_proto)) {
const struct iphdr *ip =
(struct iphdr *)((uint8_t *)skb->data+14);
if (IPPROTO_UDP == ip->protocol) {
struct udphdr *udp =
(struct udphdr *)((uint8_t *)ip +
(ip->ihl << 2));
if (ntohs(udp->dest) == 67) {
offset = (uint8_t *)udp + 8 - skb->data;
length = skb->len - offset;
return e1000_mng_write_dhcp_info(hw,
(uint8_t *)udp + 8,
length);
}
}
}
}
return 0;
}
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_tx_ring *tx_ring;
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
unsigned int tx_flags = 0;
unsigned int len = skb->len;
unsigned long flags;
unsigned int nr_frags = 0;
unsigned int mss = 0;
int count = 0;
int tso;
unsigned int f;
len -= skb->data_len;
tx_ring = adapter->tx_ring;
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
/* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
* overrun the FIFO, adjust the max buffer len if mss
* drops. */
if (mss) {
uint8_t hdr_len;
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
* points to just header, pull a few bytes of payload from
* frags into skb->data */
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
switch (adapter->hw.mac_type) {
unsigned int pull_size;
case e1000_82571:
case e1000_82572:
case e1000_82573:
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
printk(KERN_ERR
"__pskb_pull_tail failed.\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
len = skb->len - skb->data_len;
break;
default:
/* do nothing */
break;
}
}
}
/* reserve a descriptor for the offload context */
if ((mss) || (skb->ip_summed == CHECKSUM_HW))
count++;
count++;
#else
if (skb->ip_summed == CHECKSUM_HW)
count++;
#endif
#ifdef NETIF_F_TSO
/* Controller Erratum workaround */
if (!skb->data_len && tx_ring->last_tx_tso &&
!skb_shinfo(skb)->tso_size)
count++;
#endif
count += TXD_USE_COUNT(len, max_txd_pwr);
if (adapter->pcix_82544)
count++;
/* work-around for errata 10 and it applies to all controllers
* in PCI-X mode, so add one more descriptor to the count
*/
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
(len > 2015)))
count++;
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
max_txd_pwr);
if (adapter->pcix_82544)
count += nr_frags;
if (adapter->hw.tx_pkt_filtering &&
(adapter->hw.mac_type == e1000_82573))
e1000_transfer_dhcp_info(adapter, skb);
local_irq_save(flags);
if (!spin_trylock(&tx_ring->tx_lock)) {
/* Collision - tell upper layer to requeue */
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time */
if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
netif_stop_queue(netdev);
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
return NETDEV_TX_BUSY;
}
if (unlikely(adapter->hw.mac_type == e1000_82547)) {
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
netif_stop_queue(netdev);
mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
return NETDEV_TX_BUSY;
}
}
if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
}
first = tx_ring->next_to_use;
tso = e1000_tso(adapter, tx_ring, skb);
if (tso < 0) {
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
return NETDEV_TX_OK;
}
if (likely(tso)) {
tx_ring->last_tx_tso = 1;
tx_flags |= E1000_TX_FLAGS_TSO;
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
tx_flags |= E1000_TX_FLAGS_CSUM;
/* Old method was to assume IPv4 packet by default if TSO was enabled.
* 82571 hardware supports TSO capabilities for IPv6 as well...
* no longer assume, we must. */
if (likely(skb->protocol == ntohs(ETH_P_IP)))
tx_flags |= E1000_TX_FLAGS_IPV4;
e1000_tx_queue(adapter, tx_ring, tx_flags,
e1000_tx_map(adapter, tx_ring, skb, first,
max_per_txd, nr_frags, mss));
netdev->trans_start = jiffies;
/* Make sure there is space in the ring for the next send. */
if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
netif_stop_queue(netdev);
spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
return NETDEV_TX_OK;
}
/**
* e1000_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void
e1000_tx_timeout(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void
e1000_reset_task(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_down(adapter);
e1000_up(adapter);
}
/**
* e1000_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
**/
static struct net_device_stats *
e1000_get_stats(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* only return the current stats */
return &adapter->net_stats;
}
/**
* e1000_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int
e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
uint16_t eeprom_data = 0;
if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
return -EINVAL;
}
/* Adapter-specific max frame size limits. */
switch (adapter->hw.mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
return -EINVAL;
}
break;
case e1000_82573:
/* only enable jumbo frames if ASPM is disabled completely
* this means both bits must be zero in 0x1A bits 3:2 */
e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
&eeprom_data);
if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
DPRINTK(PROBE, ERR,
"Jumbo Frames not supported.\n");
return -EINVAL;
}
break;
}
/* fall through to get support */
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
#define MAX_STD_JUMBO_FRAME_SIZE 9234
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
return -EINVAL;
}
break;
default:
/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
break;
}
if (adapter->hw.mac_type > e1000_82547_rev_2) {
adapter->rx_buffer_len = max_frame;
E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
} else {
if(unlikely((adapter->hw.mac_type < e1000_82543) &&
(max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
"on 82542\n");
return -EINVAL;
} else {
if(max_frame <= E1000_RXBUFFER_2048)
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
else if(max_frame <= E1000_RXBUFFER_4096)
adapter->rx_buffer_len = E1000_RXBUFFER_4096;
else if(max_frame <= E1000_RXBUFFER_8192)
adapter->rx_buffer_len = E1000_RXBUFFER_8192;
else if(max_frame <= E1000_RXBUFFER_16384)
adapter->rx_buffer_len = E1000_RXBUFFER_16384;
}
}
netdev->mtu = new_mtu;
if (netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
adapter->hw.max_frame_size = max_frame;
return 0;
}
/**
* e1000_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void
e1000_update_stats(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
unsigned long flags;
uint16_t phy_tmp;
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
spin_lock_irqsave(&adapter->stats_lock, flags);
/* these counters are modified from e1000_adjust_tbi_stats,
* called from the interrupt context, so they must only
* be written while holding adapter->stats_lock
*/
adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
adapter->stats.roc += E1000_READ_REG(hw, ROC);
adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
adapter->stats.mpc += E1000_READ_REG(hw, MPC);
adapter->stats.scc += E1000_READ_REG(hw, SCC);
adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
adapter->stats.mcc += E1000_READ_REG(hw, MCC);
adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
adapter->stats.dc += E1000_READ_REG(hw, DC);
adapter->stats.sec += E1000_READ_REG(hw, SEC);
adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
adapter->stats.ruc += E1000_READ_REG(hw, RUC);
adapter->stats.rfc += E1000_READ_REG(hw, RFC);
adapter->stats.rjc += E1000_READ_REG(hw, RJC);
adapter->stats.torl += E1000_READ_REG(hw, TORL);
adapter->stats.torh += E1000_READ_REG(hw, TORH);
adapter->stats.totl += E1000_READ_REG(hw, TOTL);
adapter->stats.toth += E1000_READ_REG(hw, TOTH);
adapter->stats.tpr += E1000_READ_REG(hw, TPR);
adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
/* used for adaptive IFS */
hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
adapter->stats.tpt += hw->tx_packet_delta;
hw->collision_delta = E1000_READ_REG(hw, COLC);
adapter->stats.colc += hw->collision_delta;
if (hw->mac_type >= e1000_82543) {
adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
}
if (hw->mac_type > e1000_82547_rev_2) {
adapter->stats.iac += E1000_READ_REG(hw, IAC);
adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
}
/* Fill out the OS statistics structure */
adapter->net_stats.rx_packets = adapter->stats.gprc;
adapter->net_stats.tx_packets = adapter->stats.gptc;
adapter->net_stats.rx_bytes = adapter->stats.gorcl;
adapter->net_stats.tx_bytes = adapter->stats.gotcl;
adapter->net_stats.multicast = adapter->stats.mprc;
adapter->net_stats.collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC */
adapter->net_stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
adapter->net_stats.rx_dropped = 0;
adapter->net_stats.rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
adapter->net_stats.tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
adapter->net_stats.tx_window_errors = adapter->stats.latecol;
adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Phy Stats */
if (hw->media_type == e1000_media_type_copper) {
if ((adapter->link_speed == SPEED_1000) &&
(!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
adapter->phy_stats.idle_errors += phy_tmp;
}
if ((hw->mac_type <= e1000_82546) &&
(hw->phy_type == e1000_phy_m88) &&
!e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
adapter->phy_stats.receive_errors += phy_tmp;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
**/
static irqreturn_t
e1000_intr(int irq, void *data, struct pt_regs *regs)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
#ifndef CONFIG_E1000_NAPI
int i;
#else
/* Interrupt Auto-Mask...upon reading ICR,
* interrupts are masked. No need for the
* IMC write, but it does mean we should
* account for it ASAP. */
if (likely(hw->mac_type >= e1000_82571))
atomic_inc(&adapter->irq_sem);
#endif
if (unlikely(!icr)) {
#ifdef CONFIG_E1000_NAPI
if (hw->mac_type >= e1000_82571)
e1000_irq_enable(adapter);
#endif
return IRQ_NONE; /* Not our interrupt */
}
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
hw->get_link_status = 1;
/* 80003ES2LAN workaround--
* For packet buffer work-around on link down event;
* disable receives here in the ISR and
* reset adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
(adapter->hw.mac_type == e1000_80003es2lan)) {
/* disable receives */
rctl = E1000_READ_REG(hw, RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
}
mod_timer(&adapter->watchdog_timer, jiffies);
}
#ifdef CONFIG_E1000_NAPI
if (unlikely(hw->mac_type < e1000_82571)) {
atomic_inc(&adapter->irq_sem);
E1000_WRITE_REG(hw, IMC, ~0);
E1000_WRITE_FLUSH(hw);
}
if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
__netif_rx_schedule(&adapter->polling_netdev[0]);
else
e1000_irq_enable(adapter);
#else
/* Writing IMC and IMS is needed for 82547.
* Due to Hub Link bus being occupied, an interrupt
* de-assertion message is not able to be sent.
* When an interrupt assertion message is generated later,
* two messages are re-ordered and sent out.
* That causes APIC to think 82547 is in de-assertion
* state, while 82547 is in assertion state, resulting
* in dead lock. Writing IMC forces 82547 into
* de-assertion state.
*/
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
atomic_inc(&adapter->irq_sem);
E1000_WRITE_REG(hw, IMC, ~0);
}
for (i = 0; i < E1000_MAX_INTR; i++)
if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
!e1000_clean_tx_irq(adapter, adapter->tx_ring)))
break;
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
e1000_irq_enable(adapter);
#endif
return IRQ_HANDLED;
}
#ifdef CONFIG_E1000_NAPI
/**
* e1000_clean - NAPI Rx polling callback
* @adapter: board private structure
**/
static int
e1000_clean(struct net_device *poll_dev, int *budget)
{
struct e1000_adapter *adapter;
int work_to_do = min(*budget, poll_dev->quota);
int tx_cleaned = 0, i = 0, work_done = 0;
/* Must NOT use netdev_priv macro here. */
adapter = poll_dev->priv;
/* Keep link state information with original netdev */
if (!netif_carrier_ok(adapter->netdev))
goto quit_polling;
while (poll_dev != &adapter->polling_netdev[i]) {
i++;
if (unlikely(i == adapter->num_rx_queues))
BUG();
}
if (likely(adapter->num_tx_queues == 1)) {
/* e1000_clean is called per-cpu. This lock protects
* tx_ring[0] from being cleaned by multiple cpus
* simultaneously. A failure obtaining the lock means
* tx_ring[0] is currently being cleaned anyway. */
if (spin_trylock(&adapter->tx_queue_lock)) {
tx_cleaned = e1000_clean_tx_irq(adapter,
&adapter->tx_ring[0]);
spin_unlock(&adapter->tx_queue_lock);
}
} else
tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
adapter->clean_rx(adapter, &adapter->rx_ring[i],
&work_done, work_to_do);
*budget -= work_done;
poll_dev->quota -= work_done;
/* If no Tx and not enough Rx work done, exit the polling mode */
if ((!tx_cleaned && (work_done == 0)) ||
!netif_running(adapter->netdev)) {
quit_polling:
netif_rx_complete(poll_dev);
e1000_irq_enable(adapter);
return 0;
}
return 1;
}
#endif
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
**/
static boolean_t
e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct net_device *netdev = adapter->netdev;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info;
unsigned int i, eop;
#ifdef CONFIG_E1000_NAPI
unsigned int count = 0;
#endif
boolean_t cleaned = FALSE;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
for (cleaned = FALSE; !cleaned; ) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
if (unlikely(++i == tx_ring->count)) i = 0;
}
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
#ifdef CONFIG_E1000_NAPI
#define E1000_TX_WEIGHT 64
/* weight of a sort for tx, to avoid endless transmit cleanup */
if (count++ == E1000_TX_WEIGHT) break;
#endif
}
tx_ring->next_to_clean = i;
spin_lock(&tx_ring->tx_lock);
if (unlikely(cleaned && netif_queue_stopped(netdev) &&
netif_carrier_ok(netdev)))
netif_wake_queue(netdev);
spin_unlock(&tx_ring->tx_lock);
if (adapter->detect_tx_hung) {
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i */
adapter->detect_tx_hung = FALSE;
if (tx_ring->buffer_info[eop].dma &&
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
(adapter->tx_timeout_factor * HZ))
&& !(E1000_READ_REG(&adapter->hw, STATUS) &
E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
" Tx Queue <%lu>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%x>\n"
" jiffies <%lx>\n"
" next_to_watch.status <%x>\n",
(unsigned long)((tx_ring - adapter->tx_ring) /
sizeof(struct e1000_tx_ring)),
readl(adapter->hw.hw_addr + tx_ring->tdh),
readl(adapter->hw.hw_addr + tx_ring->tdt),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_ring->buffer_info[eop].time_stamp,
eop,
jiffies,
eop_desc->upper.fields.status);
netif_stop_queue(netdev);
}
}
return cleaned;
}
/**
* e1000_rx_checksum - Receive Checksum Offload for 82543
* @adapter: board private structure
* @status_err: receive descriptor status and error fields
* @csum: receive descriptor csum field
* @sk_buff: socket buffer with received data
**/
static inline void
e1000_rx_checksum(struct e1000_adapter *adapter,
uint32_t status_err, uint32_t csum,
struct sk_buff *skb)
{
uint16_t status = (uint16_t)status_err;
uint8_t errors = (uint8_t)(status_err >> 24);
skb->ip_summed = CHECKSUM_NONE;
/* 82543 or newer only */
if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
/* Ignore Checksum bit is set */
if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
/* TCP/UDP checksum error bit is set */
if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* TCP/UDP Checksum has not been calculated */
if (adapter->hw.mac_type <= e1000_82547_rev_2) {
if (!(status & E1000_RXD_STAT_TCPCS))
return;
} else {
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (likely(status & E1000_RXD_STAT_TCPCS)) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
/* IP fragment with UDP payload */
/* Hardware complements the payload checksum, so we undo it
* and then put the value in host order for further stack use.
*/
csum = ntohl(csum ^ 0xFFFF);
skb->csum = csum;
skb->ip_summed = CHECKSUM_HW;
}
adapter->hw_csum_good++;
}
/**
* e1000_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
**/
static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do)
#else
e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
#endif
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
unsigned long flags;
uint32_t length;
uint8_t last_byte;
unsigned int i;
int cleaned_count = 0;
boolean_t cleaned = FALSE;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC(*rx_ring, i);
buffer_info = &rx_ring->buffer_info[i];
while (rx_desc->status & E1000_RXD_STAT_DD) {
struct sk_buff *skb, *next_skb;
u8 status;
#ifdef CONFIG_E1000_NAPI
if (*work_done >= work_to_do)
break;
(*work_done)++;
#endif
status = rx_desc->status;
skb = buffer_info->skb;
buffer_info->skb = NULL;
prefetch(skb->data - NET_IP_ALIGN);
if (++i == rx_ring->count) i = 0;
next_rxd = E1000_RX_DESC(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
next_skb = next_buffer->skb;
prefetch(next_skb->data - NET_IP_ALIGN);
cleaned = TRUE;
cleaned_count++;
pci_unmap_single(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
length = le16_to_cpu(rx_desc->length);
if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
/* All receives must fit into a single buffer */
E1000_DBG("%s: Receive packet consumed multiple"
" buffers\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
last_byte = *(skb->data + length - 1);
if (TBI_ACCEPT(&adapter->hw, status,
rx_desc->errors, length, last_byte)) {
spin_lock_irqsave(&adapter->stats_lock, flags);
e1000_tbi_adjust_stats(&adapter->hw,
&adapter->stats,
length, skb->data);
spin_unlock_irqrestore(&adapter->stats_lock,
flags);
length--;
} else {
dev_kfree_skb_irq(skb);
goto next_desc;
}
}
/* code added for copybreak, this should improve
* performance for small packets with large amounts
* of reassembly being done in the stack */
#define E1000_CB_LENGTH 256
if (length < E1000_CB_LENGTH) {
struct sk_buff *new_skb =
dev_alloc_skb(length + NET_IP_ALIGN);
if (new_skb) {
skb_reserve(new_skb, NET_IP_ALIGN);
new_skb->dev = netdev;
memcpy(new_skb->data - NET_IP_ALIGN,
skb->data - NET_IP_ALIGN,
length + NET_IP_ALIGN);
/* save the skb in buffer_info as good */
buffer_info->skb = skb;
skb = new_skb;
skb_put(skb, length);
}
} else
skb_put(skb, length);
/* end copybreak code */
/* Receive Checksum Offload */
e1000_rx_checksum(adapter,
(uint32_t)(status) |
((uint32_t)(rx_desc->errors) << 24),
rx_desc->csum, skb);
skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
if (unlikely(adapter->vlgrp &&
(status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_receive_skb(skb);
}
#else /* CONFIG_E1000_NAPI */
if (unlikely(adapter->vlgrp &&
(status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_rx(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_rx(skb);
}
#endif /* CONFIG_E1000_NAPI */
netdev->last_rx = jiffies;
next_desc:
rx_desc->status = 0;
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
}
rx_ring->next_to_clean = i;
cleaned_count = E1000_DESC_UNUSED(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
return cleaned;
}
/**
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
* @adapter: board private structure
**/
static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do)
#else
e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
#endif
{
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info, *next_buffer;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct sk_buff *skb, *next_skb;
unsigned int i, j;
uint32_t length, staterr;
int cleaned_count = 0;
boolean_t cleaned = FALSE;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
while (staterr & E1000_RXD_STAT_DD) {
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
#ifdef CONFIG_E1000_NAPI
if (unlikely(*work_done >= work_to_do))
break;
(*work_done)++;
#endif
skb = buffer_info->skb;
/* in the packet split case this is header only */
prefetch(skb->data - NET_IP_ALIGN);
if (++i == rx_ring->count) i = 0;
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
next_skb = next_buffer->skb;
prefetch(next_skb->data - NET_IP_ALIGN);
cleaned = TRUE;
cleaned_count++;
pci_unmap_single(pdev, buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
E1000_DBG("%s: Packet Split buffers didn't pick up"
" the full packet\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
dev_kfree_skb_irq(skb);
goto next_desc;
}
length = le16_to_cpu(rx_desc->wb.middle.length0);
if (unlikely(!length)) {
E1000_DBG("%s: Last part of the packet spanning"
" multiple descriptors\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
/* Good Receive */
skb_put(skb, length);
{
/* this looks ugly, but it seems compiler issues make it
more efficient than reusing j */
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/* page alloc/put takes too long and effects small packet
* throughput, so unsplit small packets and save the alloc/put*/
if (l1 && ((length + l1) < E1000_CB_LENGTH)) {
u8 *vaddr;
/* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping
* very long */
pci_dma_sync_single_for_cpu(pdev,
ps_page_dma->ps_page_dma[0],
PAGE_SIZE,
PCI_DMA_FROMDEVICE);
vaddr = kmap_atomic(ps_page->ps_page[0],
KM_SKB_DATA_SOFTIRQ);
memcpy(skb->tail, vaddr, l1);
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
pci_dma_sync_single_for_device(pdev,
ps_page_dma->ps_page_dma[0],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
skb_put(skb, l1);
length += l1;
goto copydone;
} /* if */
}
for (j = 0; j < adapter->rx_ps_pages; j++) {
if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
break;
pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ps_page_dma->ps_page_dma[j] = 0;
skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
length);
ps_page->ps_page[j] = NULL;
skb->len += length;
skb->data_len += length;
}
copydone:
e1000_rx_checksum(adapter, staterr,
rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
skb->protocol = eth_type_trans(skb, netdev);
if (likely(rx_desc->wb.upper.header_status &
E1000_RXDPS_HDRSTAT_HDRSP))
adapter->rx_hdr_split++;
#ifdef CONFIG_E1000_NAPI
if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->wb.middle.vlan) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_receive_skb(skb);
}
#else /* CONFIG_E1000_NAPI */
if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
vlan_hwaccel_rx(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->wb.middle.vlan) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_rx(skb);
}
#endif /* CONFIG_E1000_NAPI */
netdev->last_rx = jiffies;
next_desc:
rx_desc->wb.middle.status_error &= ~0xFF;
buffer_info->skb = NULL;
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = E1000_DESC_UNUSED(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
return cleaned;
}
/**
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
* @adapter: address of board private structure
**/
static void
e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
if (!(skb = buffer_info->skb))
skb = dev_alloc_skb(bufsz);
else {
skb_trim(skb, 0);
goto map_skb;
}
if (unlikely(!skb)) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
struct sk_buff *oldskb = skb;
DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
"at %p\n", bufsz, skb->data);
/* Try again, without freeing the previous */
skb = dev_alloc_skb(bufsz);
/* Failed allocation, critical failure */
if (!skb) {
dev_kfree_skb(oldskb);
break;
}
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
/* give up */
dev_kfree_skb(skb);
dev_kfree_skb(oldskb);
break; /* while !buffer_info->skb */
} else {
/* Use new allocation */
dev_kfree_skb(oldskb);
}
}
/* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
*/
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
buffer_info->skb = skb;
buffer_info->length = adapter->rx_buffer_len;
map_skb:
buffer_info->dma = pci_map_single(pdev,
skb->data,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter,
(void *)(unsigned long)buffer_info->dma,
adapter->rx_buffer_len)) {
DPRINTK(RX_ERR, ERR,
"dma align check failed: %u bytes at %p\n",
adapter->rx_buffer_len,
(void *)(unsigned long)buffer_info->dma);
dev_kfree_skb(skb);
buffer_info->skb = NULL;
pci_unmap_single(pdev, buffer_info->dma,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
break; /* while !buffer_info->skb */
}
rx_desc = E1000_RX_DESC(*rx_ring, i);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
}
}
/**
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
static void
e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct sk_buff *skb;
unsigned int i, j;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
while (cleaned_count--) {
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
if (j < adapter->rx_ps_pages) {
if (likely(!ps_page->ps_page[j])) {
ps_page->ps_page[j] =
alloc_page(GFP_ATOMIC);
if (unlikely(!ps_page->ps_page[j])) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
ps_page_dma->ps_page_dma[j] =
pci_map_page(pdev,
ps_page->ps_page[j],
0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
}
/* Refresh the desc even if buffer_addrs didn't
* change because each write-back erases
* this info.
*/
rx_desc->read.buffer_addr[j+1] =
cpu_to_le64(ps_page_dma->ps_page_dma[j]);
} else
rx_desc->read.buffer_addr[j+1] = ~0;
}
skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
if (unlikely(!skb)) {
adapter->alloc_rx_buff_failed++;
break;
}
/* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
*/
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
buffer_info->skb = skb;
buffer_info->length = adapter->rx_ps_bsize0;
buffer_info->dma = pci_map_single(pdev, skb->data,
adapter->rx_ps_bsize0,
PCI_DMA_FROMDEVICE);
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count)) i = 0;
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
}
no_buffers:
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
/* Hardware increments by 16 bytes, but packet split
* descriptors are 32 bytes...so we increment tail
* twice as much.
*/
writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
}
}
/**
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
* @adapter:
**/
static void
e1000_smartspeed(struct e1000_adapter *adapter)
{
uint16_t phy_status;
uint16_t phy_ctrl;
if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
!(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
return;
if (adapter->smartspeed == 0) {
/* If Master/Slave config fault is asserted twice,
* we assume back-to-back */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
if (phy_ctrl & CR_1000T_MS_ENABLE) {
phy_ctrl &= ~CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
phy_ctrl);
adapter->smartspeed++;
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
&phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
phy_ctrl);
}
}
return;
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
/* If still no link, perhaps using 2/3 pair cable */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
phy_ctrl |= CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
if (!e1000_phy_setup_autoneg(&adapter->hw) &&
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
}
}
/* Restart process after E1000_SMARTSPEED_MAX iterations */
if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
adapter->smartspeed = 0;
}
/**
* e1000_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return e1000_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/**
* e1000_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
int retval;
uint16_t mii_reg;
uint16_t spddplx;
unsigned long flags;
if (adapter->hw.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy_addr;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (data->reg_num & ~(0x1F))
return -EFAULT;
mii_reg = data->val_in;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
mii_reg)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
if (adapter->hw.phy_type == e1000_media_type_copper) {
switch (data->reg_num) {
case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN)
break;
if (mii_reg & MII_CR_AUTO_NEG_EN) {
adapter->hw.autoneg = 1;
adapter->hw.autoneg_advertised = 0x2F;
} else {
if (mii_reg & 0x40)
spddplx = SPEED_1000;
else if (mii_reg & 0x2000)
spddplx = SPEED_100;
else
spddplx = SPEED_10;
spddplx += (mii_reg & 0x100)
? DUPLEX_FULL :
DUPLEX_HALF;
retval = e1000_set_spd_dplx(adapter,
spddplx);
if (retval) {
spin_unlock_irqrestore(
&adapter->stats_lock,
flags);
return retval;
}
}
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
break;
case M88E1000_PHY_SPEC_CTRL:
case M88E1000_EXT_PHY_SPEC_CTRL:
if (e1000_phy_reset(&adapter->hw)) {
spin_unlock_irqrestore(
&adapter->stats_lock, flags);
return -EIO;
}
break;
}
} else {
switch (data->reg_num) {
case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN)
break;
if (netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
break;
}
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
default:
return -EOPNOTSUPP;
}
return E1000_SUCCESS;
}
void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
int ret_val = pci_set_mwi(adapter->pdev);
if (ret_val)
DPRINTK(PROBE, ERR, "Error in setting MWI\n");
}
void
e1000_pci_clear_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
pci_clear_mwi(adapter->pdev);
}
void
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
struct e1000_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
void
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
struct e1000_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
uint32_t
e1000_io_read(struct e1000_hw *hw, unsigned long port)
{
return inl(port);
}
void
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
{
outl(value, port);
}
static void
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t ctrl, rctl;
e1000_irq_disable(adapter);
adapter->vlgrp = grp;
if (grp) {
/* enable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
/* enable VLAN receive filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
e1000_update_mng_vlan(adapter);
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
/* disable VLAN filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
e1000_irq_enable(adapter);
}
static void
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t vfta, index;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
(vid == adapter->mng_vlan_id))
return;
/* add VID to filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
vfta |= (1 << (vid & 0x1F));
e1000_write_vfta(&adapter->hw, index, vfta);
}
static void
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t vfta, index;
e1000_irq_disable(adapter);
if (adapter->vlgrp)
adapter->vlgrp->vlan_devices[vid] = NULL;
e1000_irq_enable(adapter);
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
(vid == adapter->mng_vlan_id)) {
/* release control to f/w */
e1000_release_hw_control(adapter);
return;
}
/* remove VID from filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
e1000_write_vfta(&adapter->hw, index, vfta);
}
static void
e1000_restore_vlan(struct e1000_adapter *adapter)
{
e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
if (adapter->vlgrp) {
uint16_t vid;
for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
if (!adapter->vlgrp->vlan_devices[vid])
continue;
e1000_vlan_rx_add_vid(adapter->netdev, vid);
}
}
}
int
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
{
adapter->hw.autoneg = 0;
/* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.media_type == e1000_media_type_fiber) &&
spddplx != (SPEED_1000 + DUPLEX_FULL)) {
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
switch (spddplx) {
case SPEED_10 + DUPLEX_HALF:
adapter->hw.forced_speed_duplex = e1000_10_half;
break;
case SPEED_10 + DUPLEX_FULL:
adapter->hw.forced_speed_duplex = e1000_10_full;
break;
case SPEED_100 + DUPLEX_HALF:
adapter->hw.forced_speed_duplex = e1000_100_half;
break;
case SPEED_100 + DUPLEX_FULL:
adapter->hw.forced_speed_duplex = e1000_100_full;
break;
case SPEED_1000 + DUPLEX_FULL:
adapter->hw.autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_PM
/* Save/restore 16 or 64 dwords of PCI config space depending on which
* bus we're on (PCI(X) vs. PCI-E)
*/
#define PCIE_CONFIG_SPACE_LEN 256
#define PCI_CONFIG_SPACE_LEN 64
static int
e1000_pci_save_state(struct e1000_adapter *adapter)
{
struct pci_dev *dev = adapter->pdev;
int size;
int i;
if (adapter->hw.mac_type >= e1000_82571)
size = PCIE_CONFIG_SPACE_LEN;
else
size = PCI_CONFIG_SPACE_LEN;
WARN_ON(adapter->config_space != NULL);
adapter->config_space = kmalloc(size, GFP_KERNEL);
if (!adapter->config_space) {
DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
return -ENOMEM;
}
for (i = 0; i < (size / 4); i++)
pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
return 0;
}
static void
e1000_pci_restore_state(struct e1000_adapter *adapter)
{
struct pci_dev *dev = adapter->pdev;
int size;
int i;
if (adapter->config_space == NULL)
return;
if (adapter->hw.mac_type >= e1000_82571)
size = PCIE_CONFIG_SPACE_LEN;
else
size = PCI_CONFIG_SPACE_LEN;
for (i = 0; i < (size / 4); i++)
pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
kfree(adapter->config_space);
adapter->config_space = NULL;
return;
}
#endif /* CONFIG_PM */
static int
e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
uint32_t ctrl, ctrl_ext, rctl, manc, status;
uint32_t wufc = adapter->wol;
int retval = 0;
netif_device_detach(netdev);
if (netif_running(netdev))
e1000_down(adapter);
#ifdef CONFIG_PM
/* Implement our own version of pci_save_state(pdev) because pci-
* express adapters have 256-byte config spaces. */
retval = e1000_pci_save_state(adapter);
if (retval)
return retval;
#endif
status = E1000_READ_REG(&adapter->hw, STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
e1000_setup_rctl(adapter);
e1000_set_multi(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (adapter->wol & E1000_WUFC_MC) {
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
if (adapter->hw.mac_type >= e1000_82540) {
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
/* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC |
E1000_CTRL_EN_PHY_PWR_MGMT;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
}
if (adapter->hw.media_type == e1000_media_type_fiber ||
adapter->hw.media_type == e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
}
/* Allow time for pending master requests to run */
e1000_disable_pciex_master(&adapter->hw);
E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
retval = pci_enable_wake(pdev, PCI_D3hot, 1);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
retval = pci_enable_wake(pdev, PCI_D3cold, 1);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
} else {
E1000_WRITE_REG(&adapter->hw, WUC, 0);
E1000_WRITE_REG(&adapter->hw, WUFC, 0);
retval = pci_enable_wake(pdev, PCI_D3hot, 0);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
retval = pci_enable_wake(pdev, PCI_D3cold, 0);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
}
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
if (manc & E1000_MANC_SMBUS_EN) {
manc |= E1000_MANC_ARP_EN;
E1000_WRITE_REG(&adapter->hw, MANC, manc);
retval = pci_enable_wake(pdev, PCI_D3hot, 1);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
retval = pci_enable_wake(pdev, PCI_D3cold, 1);
if (retval)
DPRINTK(PROBE, ERR,
"Error enabling D3 cold wake\n");
}
}
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
e1000_release_hw_control(adapter);
pci_disable_device(pdev);
retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
if (retval)
DPRINTK(PROBE, ERR, "Error in setting power state\n");
return 0;
}
#ifdef CONFIG_PM
static int
e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
int retval;
uint32_t manc, ret_val;
retval = pci_set_power_state(pdev, PCI_D0);
if (retval)
DPRINTK(PROBE, ERR, "Error in setting power state\n");
e1000_pci_restore_state(adapter);
ret_val = pci_enable_device(pdev);
pci_set_master(pdev);
retval = pci_enable_wake(pdev, PCI_D3hot, 0);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
retval = pci_enable_wake(pdev, PCI_D3cold, 0);
if (retval)
DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
e1000_reset(adapter);
E1000_WRITE_REG(&adapter->hw, WUS, ~0);
if (netif_running(netdev))
e1000_up(adapter);
netif_device_attach(netdev);
if (adapter->hw.mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper) {
manc = E1000_READ_REG(&adapter->hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(&adapter->hw, MANC, manc);
}
/* If the controller is 82573 and f/w is AMT, do not set
* DRV_LOAD until the interface is up. For all other cases,
* let the f/w know that the h/w is now under the control
* of the driver. */
if (adapter->hw.mac_type != e1000_82573 ||
!e1000_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter);
return 0;
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void
e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
disable_irq(adapter->pdev->irq);
e1000_intr(adapter->pdev->irq, netdev, NULL);
e1000_clean_tx_irq(adapter, adapter->tx_ring);
#ifndef CONFIG_E1000_NAPI
adapter->clean_rx(adapter, adapter->rx_ring);
#endif
enable_irq(adapter->pdev->irq);
}
#endif
/* e1000_main.c */