aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/net/bnx2x_init_ops.h
blob: 38b970a14fd79d19b83a3b24203feafb41091835 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13












                                                                       
 


                        

                                                                   
 


                                                                          
              
 
                                 
                                                


                                                                          
                                      
 
              
 
                                 
                                                    



                                                                    



                                                                          



                                                                          


                                                                        
 
                                                  



                                                      
                                                             





                                                                         

                                      
                       
              


                                                                         
 

                                                 
                                                           






                                                      
                                                             



















                                                                               





















                                                              





                                                                       



                                                                          




                                                                         
                                                                       
 



                                                       

 
                                                                               
 


                              
 
                                                           

                                         
               
                       

                                        
                                
                                 

                                                                        





                                                                    
                      
                                                                               
                    
                                                                             
                          

                                  












                                      
                                  


                                             
                                                         






                                                       
                                                            





























                                                                    




                              




































































































































































                                                                             
 

                   








































































                                                                               




                                                                       














                                                                          
                             
/* bnx2x_init_ops.h: Broadcom Everest network driver.
 *               Static functions needed during the initialization.
 *               This file is "included" in bnx2x_main.c.
 *
 * Copyright (c) 2007-2009 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation.
 *
 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
 */

#ifndef BNX2X_INIT_OPS_H
#define BNX2X_INIT_OPS_H

static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);


static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
			      u32 len)
{
	u32 i;

	for (i = 0; i < len; i++)
		REG_WR(bp, addr + i*4, data[i]);
}

static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
			      u32 len)
{
	u32 i;

	for (i = 0; i < len; i++)
		REG_WR_IND(bp, addr + i*4, data[i]);
}

static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
{
	if (bp->dmae_ready)
		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
	else
		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
}

static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
	u32 buf_len32 = buf_len/4;
	u32 i;

	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);

	for (i = 0; i < len; i += buf_len32) {
		u32 cur_len = min(buf_len32, len - i);

		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
	}
}

static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
			     u32 len64)
{
	u32 buf_len32 = FW_BUF_SIZE/4;
	u32 len = len64*2;
	u64 data64 = 0;
	u32 i;

	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
	data64 = HILO_U64((*(data + 1)), (*data));

	len64 = min((u32)(FW_BUF_SIZE/8), len64);
	for (i = 0; i < len64; i++) {
		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;

		*pdata = data64;
	}

	for (i = 0; i < len; i += buf_len32) {
		u32 cur_len = min(buf_len32, len - i);

		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
	}
}

/*********************************************************
   There are different blobs for each PRAM section.
   In addition, each blob write operation is divided into a few operations
   in order to decrease the amount of phys. contiguous buffer needed.
   Thus, when we select a blob the address may be with some offset
   from the beginning of PRAM section.
   The same holds for the INT_TABLE sections.
**********************************************************/
#define IF_IS_INT_TABLE_ADDR(base, addr) \
			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))

#define IF_IS_PRAM_ADDR(base, addr) \
			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))

static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
{
	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
		data = INIT_TSEM_INT_TABLE_DATA(bp);
	else
		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
			data = INIT_CSEM_INT_TABLE_DATA(bp);
	else
		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
			data = INIT_USEM_INT_TABLE_DATA(bp);
	else
		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
			data = INIT_XSEM_INT_TABLE_DATA(bp);
	else
		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
			data = INIT_TSEM_PRAM_DATA(bp);
	else
		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
			data = INIT_CSEM_PRAM_DATA(bp);
	else
		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
			data = INIT_USEM_PRAM_DATA(bp);
	else
		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
			data = INIT_XSEM_PRAM_DATA(bp);

	return data;
}

static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
{
	if (bp->dmae_ready)
		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
	else
		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
}

static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
			     u32 len)
{
	data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);

	if (bp->dmae_ready)
		VIRT_WR_DMAE_LEN(bp, data, addr, len);
	else
		bnx2x_init_ind_wr(bp, addr, data, len);
}

static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
{
	const u8 *data = NULL;
	int rc;
	u32 i;

	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;

	rc = bnx2x_gunzip(bp, data, len);
	if (rc)
		return;

	/* gunzip_outlen is in dwords */
	len = GUNZIP_OUTLEN(bp);
	for (i = 0; i < len; i++)
		((u32 *)GUNZIP_BUF(bp))[i] =
				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);

	bnx2x_write_big_buf_wb(bp, addr, len);
}

static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
{
	u16 op_start =
		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
	u16 op_end =
		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
	union init_op *op;
	int hw_wr;
	u32 i, op_type, addr, len;
	const u32 *data, *data_base;

	/* If empty block */
	if (op_start == op_end)
		return;

	if (CHIP_REV_IS_FPGA(bp))
		hw_wr = OP_WR_FPGA;
	else if (CHIP_REV_IS_EMUL(bp))
		hw_wr = OP_WR_EMUL;
	else
		hw_wr = OP_WR_ASIC;

	data_base = INIT_DATA(bp);

	for (i = op_start; i < op_end; i++) {

		op = (union init_op *)&(INIT_OPS(bp)[i]);

		op_type = op->str_wr.op;
		addr = op->str_wr.offset;
		len = op->str_wr.data_len;
		data = data_base + op->str_wr.data_off;

		/* HW/EMUL specific */
		if ((op_type > OP_WB) && (op_type == hw_wr))
			op_type = OP_WR;

		switch (op_type) {
		case OP_RD:
			REG_RD(bp, addr);
			break;
		case OP_WR:
			REG_WR(bp, addr, op->write.val);
			break;
		case OP_SW:
			bnx2x_init_str_wr(bp, addr, data, len);
			break;
		case OP_WB:
			bnx2x_init_wr_wb(bp, addr, data, len);
			break;
		case OP_SI:
			bnx2x_init_ind_wr(bp, addr, data, len);
			break;
		case OP_ZR:
			bnx2x_init_fill(bp, addr, 0, op->zero.len);
			break;
		case OP_ZP:
			bnx2x_init_wr_zp(bp, addr, len,
					 op->str_wr.data_off);
			break;
		case OP_WR_64:
			bnx2x_init_wr_64(bp, addr, data, len);
			break;
		default:
			/* happens whenever an op is of a diff HW */
			break;
		}
	}
}


/****************************************************************************
* PXP Arbiter
****************************************************************************/
/*
 * This code configures the PCI read/write arbiter
 * which implements a weighted round robin
 * between the virtual queues in the chip.
 *
 * The values were derived for each PCI max payload and max request size.
 * since max payload and max request size are only known at run time,
 * this is done as a separate init stage.
 */

#define NUM_WR_Q			13
#define NUM_RD_Q			29
#define MAX_RD_ORD			3
#define MAX_WR_ORD			2

/* configuration for one arbiter queue */
struct arb_line {
	int l;
	int add;
	int ubound;
};

/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
};

/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
};

/* register addresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
		PXP2_REG_RQ_BW_RD_UBOUND0},
	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
		PXP2_REG_PSWRQ_BW_UB1},
	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
		PXP2_REG_PSWRQ_BW_UB2},
	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
		PXP2_REG_PSWRQ_BW_UB3},
	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
		PXP2_REG_RQ_BW_RD_UBOUND4},
	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
		PXP2_REG_RQ_BW_RD_UBOUND5},
	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
		PXP2_REG_PSWRQ_BW_UB6},
	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
		PXP2_REG_PSWRQ_BW_UB7},
	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
		PXP2_REG_PSWRQ_BW_UB8},
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
		PXP2_REG_PSWRQ_BW_UB9},
	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
		PXP2_REG_PSWRQ_BW_UB10},
	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
		PXP2_REG_PSWRQ_BW_UB11},
	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
		PXP2_REG_RQ_BW_RD_UBOUND12},
	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
		PXP2_REG_RQ_BW_RD_UBOUND13},
	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
		PXP2_REG_RQ_BW_RD_UBOUND14},
	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
		PXP2_REG_RQ_BW_RD_UBOUND15},
	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
		PXP2_REG_RQ_BW_RD_UBOUND16},
	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
		PXP2_REG_RQ_BW_RD_UBOUND17},
	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
		PXP2_REG_RQ_BW_RD_UBOUND18},
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
		PXP2_REG_RQ_BW_RD_UBOUND19},
	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
		PXP2_REG_RQ_BW_RD_UBOUND20},
	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
		PXP2_REG_RQ_BW_RD_UBOUND22},
	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
		PXP2_REG_RQ_BW_RD_UBOUND23},
	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
		PXP2_REG_RQ_BW_RD_UBOUND24},
	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
		PXP2_REG_RQ_BW_RD_UBOUND25},
	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
		PXP2_REG_RQ_BW_RD_UBOUND26},
	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
		PXP2_REG_RQ_BW_RD_UBOUND27},
	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
		PXP2_REG_PSWRQ_BW_UB28}
};

/* register addresses for write queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
		PXP2_REG_PSWRQ_BW_UB1},
	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
		PXP2_REG_PSWRQ_BW_UB2},
	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
		PXP2_REG_PSWRQ_BW_UB3},
	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
		PXP2_REG_PSWRQ_BW_UB6},
	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
		PXP2_REG_PSWRQ_BW_UB7},
	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
		PXP2_REG_PSWRQ_BW_UB8},
	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
		PXP2_REG_PSWRQ_BW_UB9},
	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
		PXP2_REG_PSWRQ_BW_UB10},
	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
		PXP2_REG_PSWRQ_BW_UB11},
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
		PXP2_REG_PSWRQ_BW_UB28},
	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
		PXP2_REG_RQ_BW_WR_UBOUND29},
	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
		PXP2_REG_RQ_BW_WR_UBOUND30}
};

static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
{
	u32 val, i;

	if (r_order > MAX_RD_ORD) {
		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
		   r_order, MAX_RD_ORD);
		r_order = MAX_RD_ORD;
	}
	if (w_order > MAX_WR_ORD) {
		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
		   w_order, MAX_WR_ORD);
		w_order = MAX_WR_ORD;
	}
	if (CHIP_REV_IS_FPGA(bp)) {
		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
		w_order = 0;
	}
	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);

	for (i = 0; i < NUM_RD_Q-1; i++) {
		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
		REG_WR(bp, read_arb_addr[i].add,
		       read_arb_data[i][r_order].add);
		REG_WR(bp, read_arb_addr[i].ubound,
		       read_arb_data[i][r_order].ubound);
	}

	for (i = 0; i < NUM_WR_Q-1; i++) {
		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {

			REG_WR(bp, write_arb_addr[i].l,
			       write_arb_data[i][w_order].l);

			REG_WR(bp, write_arb_addr[i].add,
			       write_arb_data[i][w_order].add);

			REG_WR(bp, write_arb_addr[i].ubound,
			       write_arb_data[i][w_order].ubound);
		} else {

			val = REG_RD(bp, write_arb_addr[i].l);
			REG_WR(bp, write_arb_addr[i].l,
			       val | (write_arb_data[i][w_order].l << 10));

			val = REG_RD(bp, write_arb_addr[i].add);
			REG_WR(bp, write_arb_addr[i].add,
			       val | (write_arb_data[i][w_order].add << 10));

			val = REG_RD(bp, write_arb_addr[i].ubound);
			REG_WR(bp, write_arb_addr[i].ubound,
			       val | (write_arb_data[i][w_order].ubound << 7));
		}
	}

	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);

	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);

	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);

	if (r_order == MAX_RD_ORD)
		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);

	REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));

	if (CHIP_IS_E1H(bp)) {
		/*    MPS      w_order     optimal TH      presently TH
		 *    128         0             0               2
		 *    256         1             1               3
		 *    >=512       2             2               3
		 */
		val = ((w_order == 0) ? 2 : 3);
		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
		REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
	}
}

#endif /* BNX2X_INIT_OPS_H */
/span>spin_trylock(&parent->d_lock)) { if (inode) spin_unlock(&inode->i_lock); goto relock; } if (ref) dentry->d_count--; /* * if dentry was on the d_lru list delete it from there. * inform the fs via d_prune that this dentry is about to be * unhashed and destroyed. */ dentry_lru_prune(dentry); /* if it was on the hash then remove it */ __d_drop(dentry); return d_kill(dentry, parent); } /* * This is dput * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ /* * dput - release a dentry * @dentry: dentry to release * * Release a dentry. This will drop the usage count and if appropriate * call the dentry unlink method as well as removing it from the queues and * releasing its resources. If the parent dentries were scheduled for release * they too may now get deleted. */ void dput(struct dentry *dentry) { if (!dentry) return; repeat: if (dentry->d_count == 1) might_sleep(); spin_lock(&dentry->d_lock); BUG_ON(!dentry->d_count); if (dentry->d_count > 1) { dentry->d_count--; spin_unlock(&dentry->d_lock); return; } if (dentry->d_flags & DCACHE_OP_DELETE) { if (dentry->d_op->d_delete(dentry)) goto kill_it; } /* Unreachable? Get rid of it */ if (d_unhashed(dentry)) goto kill_it; /* * If this dentry needs lookup, don't set the referenced flag so that it * is more likely to be cleaned up by the dcache shrinker in case of * memory pressure. */ if (!d_need_lookup(dentry)) dentry->d_flags |= DCACHE_REFERENCED; dentry_lru_add(dentry); dentry->d_count--; spin_unlock(&dentry->d_lock); return; kill_it: dentry = dentry_kill(dentry, 1); if (dentry) goto repeat; } EXPORT_SYMBOL(dput); /** * d_invalidate - invalidate a dentry * @dentry: dentry to invalidate * * Try to invalidate the dentry if it turns out to be * possible. If there are other dentries that can be * reached through this one we can't delete it and we * return -EBUSY. On success we return 0. * * no dcache lock. */ int d_invalidate(struct dentry * dentry) { /* * If it's already been dropped, return OK. */ spin_lock(&dentry->d_lock); if (d_unhashed(dentry)) { spin_unlock(&dentry->d_lock); return 0; } /* * Check whether to do a partial shrink_dcache * to get rid of unused child entries. */ if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&dentry->d_lock); shrink_dcache_parent(dentry); spin_lock(&dentry->d_lock); } /* * Somebody else still using it? * * If it's a directory, we can't drop it * for fear of somebody re-populating it * with children (even though dropping it * would make it unreachable from the root, * we might still populate it if it was a * working directory or similar). * We also need to leave mountpoints alone, * directory or not. */ if (dentry->d_count > 1 && dentry->d_inode) { if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { spin_unlock(&dentry->d_lock); return -EBUSY; } } __d_drop(dentry); spin_unlock(&dentry->d_lock); return 0; } EXPORT_SYMBOL(d_invalidate); /* This must be called with d_lock held */ static inline void __dget_dlock(struct dentry *dentry) { dentry->d_count++; } static inline void __dget(struct dentry *dentry) { spin_lock(&dentry->d_lock); __dget_dlock(dentry); spin_unlock(&dentry->d_lock); } struct dentry *dget_parent(struct dentry *dentry) { struct dentry *ret; repeat: /* * Don't need rcu_dereference because we re-check it was correct under * the lock. */ rcu_read_lock(); ret = dentry->d_parent; spin_lock(&ret->d_lock); if (unlikely(ret != dentry->d_parent)) { spin_unlock(&ret->d_lock); rcu_read_unlock(); goto repeat; } rcu_read_unlock(); BUG_ON(!ret->d_count); ret->d_count++; spin_unlock(&ret->d_lock); return ret; } EXPORT_SYMBOL(dget_parent); /** * d_find_alias - grab a hashed alias of inode * @inode: inode in question * @want_discon: flag, used by d_splice_alias, to request * that only a DISCONNECTED alias be returned. * * If inode has a hashed alias, or is a directory and has any alias, * acquire the reference to alias and return it. Otherwise return NULL. * Notice that if inode is a directory there can be only one alias and * it can be unhashed only if it has no children, or if it is the root * of a filesystem. * * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer * any other hashed alias over that one unless @want_discon is set, * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. */ static struct dentry *__d_find_alias(struct inode *inode, int want_discon) { struct dentry *alias, *discon_alias; again: discon_alias = NULL; list_for_each_entry(alias, &inode->i_dentry, d_alias) { spin_lock(&alias->d_lock); if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { if (IS_ROOT(alias) && (alias->d_flags & DCACHE_DISCONNECTED)) { discon_alias = alias; } else if (!want_discon) { __dget_dlock(alias); spin_unlock(&alias->d_lock); return alias; } } spin_unlock(&alias->d_lock); } if (discon_alias) { alias = discon_alias; spin_lock(&alias->d_lock); if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { if (IS_ROOT(alias) && (alias->d_flags & DCACHE_DISCONNECTED)) { __dget_dlock(alias); spin_unlock(&alias->d_lock); return alias; } } spin_unlock(&alias->d_lock); goto again; } return NULL; } struct dentry *d_find_alias(struct inode *inode) { struct dentry *de = NULL; if (!list_empty(&inode->i_dentry)) { spin_lock(&inode->i_lock); de = __d_find_alias(inode, 0); spin_unlock(&inode->i_lock); } return de; } EXPORT_SYMBOL(d_find_alias); /* * Try to kill dentries associated with this inode. * WARNING: you must own a reference to inode. */ void d_prune_aliases(struct inode *inode) { struct dentry *dentry; restart: spin_lock(&inode->i_lock); list_for_each_entry(dentry, &inode->i_dentry, d_alias) { spin_lock(&dentry->d_lock); if (!dentry->d_count) { __dget_dlock(dentry); __d_drop(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); dput(dentry); goto restart; } spin_unlock(&dentry->d_lock); } spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(d_prune_aliases); /* * Try to throw away a dentry - free the inode, dput the parent. * Requires dentry->d_lock is held, and dentry->d_count == 0. * Releases dentry->d_lock. * * This may fail if locks cannot be acquired no problem, just try again. */ static void try_prune_one_dentry(struct dentry *dentry) __releases(dentry->d_lock) { struct dentry *parent; parent = dentry_kill(dentry, 0); /* * If dentry_kill returns NULL, we have nothing more to do. * if it returns the same dentry, trylocks failed. In either * case, just loop again. * * Otherwise, we need to prune ancestors too. This is necessary * to prevent quadratic behavior of shrink_dcache_parent(), but * is also expected to be beneficial in reducing dentry cache * fragmentation. */ if (!parent) return; if (parent == dentry) return; /* Prune ancestors. */ dentry = parent; while (dentry) { spin_lock(&dentry->d_lock); if (dentry->d_count > 1) { dentry->d_count--; spin_unlock(&dentry->d_lock); return; } dentry = dentry_kill(dentry, 1); } } static void shrink_dentry_list(struct list_head *list) { struct dentry *dentry; rcu_read_lock(); for (;;) { dentry = list_entry_rcu(list->prev, struct dentry, d_lru); if (&dentry->d_lru == list) break; /* empty */ spin_lock(&dentry->d_lock); if (dentry != list_entry(list->prev, struct dentry, d_lru)) { spin_unlock(&dentry->d_lock); continue; } /* * We found an inuse dentry which was not removed from * the LRU because of laziness during lookup. Do not free * it - just keep it off the LRU list. */ if (dentry->d_count) { dentry_lru_del(dentry); spin_unlock(&dentry->d_lock); continue; } rcu_read_unlock(); try_prune_one_dentry(dentry); rcu_read_lock(); } rcu_read_unlock(); } /** * __shrink_dcache_sb - shrink the dentry LRU on a given superblock * @sb: superblock to shrink dentry LRU. * @count: number of entries to prune * @flags: flags to control the dentry processing * * If flags contains DCACHE_REFERENCED reference dentries will not be pruned. */ static void __shrink_dcache_sb(struct super_block *sb, int count, int flags) { struct dentry *dentry; LIST_HEAD(referenced); LIST_HEAD(tmp); relock: spin_lock(&dcache_lru_lock); while (!list_empty(&sb->s_dentry_lru)) { dentry = list_entry(sb->s_dentry_lru.prev, struct dentry, d_lru); BUG_ON(dentry->d_sb != sb); if (!spin_trylock(&dentry->d_lock)) { spin_unlock(&dcache_lru_lock); cpu_relax(); goto relock; } /* * If we are honouring the DCACHE_REFERENCED flag and the * dentry has this flag set, don't free it. Clear the flag * and put it back on the LRU. */ if (flags & DCACHE_REFERENCED && dentry->d_flags & DCACHE_REFERENCED) { dentry->d_flags &= ~DCACHE_REFERENCED; list_move(&dentry->d_lru, &referenced); spin_unlock(&dentry->d_lock); } else { list_move_tail(&dentry->d_lru, &tmp); spin_unlock(&dentry->d_lock); if (!--count) break; } cond_resched_lock(&dcache_lru_lock); } if (!list_empty(&referenced)) list_splice(&referenced, &sb->s_dentry_lru); spin_unlock(&dcache_lru_lock); shrink_dentry_list(&tmp); } /** * prune_dcache_sb - shrink the dcache * @sb: superblock * @nr_to_scan: number of entries to try to free * * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is * done when we need more memory an called from the superblock shrinker * function. * * This function may fail to free any resources if all the dentries are in * use. */ void prune_dcache_sb(struct super_block *sb, int nr_to_scan) { __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED); } /** * shrink_dcache_sb - shrink dcache for a superblock * @sb: superblock * * Shrink the dcache for the specified super block. This is used to free * the dcache before unmounting a file system. */ void shrink_dcache_sb(struct super_block *sb) { LIST_HEAD(tmp); spin_lock(&dcache_lru_lock); while (!list_empty(&sb->s_dentry_lru)) { list_splice_init(&sb->s_dentry_lru, &tmp); spin_unlock(&dcache_lru_lock); shrink_dentry_list(&tmp); spin_lock(&dcache_lru_lock); } spin_unlock(&dcache_lru_lock); } EXPORT_SYMBOL(shrink_dcache_sb); /* * destroy a single subtree of dentries for unmount * - see the comments on shrink_dcache_for_umount() for a description of the * locking */ static void shrink_dcache_for_umount_subtree(struct dentry *dentry) { struct dentry *parent; BUG_ON(!IS_ROOT(dentry)); for (;;) { /* descend to the first leaf in the current subtree */ while (!list_empty(&dentry->d_subdirs)) dentry = list_entry(dentry->d_subdirs.next, struct dentry, d_u.d_child); /* consume the dentries from this leaf up through its parents * until we find one with children or run out altogether */ do { struct inode *inode; /* * remove the dentry from the lru, and inform * the fs that this dentry is about to be * unhashed and destroyed. */ dentry_lru_prune(dentry); __d_shrink(dentry); if (dentry->d_count != 0) { printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%s}" " still in use (%d)" " [unmount of %s %s]\n", dentry, dentry->d_inode ? dentry->d_inode->i_ino : 0UL, dentry->d_name.name, dentry->d_count, dentry->d_sb->s_type->name, dentry->d_sb->s_id); BUG(); } if (IS_ROOT(dentry)) { parent = NULL; list_del(&dentry->d_u.d_child); } else { parent = dentry->d_parent; parent->d_count--; list_del(&dentry->d_u.d_child); } inode = dentry->d_inode; if (inode) { dentry->d_inode = NULL; list_del_init(&dentry->d_alias); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } d_free(dentry); /* finished when we fall off the top of the tree, * otherwise we ascend to the parent and move to the * next sibling if there is one */ if (!parent) return; dentry = parent; } while (list_empty(&dentry->d_subdirs)); dentry = list_entry(dentry->d_subdirs.next, struct dentry, d_u.d_child); } } /* * destroy the dentries attached to a superblock on unmounting * - we don't need to use dentry->d_lock because: * - the superblock is detached from all mountings and open files, so the * dentry trees will not be rearranged by the VFS * - s_umount is write-locked, so the memory pressure shrinker will ignore * any dentries belonging to this superblock that it comes across * - the filesystem itself is no longer permitted to rearrange the dentries * in this superblock */ void shrink_dcache_for_umount(struct super_block *sb) { struct dentry *dentry; if (down_read_trylock(&sb->s_umount)) BUG(); dentry = sb->s_root; sb->s_root = NULL; dentry->d_count--; shrink_dcache_for_umount_subtree(dentry); while (!hlist_bl_empty(&sb->s_anon)) { dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); shrink_dcache_for_umount_subtree(dentry); } } /* * This tries to ascend one level of parenthood, but * we can race with renaming, so we need to re-check * the parenthood after dropping the lock and check * that the sequence number still matches. */ static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) { struct dentry *new = old->d_parent; rcu_read_lock(); spin_unlock(&old->d_lock); spin_lock(&new->d_lock); /* * might go back up the wrong parent if we have had a rename * or deletion */ if (new != old->d_parent || (old->d_flags & DCACHE_DISCONNECTED) || (!locked && read_seqretry(&rename_lock, seq))) { spin_unlock(&new->d_lock); new = NULL; } rcu_read_unlock(); return new; } /* * Search for at least 1 mount point in the dentry's subdirs. * We descend to the next level whenever the d_subdirs * list is non-empty and continue searching. */ /** * have_submounts - check for mounts over a dentry * @parent: dentry to check. * * Return true if the parent or its subdirectories contain * a mount point */ int have_submounts(struct dentry *parent) { struct dentry *this_parent; struct list_head *next; unsigned seq; int locked = 0; seq = read_seqbegin(&rename_lock); again: this_parent = parent; if (d_mountpoint(parent)) goto positive; spin_lock(&this_parent->d_lock); repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); next = tmp->next; spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); /* Have we found a mount point ? */ if (d_mountpoint(dentry)) { spin_unlock(&dentry->d_lock); spin_unlock(&this_parent->d_lock); goto positive; } if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&this_parent->d_lock); spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); this_parent = dentry; spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); goto repeat; } spin_unlock(&dentry->d_lock); } /* * All done at this level ... ascend and resume the search. */ if (this_parent != parent) { struct dentry *child = this_parent; this_parent = try_to_ascend(this_parent, locked, seq); if (!this_parent) goto rename_retry; next = child->d_u.d_child.next; goto resume; } spin_unlock(&this_parent->d_lock); if (!locked && read_seqretry(&rename_lock, seq)) goto rename_retry; if (locked) write_sequnlock(&rename_lock); return 0; /* No mount points found in tree */ positive: if (!locked && read_seqretry(&rename_lock, seq)) goto rename_retry; if (locked) write_sequnlock(&rename_lock); return 1; rename_retry: locked = 1; write_seqlock(&rename_lock); goto again; } EXPORT_SYMBOL(have_submounts); /* * Search the dentry child list for the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_subdirs list is non-empty and continue * searching. * * It returns zero iff there are no unused children, * otherwise it returns the number of children moved to * the end of the unused list. This may not be the total * number of unused children, because select_parent can * drop the lock and return early due to latency * constraints. */ static int select_parent(struct dentry * parent) { struct dentry *this_parent; struct list_head *next; unsigned seq; int found = 0; int locked = 0; seq = read_seqbegin(&rename_lock); again: this_parent = parent; spin_lock(&this_parent->d_lock); repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); next = tmp->next; spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); /* * move only zero ref count dentries to the end * of the unused list for prune_dcache */ if (!dentry->d_count) { dentry_lru_move_tail(dentry); found++; } else { dentry_lru_del(dentry); } /* * We can return to the caller if we have found some (this * ensures forward progress). We'll be coming back to find * the rest. */ if (found && need_resched()) { spin_unlock(&dentry->d_lock); goto out; } /* * Descend a level if the d_subdirs list is non-empty. */ if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&this_parent->d_lock); spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); this_parent = dentry; spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); goto repeat; } spin_unlock(&dentry->d_lock); } /* * All done at this level ... ascend and resume the search. */ if (this_parent != parent) { struct dentry *child = this_parent; this_parent = try_to_ascend(this_parent, locked, seq); if (!this_parent) goto rename_retry; next = child->d_u.d_child.next; goto resume; } out: spin_unlock(&this_parent->d_lock); if (!locked && read_seqretry(&rename_lock, seq)) goto rename_retry; if (locked) write_sequnlock(&rename_lock); return found; rename_retry: if (found) return found; locked = 1; write_seqlock(&rename_lock); goto again; } /** * shrink_dcache_parent - prune dcache * @parent: parent of entries to prune * * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry * parent) { struct super_block *sb = parent->d_sb; int found; while ((found = select_parent(parent)) != 0) __shrink_dcache_sb(sb, found, 0); } EXPORT_SYMBOL(shrink_dcache_parent); /** * __d_alloc - allocate a dcache entry * @sb: filesystem it will belong to * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) { struct dentry *dentry; char *dname; dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); if (!dentry) return NULL; if (name->len > DNAME_INLINE_LEN-1) { dname = kmalloc(name->len + 1, GFP_KERNEL); if (!dname) { kmem_cache_free(dentry_cache, dentry); return NULL; } } else { dname = dentry->d_iname; } dentry->d_name.name = dname; dentry->d_name.len = name->len; dentry->d_name.hash = name->hash; memcpy(dname, name->name, name->len); dname[name->len] = 0; dentry->d_count = 1; dentry->d_flags = 0; spin_lock_init(&dentry->d_lock); seqcount_init(&dentry->d_seq); dentry->d_inode = NULL; dentry->d_parent = dentry; dentry->d_sb = sb; dentry->d_op = NULL; dentry->d_fsdata = NULL; INIT_HLIST_BL_NODE(&dentry->d_hash); INIT_LIST_HEAD(&dentry->d_lru); INIT_LIST_HEAD(&dentry->d_subdirs); INIT_LIST_HEAD(&dentry->d_alias); INIT_LIST_HEAD(&dentry->d_u.d_child); d_set_d_op(dentry, dentry->d_sb->s_d_op); this_cpu_inc(nr_dentry); return dentry; } /** * d_alloc - allocate a dcache entry * @parent: parent of entry to allocate * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) { struct dentry *dentry = __d_alloc(parent->d_sb, name); if (!dentry) return NULL; spin_lock(&parent->d_lock); /* * don't need child lock because it is not subject * to concurrency here */ __dget_dlock(parent); dentry->d_parent = parent; list_add(&dentry->d_u.d_child, &parent->d_subdirs); spin_unlock(&parent->d_lock); return dentry; } EXPORT_SYMBOL(d_alloc); struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) { struct dentry *dentry = __d_alloc(sb, name); if (dentry) dentry->d_flags |= DCACHE_DISCONNECTED; return dentry; } EXPORT_SYMBOL(d_alloc_pseudo); struct dentry *d_alloc_name(struct dentry *parent, const char *name) { struct qstr q; q.name = name; q.len = strlen(name); q.hash = full_name_hash(q.name, q.len); return d_alloc(parent, &q); } EXPORT_SYMBOL(d_alloc_name); void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) { WARN_ON_ONCE(dentry->d_op); WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | DCACHE_OP_DELETE )); dentry->d_op = op; if (!op) return; if (op->d_hash) dentry->d_flags |= DCACHE_OP_HASH; if (op->d_compare) dentry->d_flags |= DCACHE_OP_COMPARE; if (op->d_revalidate) dentry->d_flags |= DCACHE_OP_REVALIDATE; if (op->d_delete) dentry->d_flags |= DCACHE_OP_DELETE; if (op->d_prune) dentry->d_flags |= DCACHE_OP_PRUNE; } EXPORT_SYMBOL(d_set_d_op); static void __d_instantiate(struct dentry *dentry, struct inode *inode) { spin_lock(&dentry->d_lock); if (inode) { if (unlikely(IS_AUTOMOUNT(inode))) dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; list_add(&dentry->d_alias, &inode->i_dentry); } dentry->d_inode = inode; dentry_rcuwalk_barrier(dentry); spin_unlock(&dentry->d_lock); fsnotify_d_instantiate(dentry, inode); } /** * d_instantiate - fill in inode information for a dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ void d_instantiate(struct dentry *entry, struct inode * inode) { BUG_ON(!list_empty(&entry->d_alias)); if (inode) spin_lock(&inode->i_lock); __d_instantiate(entry, inode); if (inode) spin_unlock(&inode->i_lock); security_d_instantiate(entry, inode); } EXPORT_SYMBOL(d_instantiate); /** * d_instantiate_unique - instantiate a non-aliased dentry * @entry: dentry to instantiate * @inode: inode to attach to this dentry * * Fill in inode information in the entry. On success, it returns NULL. * If an unhashed alias of "entry" already exists, then we return the * aliased dentry instead and drop one reference to inode. * * Note that in order to avoid conflicts with rename() etc, the caller * had better be holding the parent directory semaphore. * * This also assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ static struct dentry *__d_instantiate_unique(struct dentry *entry, struct inode *inode) { struct dentry *alias; int len = entry->d_name.len; const char *name = entry->d_name.name; unsigned int hash = entry->d_name.hash; if (!inode) { __d_instantiate(entry, NULL); return NULL; } list_for_each_entry(alias, &inode->i_dentry, d_alias) { struct qstr *qstr = &alias->d_name; /* * Don't need alias->d_lock here, because aliases with * d_parent == entry->d_parent are not subject to name or * parent changes, because the parent inode i_mutex is held. */ if (qstr->hash != hash) continue; if (alias->d_parent != entry->d_parent) continue; if (dentry_cmp(qstr->name, qstr->len, name, len)) continue; __dget(alias); return alias; } __d_instantiate(entry, inode); return NULL; } struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) { struct dentry *result; BUG_ON(!list_empty(&entry->d_alias)); if (inode) spin_lock(&inode->i_lock); result = __d_instantiate_unique(entry, inode); if (inode) spin_unlock(&inode->i_lock); if (!result) { security_d_instantiate(entry, inode); return NULL; } BUG_ON(!d_unhashed(result)); iput(inode); return result; } EXPORT_SYMBOL(d_instantiate_unique); /** * d_alloc_root - allocate root dentry * @root_inode: inode to allocate the root for * * Allocate a root ("/") dentry for the inode given. The inode is * instantiated and returned. %NULL is returned if there is insufficient * memory or the inode passed is %NULL. */ struct dentry * d_alloc_root(struct inode * root_inode) { struct dentry *res = NULL; if (root_inode) { static const struct qstr name = { .name = "/", .len = 1 }; res = __d_alloc(root_inode->i_sb, &name); if (res) d_instantiate(res, root_inode); } return res; } EXPORT_SYMBOL(d_alloc_root); static struct dentry * __d_find_any_alias(struct inode *inode) { struct dentry *alias; if (list_empty(&inode->i_dentry)) return NULL; alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias); __dget(alias); return alias; } static struct dentry * d_find_any_alias(struct inode *inode) { struct dentry *de; spin_lock(&inode->i_lock); de = __d_find_any_alias(inode); spin_unlock(&inode->i_lock); return de; } /** * d_obtain_alias - find or allocate a dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain a dentry for an inode resulting from NFS filehandle conversion or * similar open by handle operations. The returned dentry may be anonymous, * or may have a full name (if the inode was already in the cache). * * When called on a directory inode, we must ensure that the inode only ever * has one dentry. If a dentry is found, that is returned instead of * allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is released. * To make it easier to use in export operations a %NULL or IS_ERR inode may * be passed in and will be the error will be propagate to the return value, * with a %NULL @inode replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_alias(struct inode *inode) { static const struct qstr anonstring = { .name = "" }; struct dentry *tmp; struct dentry *res; if (!inode) return ERR_PTR(-ESTALE); if (IS_ERR(inode)) return ERR_CAST(inode); res = d_find_any_alias(inode); if (res) goto out_iput; tmp = __d_alloc(inode->i_sb, &anonstring); if (!tmp) { res = ERR_PTR(-ENOMEM); goto out_iput; } spin_lock(&inode->i_lock); res = __d_find_any_alias(inode); if (res) { spin_unlock(&inode->i_lock); dput(tmp); goto out_iput; } /* attach a disconnected dentry */ spin_lock(&tmp->d_lock); tmp->d_inode = inode; tmp->d_flags |= DCACHE_DISCONNECTED; list_add(&tmp->d_alias, &inode->i_dentry); hlist_bl_lock(&tmp->d_sb->s_anon); hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); hlist_bl_unlock(&tmp->d_sb->s_anon); spin_unlock(&tmp->d_lock); spin_unlock(&inode->i_lock); security_d_instantiate(tmp, inode); return tmp; out_iput: if (res && !IS_ERR(res)) security_d_instantiate(res, inode); iput(inode); return res; } EXPORT_SYMBOL(d_obtain_alias); /** * d_splice_alias - splice a disconnected dentry into the tree if one exists * @inode: the inode which may have a disconnected dentry * @dentry: a negative dentry which we want to point to the inode. * * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and * DCACHE_DISCONNECTED), then d_move that in place of the given dentry * and return it, else simply d_add the inode to the dentry and return NULL. * * This is needed in the lookup routine of any filesystem that is exportable * (via knfsd) so that we can build dcache paths to directories effectively. * * If a dentry was found and moved, then it is returned. Otherwise NULL * is returned. This matches the expected return value of ->lookup. * */ struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) { struct dentry *new = NULL; if (IS_ERR(inode)) return ERR_CAST(inode); if (inode && S_ISDIR(inode->i_mode)) { spin_lock(&inode->i_lock); new = __d_find_alias(inode, 1); if (new) { BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); spin_unlock(&inode->i_lock); security_d_instantiate(new, inode); d_move(new, dentry); iput(inode); } else { /* already taking inode->i_lock, so d_add() by hand */ __d_instantiate(dentry, inode); spin_unlock(&inode->i_lock); security_d_instantiate(dentry, inode); d_rehash(dentry); } } else d_add(dentry, inode); return new; } EXPORT_SYMBOL(d_splice_alias); /** * d_add_ci - lookup or allocate new dentry with case-exact name * @inode: the inode case-insensitive lookup has found * @dentry: the negative dentry that was passed to the parent's lookup func * @name: the case-exact name to be associated with the returned dentry * * This is to avoid filling the dcache with case-insensitive names to the * same inode, only the actual correct case is stored in the dcache for * case-insensitive filesystems. * * For a case-insensitive lookup match and if the the case-exact dentry * already exists in in the dcache, use it and return it. * * If no entry exists with the exact case name, allocate new dentry with * the exact case, and return the spliced entry. */ struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, struct qstr *name) { int error; struct dentry *found; struct dentry *new; /* * First check if a dentry matching the name already exists, * if not go ahead and create it now. */ found = d_hash_and_lookup(dentry->d_parent, name); if (!found) { new = d_alloc(dentry->d_parent, name); if (!new) { error = -ENOMEM; goto err_out; } found = d_splice_alias(inode, new); if (found) { dput(new); return found; } return new; } /* * If a matching dentry exists, and it's not negative use it. * * Decrement the reference count to balance the iget() done * earlier on. */ if (found->d_inode) { if (unlikely(found->d_inode != inode)) { /* This can't happen because bad inodes are unhashed. */ BUG_ON(!is_bad_inode(inode)); BUG_ON(!is_bad_inode(found->d_inode)); } iput(inode); return found; } /* * We are going to instantiate this dentry, unhash it and clear the * lookup flag so we can do that. */ if (unlikely(d_need_lookup(found))) d_clear_need_lookup(found); /* * Negative dentry: instantiate it unless the inode is a directory and * already has a dentry. */ new = d_splice_alias(inode, found); if (new) { dput(found); found = new; } return found; err_out: iput(inode); return ERR_PTR(error); } EXPORT_SYMBOL(d_add_ci); /** * __d_lookup_rcu - search for a dentry (racy, store-free) * @parent: parent dentry * @name: qstr of name we wish to find * @seq: returns d_seq value at the point where the dentry was found * @inode: returns dentry->d_inode when the inode was found valid. * Returns: dentry, or NULL * * __d_lookup_rcu is the dcache lookup function for rcu-walk name * resolution (store-free path walking) design described in * Documentation/filesystems/path-lookup.txt. * * This is not to be used outside core vfs. * * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock * held, and rcu_read_lock held. The returned dentry must not be stored into * without taking d_lock and checking d_seq sequence count against @seq * returned here. * * A refcount may be taken on the found dentry with the __d_rcu_to_refcount * function. * * Alternatively, __d_lookup_rcu may be called again to look up the child of * the returned dentry, so long as its parent's seqlock is checked after the * child is looked up. Thus, an interlocking stepping of sequence lock checks * is formed, giving integrity down the path walk. */ struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name, unsigned *seq, struct inode **inode) { unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct hlist_bl_head *b = d_hash(parent, hash); struct hlist_bl_node *node; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Carefully use d_seq when comparing a candidate dentry, to avoid * races with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { struct inode *i; const char *tname; int tlen; if (dentry->d_name.hash != hash) continue; seqretry: *seq = read_seqcount_begin(&dentry->d_seq); if (dentry->d_parent != parent) continue; if (d_unhashed(dentry)) continue; tlen = dentry->d_name.len; tname = dentry->d_name.name; i = dentry->d_inode; prefetch(tname); /* * This seqcount check is required to ensure name and * len are loaded atomically, so as not to walk off the * edge of memory when walking. If we could load this * atomically some other way, we could drop this check. */ if (read_seqcount_retry(&dentry->d_seq, *seq)) goto seqretry; if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { if (parent->d_op->d_compare(parent, *inode, dentry, i, tlen, tname, name)) continue; } else { if (dentry_cmp(tname, tlen, str, len)) continue; } /* * No extra seqcount check is required after the name * compare. The caller must perform a seqcount check in * order to do anything useful with the returned dentry * anyway. */ *inode = i; return dentry; } return NULL; } /** * d_lookup - search for a dentry * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * d_lookup searches the children of the parent dentry for the name in * question. If the dentry is found its reference count is incremented and the * dentry is returned. The caller must use dput to free the entry when it has * finished using it. %NULL is returned if the dentry does not exist. */ struct dentry *d_lookup(struct dentry *parent, struct qstr *name) { struct dentry *dentry; unsigned seq; do { seq = read_seqbegin(&rename_lock); dentry = __d_lookup(parent, name); if (dentry) break; } while (read_seqretry(&rename_lock, seq)); return dentry; } EXPORT_SYMBOL(d_lookup); /** * __d_lookup - search for a dentry (racy) * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * __d_lookup is like d_lookup, however it may (rarely) return a * false-negative result due to unrelated rename activity. * * __d_lookup is slightly faster by avoiding rename_lock read seqlock, * however it must be used carefully, eg. with a following d_lookup in * the case of failure. * * __d_lookup callers must be commented. */ struct dentry *__d_lookup(struct dentry *parent, struct qstr *name) { unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct hlist_bl_head *b = d_hash(parent, hash); struct hlist_bl_node *node; struct dentry *found = NULL; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Take d_lock when comparing a candidate dentry, to avoid races * with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ rcu_read_lock(); hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { const char *tname; int tlen; if (dentry->d_name.hash != hash) continue; spin_lock(&dentry->d_lock); if (dentry->d_parent != parent) goto next; if (d_unhashed(dentry)) goto next; /* * It is safe to compare names since d_move() cannot * change the qstr (protected by d_lock). */ tlen = dentry->d_name.len; tname = dentry->d_name.name; if (parent->d_flags & DCACHE_OP_COMPARE) { if (parent->d_op->d_compare(parent, parent->d_inode, dentry, dentry->d_inode, tlen, tname, name)) goto next; } else { if (dentry_cmp(tname, tlen, str, len)) goto next; } dentry->d_count++; found = dentry; spin_unlock(&dentry->d_lock); break; next: spin_unlock(&dentry->d_lock); } rcu_read_unlock(); return found; } /** * d_hash_and_lookup - hash the qstr then search for a dentry * @dir: Directory to search in * @name: qstr of name we wish to find * * On hash failure or on lookup failure NULL is returned. */ struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) { struct dentry *dentry = NULL; /* * Check for a fs-specific hash function. Note that we must * calculate the standard hash first, as the d_op->d_hash() * routine may choose to leave the hash value unchanged. */ name->hash = full_name_hash(name->name, name->len); if (dir->d_flags & DCACHE_OP_HASH) { if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) goto out; } dentry = d_lookup(dir, name); out: return dentry; } /** * d_validate - verify dentry provided from insecure source (deprecated) * @dentry: The dentry alleged to be valid child of @dparent * @dparent: The parent dentry (known to be valid) * * An insecure source has sent us a dentry, here we verify it and dget() it. * This is used by ncpfs in its readdir implementation. * Zero is returned in the dentry is invalid. * * This function is slow for big directories, and deprecated, do not use it. */ int d_validate(struct dentry *dentry, struct dentry *dparent) { struct dentry *child; spin_lock(&dparent->d_lock); list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { if (dentry == child) { spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); __dget_dlock(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&dparent->d_lock); return 1; } } spin_unlock(&dparent->d_lock); return 0; } EXPORT_SYMBOL(d_validate); /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ /** * d_delete - delete a dentry * @dentry: The dentry to delete * * Turn the dentry into a negative dentry if possible, otherwise * remove it from the hash queues so it can be deleted later */ void d_delete(struct dentry * dentry) { struct inode *inode; int isdir = 0; /* * Are we the only user? */ again: spin_lock(&dentry->d_lock); inode = dentry->d_inode; isdir = S_ISDIR(inode->i_mode); if (dentry->d_count == 1) { if (inode && !spin_trylock(&inode->i_lock)) { spin_unlock(&dentry->d_lock); cpu_relax(); goto again; } dentry->d_flags &= ~DCACHE_CANT_MOUNT; dentry_unlink_inode(dentry); fsnotify_nameremove(dentry, isdir); return; } if (!d_unhashed(dentry)) __d_drop(dentry); spin_unlock(&dentry->d_lock); fsnotify_nameremove(dentry, isdir); } EXPORT_SYMBOL(d_delete); static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) { BUG_ON(!d_unhashed(entry)); hlist_bl_lock(b); entry->d_flags |= DCACHE_RCUACCESS; hlist_bl_add_head_rcu(&entry->d_hash, b); hlist_bl_unlock(b); } static void _d_rehash(struct dentry * entry) { __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); } /** * d_rehash - add an entry back to the hash * @entry: dentry to add to the hash * * Adds a dentry to the hash according to its name. */ void d_rehash(struct dentry * entry) { spin_lock(&entry->d_lock); _d_rehash(entry); spin_unlock(&entry->d_lock); } EXPORT_SYMBOL(d_rehash); /** * dentry_update_name_case - update case insensitive dentry with a new name * @dentry: dentry to be updated * @name: new name * * Update a case insensitive dentry with new case of name. * * dentry must have been returned by d_lookup with name @name. Old and new * name lengths must match (ie. no d_compare which allows mismatched name * lengths). * * Parent inode i_mutex must be held over d_lookup and into this call (to * keep renames and concurrent inserts, and readdir(2) away). */ void dentry_update_name_case(struct dentry *dentry, struct qstr *name) { BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ spin_lock(&dentry->d_lock); write_seqcount_begin(&dentry->d_seq); memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); write_seqcount_end(&dentry->d_seq); spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(dentry_update_name_case); static void switch_names(struct dentry *dentry, struct dentry *target) { if (dname_external(target)) { if (dname_external(dentry)) { /* * Both external: swap the pointers */ swap(target->d_name.name, dentry->d_name.name); } else { /* * dentry:internal, target:external. Steal target's * storage and make target internal. */ memcpy(target->d_iname, dentry->d_name.name, dentry->d_name.len + 1); dentry->d_name.name = target->d_name.name; target->d_name.name = target->d_iname; } } else { if (dname_external(dentry)) { /* * dentry:external, target:internal. Give dentry's * storage to target and make dentry internal */ memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); target->d_name.name = dentry->d_name.name; dentry->d_name.name = dentry->d_iname; } else { /* * Both are internal. Just copy target to dentry */ memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); dentry->d_name.len = target->d_name.len; return; } } swap(dentry->d_name.len, target->d_name.len); } static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) { /* * XXXX: do we really need to take target->d_lock? */ if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) spin_lock(&target->d_parent->d_lock); else { if (d_ancestor(dentry->d_parent, target->d_parent)) { spin_lock(&dentry->d_parent->d_lock); spin_lock_nested(&target->d_parent->d_lock, DENTRY_D_LOCK_NESTED); } else { spin_lock(&target->d_parent->d_lock); spin_lock_nested(&dentry->d_parent->d_lock, DENTRY_D_LOCK_NESTED); } } if (target < dentry) { spin_lock_nested(&target->d_lock, 2); spin_lock_nested(&dentry->d_lock, 3); } else { spin_lock_nested(&dentry->d_lock, 2); spin_lock_nested(&target->d_lock, 3); } } static void dentry_unlock_parents_for_move(struct dentry *dentry, struct dentry *target) { if (target->d_parent != dentry->d_parent) spin_unlock(&dentry->d_parent->d_lock); if (target->d_parent != target) spin_unlock(&target->d_parent->d_lock); } /* * When switching names, the actual string doesn't strictly have to * be preserved in the target - because we're dropping the target * anyway. As such, we can just do a simple memcpy() to copy over * the new name before we switch. * * Note that we have to be a lot more careful about getting the hash * switched - we have to switch the hash value properly even if it * then no longer matches the actual (corrupted) string of the target. * The hash value has to match the hash queue that the dentry is on.. */ /* * __d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. Caller must hold * rename_lock, the i_mutex of the source and target directories, * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). */ static void __d_move(struct dentry * dentry, struct dentry * target) { if (!dentry->d_inode) printk(KERN_WARNING "VFS: moving negative dcache entry\n"); BUG_ON(d_ancestor(dentry, target)); BUG_ON(d_ancestor(target, dentry)); dentry_lock_for_move(dentry, target); write_seqcount_begin(&dentry->d_seq); write_seqcount_begin(&target->d_seq); /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ /* * Move the dentry to the target hash queue. Don't bother checking * for the same hash queue because of how unlikely it is. */ __d_drop(dentry); __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); /* Unhash the target: dput() will then get rid of it */ __d_drop(target); list_del(&dentry->d_u.d_child); list_del(&target->d_u.d_child); /* Switch the names.. */ switch_names(dentry, target); swap(dentry->d_name.hash, target->d_name.hash); /* ... and switch the parents */ if (IS_ROOT(dentry)) { dentry->d_parent = target->d_parent; target->d_parent = target; INIT_LIST_HEAD(&target->d_u.d_child); } else { swap(dentry->d_parent, target->d_parent); /* And add them back to the (new) parent lists */ list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); } list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); write_seqcount_end(&target->d_seq); write_seqcount_end(&dentry->d_seq); dentry_unlock_parents_for_move(dentry, target); spin_unlock(&target->d_lock); fsnotify_d_move(dentry); spin_unlock(&dentry->d_lock); } /* * d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. See the locking * requirements for __d_move. */ void d_move(struct dentry *dentry, struct dentry *target) { write_seqlock(&rename_lock); __d_move(dentry, target); write_sequnlock(&rename_lock); } EXPORT_SYMBOL(d_move); /** * d_ancestor - search for an ancestor * @p1: ancestor dentry * @p2: child dentry * * Returns the ancestor dentry of p2 which is a child of p1, if p1 is * an ancestor of p2, else NULL. */ struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) { struct dentry *p; for (p = p2; !IS_ROOT(p); p = p->d_parent) { if (p->d_parent == p1) return p; } return NULL; } /* * This helper attempts to cope with remotely renamed directories * * It assumes that the caller is already holding * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock * * Note: If ever the locking in lock_rename() changes, then please * remember to update this too... */ static struct dentry *__d_unalias(struct inode *inode, struct dentry *dentry, struct dentry *alias) { struct mutex *m1 = NULL, *m2 = NULL; struct dentry *ret; /* If alias and dentry share a parent, then no extra locks required */ if (alias->d_parent == dentry->d_parent) goto out_unalias; /* See lock_rename() */ ret = ERR_PTR(-EBUSY); if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) goto out_err; m1 = &dentry->d_sb->s_vfs_rename_mutex; if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) goto out_err; m2 = &alias->d_parent->d_inode->i_mutex; out_unalias: __d_move(alias, dentry); ret = alias; out_err: spin_unlock(&inode->i_lock); if (m2) mutex_unlock(m2); if (m1) mutex_unlock(m1); return ret; } /* * Prepare an anonymous dentry for life in the superblock's dentry tree as a * named dentry in place of the dentry to be replaced. * returns with anon->d_lock held! */ static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) { struct dentry *dparent, *aparent; dentry_lock_for_move(anon, dentry); write_seqcount_begin(&dentry->d_seq); write_seqcount_begin(&anon->d_seq); dparent = dentry->d_parent; aparent = anon->d_parent; switch_names(dentry, anon); swap(dentry->d_name.hash, anon->d_name.hash); dentry->d_parent = (aparent == anon) ? dentry : aparent; list_del(&dentry->d_u.d_child); if (!IS_ROOT(dentry)) list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); else INIT_LIST_HEAD(&dentry->d_u.d_child); anon->d_parent = (dparent == dentry) ? anon : dparent; list_del(&anon->d_u.d_child); if (!IS_ROOT(anon)) list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); else INIT_LIST_HEAD(&anon->d_u.d_child); write_seqcount_end(&dentry->d_seq); write_seqcount_end(&anon->d_seq); dentry_unlock_parents_for_move(anon, dentry); spin_unlock(&dentry->d_lock); /* anon->d_lock still locked, returns locked */ anon->d_flags &= ~DCACHE_DISCONNECTED; } /** * d_materialise_unique - introduce an inode into the tree * @dentry: candidate dentry * @inode: inode to bind to the dentry, to which aliases may be attached * * Introduces an dentry into the tree, substituting an extant disconnected * root directory alias in its place if there is one. Caller must hold the * i_mutex of the parent directory. */ struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) { struct dentry *actual; BUG_ON(!d_unhashed(dentry)); if (!inode) { actual = dentry; __d_instantiate(dentry, NULL); d_rehash(actual); goto out_nolock; } spin_lock(&inode->i_lock); if (S_ISDIR(inode->i_mode)) { struct dentry *alias; /* Does an aliased dentry already exist? */ alias = __d_find_alias(inode, 0); if (alias) { actual = alias; write_seqlock(&rename_lock); if (d_ancestor(alias, dentry)) { /* Check for loops */ actual = ERR_PTR(-ELOOP); } else if (IS_ROOT(alias)) { /* Is this an anonymous mountpoint that we * could splice into our tree? */ __d_materialise_dentry(dentry, alias); write_sequnlock(&rename_lock); __d_drop(alias); goto found; } else { /* Nope, but we must(!) avoid directory * aliasing */ actual = __d_unalias(inode, dentry, alias); } write_sequnlock(&rename_lock); if (IS_ERR(actual)) dput(alias); goto out_nolock; } } /* Add a unique reference */ actual = __d_instantiate_unique(dentry, inode); if (!actual) actual = dentry; else BUG_ON(!d_unhashed(actual)); spin_lock(&actual->d_lock); found: _d_rehash(actual); spin_unlock(&actual->d_lock); spin_unlock(&inode->i_lock); out_nolock: if (actual == dentry) { security_d_instantiate(dentry, inode); return NULL; } iput(inode); return actual; } EXPORT_SYMBOL_GPL(d_materialise_unique); static int prepend(char **buffer, int *buflen, const char *str, int namelen) { *buflen -= namelen; if (*buflen < 0) return -ENAMETOOLONG; *buffer -= namelen; memcpy(*buffer, str, namelen); return 0; } static int prepend_name(char **buffer, int *buflen, struct qstr *name) { return prepend(buffer, buflen, name->name, name->len); } /** * prepend_path - Prepend path string to a buffer * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry (may be modified by this function) * @buffer: pointer to the end of the buffer * @buflen: pointer to buffer length * * Caller holds the rename_lock. * * If path is not reachable from the supplied root, then the value of * root is changed (without modifying refcounts). */ static int prepend_path(const struct path *path, struct path *root, char **buffer, int *buflen) { struct dentry *dentry = path->dentry; struct vfsmount *vfsmnt = path->mnt; bool slash = false; int error = 0; br_read_lock(vfsmount_lock); while (dentry != root->dentry || vfsmnt != root->mnt) { struct dentry * parent; if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { /* Global root? */ if (vfsmnt->mnt_parent == vfsmnt) { goto global_root; } dentry = vfsmnt->mnt_mountpoint; vfsmnt = vfsmnt->mnt_parent; continue; } parent = dentry->d_parent; prefetch(parent); spin_lock(&dentry->d_lock); error = prepend_name(buffer, buflen, &dentry->d_name); spin_unlock(&dentry->d_lock); if (!error) error = prepend(buffer, buflen, "/", 1); if (error) break; slash = true; dentry = parent; } out: if (!error && !slash) error = prepend(buffer, buflen, "/", 1); br_read_unlock(vfsmount_lock); return error; global_root: /* * Filesystems needing to implement special "root names" * should do so with ->d_dname() */ if (IS_ROOT(dentry) && (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { WARN(1, "Root dentry has weird name <%.*s>\n", (int) dentry->d_name.len, dentry->d_name.name); } root->mnt = vfsmnt; root->dentry = dentry; goto out; } /** * __d_path - return the path of a dentry * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry (may be modified by this function) * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. * * Returns a pointer into the buffer or an error code if the * path was too long. * * "buflen" should be positive. * * If path is not reachable from the supplied root, then the value of * root is changed (without modifying refcounts). */ char *__d_path(const struct path *path, struct path *root, char *buf, int buflen) { char *res = buf + buflen; int error; prepend(&res, &buflen, "\0", 1); write_seqlock(&rename_lock); error = prepend_path(path, root, &res, &buflen); write_sequnlock(&rename_lock); if (error) return ERR_PTR(error); return res; } /* * same as __d_path but appends "(deleted)" for unlinked files. */ static int path_with_deleted(const struct path *path, struct path *root, char **buf, int *buflen) { prepend(buf, buflen, "\0", 1); if (d_unlinked(path->dentry)) { int error = prepend(buf, buflen, " (deleted)", 10); if (error) return error; } return prepend_path(path, root, buf, buflen); } static int prepend_unreachable(char **buffer, int *buflen) { return prepend(buffer, buflen, "(unreachable)", 13); } /** * d_path - return the path of a dentry * @path: path to report * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. If the entry has been deleted * the string " (deleted)" is appended. Note that this is ambiguous. * * Returns a pointer into the buffer or an error code if the path was * too long. Note: Callers should use the returned pointer, not the passed * in buffer, to use the name! The implementation often starts at an offset * into the buffer, and may leave 0 bytes at the start. * * "buflen" should be positive. */ char *d_path(const struct path *path, char *buf, int buflen) { char *res = buf + buflen; struct path root; struct path tmp; int error; /* * We have various synthetic filesystems that never get mounted. On * these filesystems dentries are never used for lookup purposes, and * thus don't need to be hashed. They also don't need a name until a * user wants to identify the object in /proc/pid/fd/. The little hack * below allows us to generate a name for these objects on demand: */ if (path->dentry->d_op && path->dentry->d_op->d_dname) return path->dentry->d_op->d_dname(path->dentry, buf, buflen); get_fs_root(current->fs, &root); write_seqlock(&rename_lock); tmp = root; error = path_with_deleted(path, &tmp, &res, &buflen); if (error) res = ERR_PTR(error); write_sequnlock(&rename_lock); path_put(&root); return res; } EXPORT_SYMBOL(d_path); /** * d_path_with_unreachable - return the path of a dentry * @path: path to report * @buf: buffer to return value in * @buflen: buffer length * * The difference from d_path() is that this prepends "(unreachable)" * to paths which are unreachable from the current process' root. */ char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) { char *res = buf + buflen; struct path root; struct path tmp; int error; if (path->dentry->d_op && path->dentry->d_op->d_dname) return path->dentry->d_op->d_dname(path->dentry, buf, buflen); get_fs_root(current->fs, &root); write_seqlock(&rename_lock); tmp = root; error = path_with_deleted(path, &tmp, &res, &buflen); if (!error && !path_equal(&tmp, &root)) error = prepend_unreachable(&res, &buflen); write_sequnlock(&rename_lock); path_put(&root); if (error) res = ERR_PTR(error); return res; } /* * Helper function for dentry_operations.d_dname() members */ char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, const char *fmt, ...) { va_list args; char temp[64]; int sz; va_start(args, fmt); sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; va_end(args); if (sz > sizeof(temp) || sz > buflen) return ERR_PTR(-ENAMETOOLONG); buffer += buflen - sz; return memcpy(buffer, temp, sz); } /* * Write full pathname from the root of the filesystem into the buffer. */ static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) { char *end = buf + buflen; char *retval; prepend(&end, &buflen, "\0", 1); if (buflen < 1) goto Elong; /* Get '/' right */ retval = end-1; *retval = '/'; while (!IS_ROOT(dentry)) { struct dentry *parent = dentry->d_parent; int error; prefetch(parent); spin_lock(&dentry->d_lock); error = prepend_name(&end, &buflen, &dentry->d_name); spin_unlock(&dentry->d_lock); if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) goto Elong; retval = end; dentry = parent; } return retval; Elong: return ERR_PTR(-ENAMETOOLONG); } char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) { char *retval; write_seqlock(&rename_lock); retval = __dentry_path(dentry, buf, buflen); write_sequnlock(&rename_lock); return retval; } EXPORT_SYMBOL(dentry_path_raw); char *dentry_path(struct dentry *dentry, char *buf, int buflen) { char *p = NULL; char *retval; write_seqlock(&rename_lock); if (d_unlinked(dentry)) { p = buf + buflen; if (prepend(&p, &buflen, "//deleted", 10) != 0) goto Elong; buflen++; } retval = __dentry_path(dentry, buf, buflen); write_sequnlock(&rename_lock); if (!IS_ERR(retval) && p) *p = '/'; /* restore '/' overriden with '\0' */ return retval; Elong: return ERR_PTR(-ENAMETOOLONG); } /* * NOTE! The user-level library version returns a * character pointer. The kernel system call just * returns the length of the buffer filled (which * includes the ending '\0' character), or a negative * error value. So libc would do something like * * char *getcwd(char * buf, size_t size) * { * int retval; * * retval = sys_getcwd(buf, size); * if (retval >= 0) * return buf; * errno = -retval; * return NULL; * } */ SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) { int error; struct path pwd, root; char *page = (char *) __get_free_page(GFP_USER); if (!page) return -ENOMEM; get_fs_root_and_pwd(current->fs, &root, &pwd); error = -ENOENT; write_seqlock(&rename_lock); if (!d_unlinked(pwd.dentry)) { unsigned long len; struct path tmp = root; char *cwd = page + PAGE_SIZE; int buflen = PAGE_SIZE; prepend(&cwd, &buflen, "\0", 1); error = prepend_path(&pwd, &tmp, &cwd, &buflen); write_sequnlock(&rename_lock); if (error) goto out; /* Unreachable from current root */ if (!path_equal(&tmp, &root)) { error = prepend_unreachable(&cwd, &buflen); if (error) goto out; } error = -ERANGE; len = PAGE_SIZE + page - cwd; if (len <= size) { error = len; if (copy_to_user(buf, cwd, len)) error = -EFAULT; } } else { write_sequnlock(&rename_lock); } out: path_put(&pwd); path_put(&root); free_page((unsigned long) page); return error; } /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ /** * is_subdir - is new dentry a subdirectory of old_dentry * @new_dentry: new dentry * @old_dentry: old dentry * * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). * Returns 0 otherwise. * Caller must ensure that "new_dentry" is pinned before calling is_subdir() */ int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) { int result; unsigned seq; if (new_dentry == old_dentry) return 1; do { /* for restarting inner loop in case of seq retry */ seq = read_seqbegin(&rename_lock); /* * Need rcu_readlock to protect against the d_parent trashing * due to d_move */ rcu_read_lock(); if (d_ancestor(old_dentry, new_dentry)) result = 1; else result = 0; rcu_read_unlock(); } while (read_seqretry(&rename_lock, seq)); return result; } int path_is_under(struct path *path1, struct path *path2) { struct vfsmount *mnt = path1->mnt; struct dentry *dentry = path1->dentry; int res; br_read_lock(vfsmount_lock); if (mnt != path2->mnt) { for (;;) { if (mnt->mnt_parent == mnt) { br_read_unlock(vfsmount_lock); return 0; } if (mnt->mnt_parent == path2->mnt) break; mnt = mnt->mnt_parent; } dentry = mnt->mnt_mountpoint; } res = is_subdir(dentry, path2->dentry); br_read_unlock(vfsmount_lock); return res; } EXPORT_SYMBOL(path_is_under); void d_genocide(struct dentry *root) { struct dentry *this_parent; struct list_head *next; unsigned seq; int locked = 0; seq = read_seqbegin(&rename_lock); again: this_parent = root; spin_lock(&this_parent->d_lock); repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); next = tmp->next; spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); if (d_unhashed(dentry) || !dentry->d_inode) { spin_unlock(&dentry->d_lock); continue; } if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&this_parent->d_lock); spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); this_parent = dentry; spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); goto repeat; } if (!(dentry->d_flags & DCACHE_GENOCIDE)) { dentry->d_flags |= DCACHE_GENOCIDE; dentry->d_count--; } spin_unlock(&dentry->d_lock); } if (this_parent != root) { struct dentry *child = this_parent; if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { this_parent->d_flags |= DCACHE_GENOCIDE; this_parent->d_count--; } this_parent = try_to_ascend(this_parent, locked, seq); if (!this_parent) goto rename_retry; next = child->d_u.d_child.next; goto resume; } spin_unlock(&this_parent->d_lock); if (!locked && read_seqretry(&rename_lock, seq)) goto rename_retry; if (locked) write_sequnlock(&rename_lock); return; rename_retry: locked = 1; write_seqlock(&rename_lock); goto again; } /** * find_inode_number - check for dentry with name * @dir: directory to check * @name: Name to find. * * Check whether a dentry already exists for the given name, * and return the inode number if it has an inode. Otherwise * 0 is returned. * * This routine is used to post-process directory listings for * filesystems using synthetic inode numbers, and is necessary * to keep getcwd() working. */ ino_t find_inode_number(struct dentry *dir, struct qstr *name) { struct dentry * dentry; ino_t ino = 0; dentry = d_hash_and_lookup(dir, name); if (dentry) { if (dentry->d_inode) ino = dentry->d_inode->i_ino; dput(dentry); } return ino; } EXPORT_SYMBOL(find_inode_number); static __initdata unsigned long dhash_entries; static int __init set_dhash_entries(char *str) { if (!str) return 0; dhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("dhash_entries=", set_dhash_entries); static void __init dcache_init_early(void) { int loop; /* If hashes are distributed across NUMA nodes, defer * hash allocation until vmalloc space is available. */ if (hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, HASH_EARLY, &d_hash_shift, &d_hash_mask, 0); for (loop = 0; loop < (1 << d_hash_shift); loop++) INIT_HLIST_BL_HEAD(dentry_hashtable + loop); } static void __init dcache_init(void) { int loop; /* * A constructor could be added for stable state like the lists, * but it is probably not worth it because of the cache nature * of the dcache. */ dentry_cache = KMEM_CACHE(dentry, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); /* Hash may have been set up in dcache_init_early */ if (!hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, 0, &d_hash_shift, &d_hash_mask, 0); for (loop = 0; loop < (1 << d_hash_shift); loop++) INIT_HLIST_BL_HEAD(dentry_hashtable + loop); } /* SLAB cache for __getname() consumers */ struct kmem_cache *names_cachep __read_mostly; EXPORT_SYMBOL(names_cachep); EXPORT_SYMBOL(d_genocide); void __init vfs_caches_init_early(void) { dcache_init_early(); inode_init_early(); } void __init vfs_caches_init(unsigned long mempages) { unsigned long reserve; /* Base hash sizes on available memory, with a reserve equal to 150% of current kernel size */ reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); mempages -= reserve; names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); dcache_init(); inode_init(); files_init(mempages); mnt_init(); bdev_cache_init(); chrdev_init(); }