/*
* Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
* Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
* Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*
* Contact Information:
* Xiong Huang <xiong.huang@atheros.com>
* Jie Yang <jie.yang@atheros.com>
* Chris Snook <csnook@redhat.com>
* Jay Cliburn <jcliburn@gmail.com>
*
* This version is adapted from the Attansic reference driver.
*
* TODO:
* Add more ethtool functions.
* Fix abstruse irq enable/disable condition described here:
* http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
*
* NEEDS TESTING:
* VLAN
* multicast
* promiscuous mode
* interrupt coalescing
* SMP torture testing
*/
#include <asm/atomic.h>
#include <asm/byteorder.h>
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/hardirq.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/irqflags.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tcp.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <net/checksum.h>
#include "atl1.h"
#define ATLX_DRIVER_VERSION "2.1.3"
MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, \
Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATLX_DRIVER_VERSION);
/* Temporary hack for merging atl1 and atl2 */
#include "atlx.c"
/*
* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL1_MAX_NIC 4
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
/*
* Interrupt Moderate Timer in units of 2 us
*
* Valid Range: 10-65535
*
* Default Value: 100 (200us)
*/
static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
static unsigned int num_int_mod_timer;
module_param_array_named(int_mod_timer, int_mod_timer, int,
&num_int_mod_timer, 0);
MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
#define DEFAULT_INT_MOD_CNT 100 /* 200us */
#define MAX_INT_MOD_CNT 65000
#define MIN_INT_MOD_CNT 50
struct atl1_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl1_opt_list {
int i;
char *str;
} *p;
} l;
} arg;
};
static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
struct pci_dev *pdev)
{
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
dev_info(&pdev->dev, "%s enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
dev_info(&pdev->dev, "%s disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
dev_info(&pdev->dev, "%s set to %i\n", opt->name,
*value);
return 0;
}
break;
case list_option:{
int i;
struct atl1_opt_list *ent;
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
dev_info(&pdev->dev, "%s\n",
ent->str);
return 0;
}
}
}
break;
default:
break;
}
dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/*
* atl1_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
static void __devinit atl1_check_options(struct atl1_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int bd = adapter->bd_number;
if (bd >= ATL1_MAX_NIC) {
dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
dev_notice(&pdev->dev, "using defaults for all values\n");
}
{ /* Interrupt Moderate Timer */
struct atl1_option opt = {
.type = range_option,
.name = "Interrupt Moderator Timer",
.err = "using default of "
__MODULE_STRING(DEFAULT_INT_MOD_CNT),
.def = DEFAULT_INT_MOD_CNT,
.arg = {.r = {.min = MIN_INT_MOD_CNT,
.max = MAX_INT_MOD_CNT} }
};
int val;
if (num_int_mod_timer > bd) {
val = int_mod_timer[bd];
atl1_validate_option(&val, &opt, pdev);
adapter->imt = (u16) val;
} else
adapter->imt = (u16) (opt.def);
}
}
/*
* atl1_pci_tbl - PCI Device ID Table
*/
static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
/*
* Reset the transmit and receive units; mask and clear all interrupts.
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static s32 atl1_reset_hw(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
struct atl1_adapter *adapter = hw->back;
u32 icr;
int i;
/*
* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/*
* iowrite32(0, hw->hw_addr + REG_IMR);
* iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
*/
/*
* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
ioread32(hw->hw_addr + REG_MASTER_CTRL);
iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
ioread16(hw->hw_addr + REG_PHY_ENABLE);
/* delay about 1ms */
msleep(1);
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
if (!icr)
break;
/* delay 1 ms */
msleep(1);
/* FIXME: still the right way to do this? */
cpu_relax();
}
if (icr) {
if (netif_msg_hw(adapter))
dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
return icr;
}
return 0;
}
/* function about EEPROM
*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl1_check_eeprom_exist(struct atl1_hw *hw)
{
u32 value;
value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
}
value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
{
int i;
u32 control;
if (offset & 3)
/* address do not align */
return false;
iowrite32(0, hw->hw_addr + REG_VPD_DATA);
control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
iowrite32(control, hw->hw_addr + REG_VPD_CAP);
ioread32(hw->hw_addr + REG_VPD_CAP);
for (i = 0; i < 10; i++) {
msleep(2);
control = ioread32(hw->hw_addr + REG_VPD_CAP);
if (control & VPD_CAP_VPD_FLAG)
break;
}
if (control & VPD_CAP_VPD_FLAG) {
*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
return true;
}
/* timeout */
return false;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
MDIO_CLK_SEL_SHIFT;
iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
ioread32(hw->hw_addr + REG_MDIO_CTRL);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16) val;
return 0;
}
return ATLX_ERR_PHY;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
iowrite32(0, hw->hw_addr + REG_SPI_DATA);
iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
SPI_FLASH_CTRL_INS_SHIFT;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
value |= SPI_FLASH_CTRL_START;
iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
for (i = 0; i < 10; i++) {
msleep(1);
value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1_get_permanent_address(struct atl1_hw *hw)
{
u32 addr[2];
u32 i, control;
u16 reg;
u8 eth_addr[ETH_ALEN];
bool key_valid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
/* init */
addr[0] = addr[1] = 0;
if (!atl1_check_eeprom_exist(hw)) {
reg = 0;
key_valid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl1_read_eeprom(hw, i + 0x100, &control)) {
if (key_valid) {
if (reg == REG_MAC_STA_ADDR)
addr[0] = control;
else if (reg == (REG_MAC_STA_ADDR + 4))
addr[1] = control;
key_valid = false;
} else if ((control & 0xff) == 0x5A) {
key_valid = true;
reg = (u16) (control >> 16);
} else
break;
} else
/* read error */
break;
i += 4;
}
*(u32 *) ð_addr[2] = swab32(addr[0]);
*(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
}
/* see if SPI FLAGS exist ? */
addr[0] = addr[1] = 0;
reg = 0;
key_valid = false;
i = 0;
while (1) {
if (atl1_spi_read(hw, i + 0x1f000, &control)) {
if (key_valid) {
if (reg == REG_MAC_STA_ADDR)
addr[0] = control;
else if (reg == (REG_MAC_STA_ADDR + 4))
addr[1] = control;
key_valid = false;
} else if ((control & 0xff) == 0x5A) {
key_valid = true;
reg = (u16) (control >> 16);
} else
/* data end */
break;
} else
/* read error */
break;
i += 4;
}
*(u32 *) ð_addr[2] = swab32(addr[0]);
*(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
/*
* On some motherboards, the MAC address is written by the
* BIOS directly to the MAC register during POST, and is
* not stored in eeprom. If all else thus far has failed
* to fetch the permanent MAC address, try reading it directly.
*/
addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
*(u32 *) ð_addr[2] = swab32(addr[0]);
*(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
* hw - Struct containing variables accessed by shared code
*/
static s32 atl1_read_mac_addr(struct atl1_hw *hw)
{
u16 i;
if (atl1_get_permanent_address(hw))
random_ether_addr(hw->perm_mac_addr);
for (i = 0; i < ETH_ALEN; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return 0;
}
/*
* Hashes an address to determine its location in the multicast table
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl1_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
{
u32 crc32, value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
mta |= (1 << hash_bit);
iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
ioread32(hw->hw_addr + REG_MDIO_CTRL);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return ATLX_ERR_PHY;
}
/*
* Make L001's PHY out of Power Saving State (bug)
* hw - Struct containing variables accessed by shared code
* when power on, L001's PHY always on Power saving State
* (Gigabit Link forbidden)
*/
static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
{
s32 ret;
ret = atl1_write_phy_reg(hw, 29, 0x0029);
if (ret)
return ret;
return atl1_write_phy_reg(hw, 30, 0);
}
/*
* Resets the PHY and make all config validate
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl1_phy_reset(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
struct atl1_adapter *adapter = hw->back;
s32 ret_val;
u16 phy_data;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL)
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
else {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
break;
default:
/* MEDIA_TYPE_10M_HALF: */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
break;
}
}
ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down! */
if (netif_msg_hw(adapter))
dev_dbg(&pdev->dev, "pcie phy link down\n");
for (i = 0; i < 25; i++) {
msleep(1);
val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
if (netif_msg_hw(adapter))
dev_warn(&pdev->dev,
"pcie link down at least 25ms\n");
return ret_val;
}
}
return 0;
}
/*
* Configures PHY autoneg and flow control advertisement settings
* hw - Struct containing variables accessed by shared code
*/
static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
{
s32 ret_val;
s16 mii_autoneg_adv_reg;
s16 mii_1000t_ctrl_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Read the MII 1000Base-T Control Register (Address 9). */
mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
/*
* Need to parse media_type and set up
* the appropriate PHY registers.
*/
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS |
MII_AR_100TX_FD_CAPS);
mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
break;
case MEDIA_TYPE_1000M_FULL:
mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
return 0;
}
/*
* Configures link settings.
* hw - Struct containing variables accessed by shared code
* Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*/
static s32 atl1_setup_link(struct atl1_hw *hw)
{
struct pci_dev *pdev = hw->back->pdev;
struct atl1_adapter *adapter = hw->back;
s32 ret_val;
/*
* Options:
* PHY will advertise value(s) parsed from
* autoneg_advertised and fc
* no matter what autoneg is , We will not wait link result.
*/
ret_val = atl1_phy_setup_autoneg_adv(hw);
if (ret_val) {
if (netif_msg_link(adapter))
dev_dbg(&pdev->dev,
"error setting up autonegotiation\n");
return ret_val;
}
/* SW.Reset , En-Auto-Neg if needed */
ret_val = atl1_phy_reset(hw);
if (ret_val) {
if (netif_msg_link(adapter))
dev_dbg(&pdev->dev, "error resetting phy\n");
return ret_val;
}
hw->phy_configured = true;
return ret_val;
}
static void atl1_init_flash_opcode(struct atl1_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
/* Atmel */
hw->flash_vendor = 0;
/* Init OP table */
iowrite8(flash_table[hw->flash_vendor].cmd_program,
hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
hw->hw_addr + REG_SPI_FLASH_OP_RDID);
iowrite8(flash_table[hw->flash_vendor].cmd_wren,
hw->hw_addr + REG_SPI_FLASH_OP_WREN);
iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
iowrite8(flash_table[hw->flash_vendor].cmd_read,
hw->hw_addr + REG_SPI_FLASH_OP_READ);
}
/*
* Performs basic configuration of the adapter.
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
*/
static s32 atl1_init_hw(struct atl1_hw *hw)
{
u32 ret_val = 0;
/* Zero out the Multicast HASH table */
iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
/* clear the old settings from the multicast hash table */
iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
atl1_init_flash_opcode(hw);
if (!hw->phy_configured) {
/* enable GPHY LinkChange Interrrupt */
ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* make PHY out of power-saving state */
ret_val = atl1_phy_leave_power_saving(hw);
if (ret_val)
return ret_val;
/* Call a subroutine to configure the link */
ret_val = atl1_setup_link(hw);
}
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
{
struct pci_dev *pdev = hw->back->pdev;
struct atl1_adapter *adapter = hw->back;
s32 ret_val;
u16 phy_data;
/* ; --- Read PHY Specific Status Register (17) */
ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
return ATLX_ERR_PHY_RES;
switch (phy_data & MII_ATLX_PSSR_SPEED) {
case MII_ATLX_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case MII_ATLX_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_ATLX_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
if (netif_msg_hw(adapter))
dev_dbg(&pdev->dev, "error getting speed\n");
return ATLX_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_ATLX_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
void atl1_set_mac_addr(struct atl1_hw *hw)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = (((u32) hw->mac_addr[2]) << 24) |
(((u32) hw->mac_addr[3]) << 16) |
(((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
/* high dword */
value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
}
/*
* atl1_sw_init - Initialize general software structures (struct atl1_adapter)
* @adapter: board private structure to initialize
*
* atl1_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
adapter->wol = 0;
adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
adapter->ict = 50000; /* 100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->rfd_burst = 8;
hw->rrd_burst = 8;
hw->rfd_fetch_gap = 1;
hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
hw->rx_jumbo_lkah = 1;
hw->rrd_ret_timer = 16;
hw->tpd_burst = 4;
hw->tpd_fetch_th = 16;
hw->txf_burst = 0x100;
hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
hw->tpd_fetch_gap = 1;
hw->rcb_value = atl1_rcb_64;
hw->dma_ord = atl1_dma_ord_enh;
hw->dmar_block = atl1_dma_req_256;
hw->dmaw_block = atl1_dma_req_256;
hw->cmb_rrd = 4;
hw->cmb_tpd = 4;
hw->cmb_rx_timer = 1; /* about 2us */
hw->cmb_tx_timer = 1; /* about 2us */
hw->smb_timer = 100000; /* about 200ms */
spin_lock_init(&adapter->lock);
spin_lock_init(&adapter->mb_lock);
return 0;
}
static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
u16 result;
atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
return result;
}
static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
int val)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
atl1_write_phy_reg(&adapter->hw, reg_num, val);
}
/*
* atl1_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
int retval;
if (!netif_running(netdev))
return -EINVAL;
spin_lock_irqsave(&adapter->lock, flags);
retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
spin_unlock_irqrestore(&adapter->lock, flags);
return retval;
}
/*
* atl1_setup_mem_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_ring_header *ring_header = &adapter->ring_header;
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
if (unlikely(!tpd_ring->buffer_info)) {
if (netif_msg_drv(adapter))
dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
size);
goto err_nomem;
}
rfd_ring->buffer_info =
(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
/*
* real ring DMA buffer
* each ring/block may need up to 8 bytes for alignment, hence the
* additional 40 bytes tacked onto the end.
*/
ring_header->size = size =
sizeof(struct tx_packet_desc) * tpd_ring->count
+ sizeof(struct rx_free_desc) * rfd_ring->count
+ sizeof(struct rx_return_desc) * rrd_ring->count
+ sizeof(struct coals_msg_block)
+ sizeof(struct stats_msg_block)
+ 40;
ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
&ring_header->dma);
if (unlikely(!ring_header->desc)) {
if (netif_msg_drv(adapter))
dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
goto err_nomem;
}
memset(ring_header->desc, 0, ring_header->size);
/* init TPD ring */
tpd_ring->dma = ring_header->dma;
offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
tpd_ring->dma += offset;
tpd_ring->desc = (u8 *) ring_header->desc + offset;
tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
/* init RFD ring */
rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
rfd_ring->dma += offset;
rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
/* init RRD ring */
rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
rrd_ring->dma += offset;
rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
/* init CMB */
adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
adapter->cmb.dma += offset;
adapter->cmb.cmb = (struct coals_msg_block *)
((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
/* init SMB */
adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
adapter->smb.dma += offset;
adapter->smb.smb = (struct stats_msg_block *)
((u8 *) adapter->cmb.cmb +
(sizeof(struct coals_msg_block) + offset));
return 0;
err_nomem:
kfree(tpd_ring->buffer_info);
return -ENOMEM;
}
static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
atomic_set(&tpd_ring->next_to_use, 0);
atomic_set(&tpd_ring->next_to_clean, 0);
rfd_ring->next_to_clean = 0;
atomic_set(&rfd_ring->next_to_use, 0);
rrd_ring->next_to_use = 0;
atomic_set(&rrd_ring->next_to_clean, 0);
}
/*
* atl1_clean_rx_ring - Free RFD Buffers
* @adapter: board private structure
*/
static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
{
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rfd_ring->count; i++) {
buffer_info = &rfd_ring->buffer_info[i];
if (buffer_info->dma) {
pci_unmap_page(pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_FROMDEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
}
size = sizeof(struct atl1_buffer) * rfd_ring->count;
memset(rfd_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rfd_ring->desc, 0, rfd_ring->size);
rfd_ring->next_to_clean = 0;
atomic_set(&rfd_ring->next_to_use, 0);
rrd_ring->next_to_use = 0;
atomic_set(&rrd_ring->next_to_clean, 0);
}
/*
* atl1_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
*/
static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tpd_ring->count; i++) {
buffer_info = &tpd_ring->buffer_info[i];
if (buffer_info->dma) {
pci_unmap_page(pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
}
for (i = 0; i < tpd_ring->count; i++) {
buffer_info = &tpd_ring->buffer_info[i];
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
}
size = sizeof(struct atl1_buffer) * tpd_ring->count;
memset(tpd_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tpd_ring->desc, 0, tpd_ring->size);
atomic_set(&tpd_ring->next_to_use, 0);
atomic_set(&tpd_ring->next_to_clean, 0);
}
/*
* atl1_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl1_free_ring_resources(struct atl1_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_ring_header *ring_header = &adapter->ring_header;
atl1_clean_tx_ring(adapter);
atl1_clean_rx_ring(adapter);
kfree(tpd_ring->buffer_info);
pci_free_consistent(pdev, ring_header->size, ring_header->desc,
ring_header->dma);
tpd_ring->buffer_info = NULL;
tpd_ring->desc = NULL;
tpd_ring->dma = 0;
rfd_ring->buffer_info = NULL;
rfd_ring->desc = NULL;
rfd_ring->dma = 0;
rrd_ring->desc = NULL;
rrd_ring->dma = 0;
}
static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
{
u32 value;
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* speed */
value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
MAC_CTRL_SPEED_SHIFT);
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32) adapter->hw.preamble_len
& MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
if (adapter->vlgrp)
value |= MAC_CTRL_RMV_VLAN;
/* rx checksum
if (adapter->rx_csum)
value |= MAC_CTRL_RX_CHKSUM_EN;
*/
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* value |= MAC_CTRL_LOOPBACK; */
iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
}
static u32 atl1_check_link(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twice */
atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data & BMSR_LSTATUS)) {
/* link down */
if (netif_carrier_ok(netdev)) {
/* old link state: Up */
if (netif_msg_link(adapter))
dev_info(&adapter->pdev->dev, "link is down\n");
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
}
return 0;
}
/* Link Up */
ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->media_type) {
case MEDIA_TYPE_1000M_FULL:
if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (!reconfig) {
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl1_setup_mac_ctrl(adapter);
if (netif_msg_link(adapter))
dev_info(&adapter->pdev->dev,
"%s link is up %d Mbps %s\n",
netdev->name, adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"full duplex" : "half duplex");
}
if (!netif_carrier_ok(netdev)) {
/* Link down -> Up */
netif_carrier_on(netdev);
}
return 0;
}
/* change original link status */
if (netif_carrier_ok(netdev)) {
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
hw->media_type != MEDIA_TYPE_1000M_FULL) {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
break;
default:
/* MEDIA_TYPE_10M_HALF: */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
break;
}
atl1_write_phy_reg(hw, MII_BMCR, phy_data);
return 0;
}
/* auto-neg, insert timer to re-config phy */
if (!adapter->phy_timer_pending) {
adapter->phy_timer_pending = true;
mod_timer(&adapter->phy_config_timer,
round_jiffies(jiffies + 3 * HZ));
}
return 0;
}
static void set_flow_ctrl_old(struct atl1_adapter *adapter)
{
u32 hi, lo, value;
/* RFD Flow Control */
value = adapter->rfd_ring.count;
hi = value / 16;
if (hi < 2)
hi = 2;
lo = value * 7 / 8;
value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
/* RRD Flow Control */
value = adapter->rrd_ring.count;
lo = value / 16;
hi = value * 7 / 8;
if (lo < 2)
lo = 2;
value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
}
static void set_flow_ctrl_new(struct atl1_hw *hw)
{
u32 hi, lo, value;
/* RXF Flow Control */
value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
lo = value / 16;
if (lo < 192)
lo = 192;
hi = value * 7 / 8;
if (hi < lo)
hi = lo + 16;
value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
/* RRD Flow Control */
value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
lo = value / 8;
hi = value * 7 / 8;
if (lo < 2)
lo = 2;
if (hi < lo)
hi = lo + 3;
value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
}
/*
* atl1_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static u32 atl1_configure(struct atl1_adapter *adapter)
{
struct atl1_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
/* set MAC Address */
value = (((u32) hw->mac_addr[2]) << 24) |
(((u32) hw->mac_addr[3]) << 16) |
(((u32) hw->mac_addr[4]) << 8) |
(((u32) hw->mac_addr[5]));
iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
/* tx / rx ring */
/* HI base address */
iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
hw->hw_addr + REG_DESC_BASE_ADDR_HI);
/* LO base address */
iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_RFD_ADDR_LO);
iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_RRD_ADDR_LO);
iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_TPD_ADDR_LO);
iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_CMB_ADDR_LO);
iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
hw->hw_addr + REG_DESC_SMB_ADDR_LO);
/* element count */
value = adapter->rrd_ring.count;
value <<= 16;
value += adapter->rfd_ring.count;
iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
iowrite32(adapter->tpd_ring.count, hw->hw_addr +
REG_DESC_TPD_RING_SIZE);
/* Load Ptr */
iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
/* config Mailbox */
value = ((atomic_read(&adapter->tpd_ring.next_to_use)
& MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
((atomic_read(&adapter->rrd_ring.next_to_clean)
& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
((atomic_read(&adapter->rfd_ring.next_to_use)
& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAILBOX);
/* config IPG/IFG */
value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
<< MAC_IPG_IFG_IPGT_SHIFT) |
(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
<< MAC_IPG_IFG_MIFG_SHIFT) |
(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
<< MAC_IPG_IFG_IPGR1_SHIFT) |
(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
<< MAC_IPG_IFG_IPGR2_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
/* config Half-Duplex Control */
value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
/* set Interrupt Moderator Timer */
iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
/* set Interrupt Clear Timer */
iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
/* set max frame size hw will accept */
iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
/* jumbo size & rrd retirement timer */
value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
<< RXQ_JMBOSZ_TH_SHIFT) |
(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
<< RXQ_JMBO_LKAH_SHIFT) |
(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
<< RXQ_RRD_TIMER_SHIFT);
iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
/* Flow Control */
switch (hw->dev_rev) {
case 0x8001:
case 0x9001:
case 0x9002:
case 0x9003:
set_flow_ctrl_old(adapter);
break;
default:
set_flow_ctrl_new(hw);
break;
}
/* config TXQ */
value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
<< TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
TXQ_CTRL_EN;
iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
<< TX_JUMBO_TASK_TH_SHIFT) |
(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
<< TX_TPD_MIN_IPG_SHIFT);
iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
/* config RXQ */
value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
RXQ_CTRL_EN;
iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
/* config DMA Engine */
value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
DMA_CTRL_DMAW_EN;
value |= (u32) hw->dma_ord;
if (atl1_rcb_128 == hw->rcb_value)
value |= DMA_CTRL_RCB_VALUE;
iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
/* config CMB / SMB */
value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
hw->cmb_tpd : adapter->tpd_ring.count;
value <<= 16;
value |= hw->cmb_rrd;
iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
/* --- enable CMB / SMB */
value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
value = ioread32(adapter->hw.hw_addr + REG_ISR);
if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
iowrite32(0, adapter->hw.hw_addr + REG_ISR);
return value;
}
/*
* atl1_pcie_patch - Patch for PCIE module
*/
static void atl1_pcie_patch(struct atl1_adapter *adapter)
{
u32 value;
/* much vendor magic here */
value = 0x6500;
iowrite32(value, adapter->hw.hw_addr + 0x12FC);
/* pcie flow control mode change */
value = ioread32(adapter->hw.hw_addr + 0x1008);
value |= 0x8000;
iowrite32(value, adapter->hw.hw_addr + 0x1008);
}
/*
* When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
* on PCI Command register is disable.
* The function enable this bit.
* Brackett, 2006/03/15
*/
static void atl1_via_workaround(struct atl1_adapter *adapter)
{
unsigned long value;
value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
if (value & PCI_COMMAND_INTX_DISABLE)
value &= ~PCI_COMMAND_INTX_DISABLE;
iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
}
static void atl1_inc_smb(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct stats_msg_block *smb = adapter->smb.smb;
/* Fill out the OS statistics structure */
adapter->soft_stats.rx_packets += smb->rx_ok;
adapter->soft_stats.tx_packets += smb->tx_ok;
adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
adapter->soft_stats.multicast += smb->rx_mcast;
adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
/* Rx Errors */
adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
smb->rx_rrd_ov + smb->rx_align_err);
adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
adapter->soft_stats.rx_length_errors += smb->rx_len_err;
adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
smb->rx_rxf_ov);
adapter->soft_stats.rx_pause += smb->rx_pause;
adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
/* Tx Errors */
adapter->soft_stats.tx_errors += (smb->tx_late_col +
smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
adapter->soft_stats.tx_window_errors += smb->tx_late_col;
adapter->soft_stats.excecol += smb->tx_abort_col;
adapter->soft_stats.deffer += smb->tx_defer;
adapter->soft_stats.scc += smb->tx_1_col;
adapter->soft_stats.mcc += smb->tx_2_col;
adapter->soft_stats.latecol += smb->tx_late_col;
adapter->soft_stats.tx_underun += smb->tx_underrun;
adapter->soft_stats.tx_trunc += smb->tx_trunc;
adapter->soft_stats.tx_pause += smb->tx_pause;
netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
netdev->stats.multicast = adapter->soft_stats.multicast;
netdev->stats.collisions = adapter->soft_stats.collisions;
netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
netdev->stats.rx_over_errors =
adapter->soft_stats.rx_missed_errors;
netdev->stats.rx_length_errors =
adapter->soft_stats.rx_length_errors;
netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
netdev->stats.rx_frame_errors =
adapter->soft_stats.rx_frame_errors;
netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
netdev->stats.rx_missed_errors =
adapter->soft_stats.rx_missed_errors;
netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
netdev->stats.tx_aborted_errors =
adapter->soft_stats.tx_aborted_errors;
netdev->stats.tx_window_errors =
adapter->soft_stats.tx_window_errors;
netdev->stats.tx_carrier_errors =
adapter->soft_stats.tx_carrier_errors;
}
static void atl1_update_mailbox(struct atl1_adapter *adapter)
{
unsigned long flags;
u32 tpd_next_to_use;
u32 rfd_next_to_use;
u32 rrd_next_to_clean;
u32 value;
spin_lock_irqsave(&adapter->mb_lock, flags);
tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
MB_RFD_PROD_INDX_SHIFT) |
((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
MB_RRD_CONS_INDX_SHIFT) |
((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
MB_TPD_PROD_INDX_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
spin_unlock_irqrestore(&adapter->mb_lock, flags);
}
static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
struct rx_return_desc *rrd, u16 offset)
{
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
if (++rfd_ring->next_to_clean == rfd_ring->count) {
rfd_ring->next_to_clean = 0;
}
}
}
static void atl1_update_rfd_index(struct atl1_adapter *adapter,
struct rx_return_desc *rrd)
{
u16 num_buf;
num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
adapter->rx_buffer_len;
if (rrd->num_buf == num_buf)
/* clean alloc flag for bad rrd */
atl1_clean_alloc_flag(adapter, rrd, num_buf);
}
static void atl1_rx_checksum(struct atl1_adapter *adapter,
struct rx_return_desc *rrd, struct sk_buff *skb)
{
struct pci_dev *pdev = adapter->pdev;
/*
* The L1 hardware contains a bug that erroneously sets the
* PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
* fragmented IP packet is received, even though the packet
* is perfectly valid and its checksum is correct. There's
* no way to distinguish between one of these good packets
* and a packet that actually contains a TCP/UDP checksum
* error, so all we can do is allow it to be handed up to
* the higher layers and let it be sorted out there.
*/
skb->ip_summed = CHECKSUM_NONE;
if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
ERR_FLAG_CODE | ERR_FLAG_OV)) {
adapter->hw_csum_err++;
if (netif_msg_rx_err(adapter))
dev_printk(KERN_DEBUG, &pdev->dev,
"rx checksum error\n");
return;
}
}
/* not IPv4 */
if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
/* checksum is invalid, but it's not an IPv4 pkt, so ok */
return;
/* IPv4 packet */
if (likely(!(rrd->err_flg &
(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
adapter->hw_csum_good++;
return;
}
return;
}
/*
* atl1_alloc_rx_buffers - Replace used receive buffers
* @adapter: address of board private structure
*/
static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
{
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct pci_dev *pdev = adapter->pdev;
struct page *page;
unsigned long offset;
struct atl1_buffer *buffer_info, *next_info;
struct sk_buff *skb;
u16 num_alloc = 0;
u16 rfd_next_to_use, next_next;
struct rx_free_desc *rfd_desc;
next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
if (++next_next == rfd_ring->count)
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
while (!buffer_info->alloced && !next_info->alloced) {
if (buffer_info->skb) {
buffer_info->alloced = 1;
goto next;
}
rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
skb = netdev_alloc_skb_ip_align(adapter->netdev,
adapter->rx_buffer_len);
if (unlikely(!skb)) {
/* Better luck next round */
adapter->netdev->stats.rx_dropped++;
break;
}
buffer_info->alloced = 1;
buffer_info->skb = skb;
buffer_info->length = (u16) adapter->rx_buffer_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(pdev, page, offset,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
rfd_desc->coalese = 0;
next:
rfd_next_to_use = next_next;
if (unlikely(++next_next == rfd_ring->count))
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
num_alloc++;
}
if (num_alloc) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
}
return num_alloc;
}
static void atl1_intr_rx(struct atl1_adapter *adapter)
{
int i, count;
u16 length;
u16 rrd_next_to_clean;
u32 value;
struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
struct atl1_buffer *buffer_info;
struct rx_return_desc *rrd;
struct sk_buff *skb;
count = 0;
rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
while (1) {
rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
i = 1;
if (likely(rrd->xsz.valid)) { /* packet valid */
chk_rrd:
/* check rrd status */
if (likely(rrd->num_buf == 1))
goto rrd_ok;
else if (netif_msg_rx_err(adapter)) {
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"unexpected RRD buffer count\n");
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"rx_buf_len = %d\n",
adapter->rx_buffer_len);
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"RRD num_buf = %d\n",
rrd->num_buf);
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"RRD pkt_len = %d\n",
rrd->xsz.xsum_sz.pkt_size);
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"RRD pkt_flg = 0x%08X\n",
rrd->pkt_flg);
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"RRD err_flg = 0x%08X\n",
rrd->err_flg);
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"RRD vlan_tag = 0x%08X\n",
rrd->vlan_tag);
}
/* rrd seems to be bad */
if (unlikely(i-- > 0)) {
/* rrd may not be DMAed completely */
udelay(1);
goto chk_rrd;
}
/* bad rrd */
if (netif_msg_rx_err(adapter))
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"bad RRD\n");
/* see if update RFD index */
if (rrd->num_buf > 1)
atl1_update_rfd_index(adapter, rrd);
/* update rrd */
rrd->xsz.valid = 0;
if (++rrd_next_to_clean == rrd_ring->count)
rrd_next_to_clean = 0;
count++;
continue;
} else { /* current rrd still not be updated */
break;
}
rrd_ok:
/* clean alloc flag for bad rrd */
atl1_clean_alloc_flag(adapter, rrd, 0);
buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
if (++rfd_ring->next_to_clean == rfd_ring->count)
rfd_ring->next_to_clean = 0;
/* update rrd next to clean */
if (++rrd_next_to_clean == rrd_ring->count)
rrd_next_to_clean = 0;
count++;
if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
if (!(rrd->err_flg &
(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
| ERR_FLAG_LEN))) {
/* packet error, don't need upstream */
buffer_info->alloced = 0;
rrd->xsz.valid = 0;
continue;
}
}
/* Good Receive */
pci_unmap_page(adapter->pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_FROMDEVICE);
buffer_info->dma = 0;
skb = buffer_info->skb;
length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
skb_put(skb, length - ETH_FCS_LEN);
/* Receive Checksum Offload */
atl1_rx_checksum(adapter, rrd, skb);
skb->protocol = eth_type_trans(skb, adapter->netdev);
if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
u16 vlan_tag = (rrd->vlan_tag >> 4) |
((rrd->vlan_tag & 7) << 13) |
((rrd->vlan_tag & 8) << 9);
vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
} else
netif_rx(skb);
/* let protocol layer free skb */
buffer_info->skb = NULL;
buffer_info->alloced = 0;
rrd->xsz.valid = 0;
}
atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
atl1_alloc_rx_buffers(adapter);
/* update mailbox ? */
if (count) {
u32 tpd_next_to_use;
u32 rfd_next_to_use;
spin_lock(&adapter->mb_lock);
tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
rfd_next_to_use =
atomic_read(&adapter->rfd_ring.next_to_use);
rrd_next_to_clean =
atomic_read(&adapter->rrd_ring.next_to_clean);
value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
MB_RFD_PROD_INDX_SHIFT) |
((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
MB_RRD_CONS_INDX_SHIFT) |
((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
MB_TPD_PROD_INDX_SHIFT);
iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
spin_unlock(&adapter->mb_lock);
}
}
static void atl1_intr_tx(struct atl1_adapter *adapter)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
u16 sw_tpd_next_to_clean;
u16 cmb_tpd_next_to_clean;
sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
struct tx_packet_desc *tpd;
tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
if (buffer_info->dma) {
pci_unmap_page(adapter->pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_irq(buffer_info->skb);
buffer_info->skb = NULL;
}
if (++sw_tpd_next_to_clean == tpd_ring->count)
sw_tpd_next_to_clean = 0;
}
atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
{
u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
return ((next_to_clean > next_to_use) ?
next_to_clean - next_to_use - 1 :
tpd_ring->count + next_to_clean - next_to_use - 1);
}
static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
struct tx_packet_desc *ptpd)
{
u8 hdr_len, ip_off;
u32 real_len;
int err;
if (skb_shinfo(skb)->gso_size) {
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(err))
return -1;
}
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
real_len = (((unsigned char *)iph - skb->data) +
ntohs(iph->tot_len));
if (real_len < skb->len)
pskb_trim(skb, real_len);
hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (skb->len == hdr_len) {
iph->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(iph->saddr,
iph->daddr, tcp_hdrlen(skb),
IPPROTO_TCP, 0);
ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
TPD_IPHL_SHIFT;
ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
TPD_TCPHDRLEN_MASK) <<
TPD_TCPHDRLEN_SHIFT;
ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
return 1;
}
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0, IPPROTO_TCP, 0);
ip_off = (unsigned char *)iph -
(unsigned char *) skb_network_header(skb);
if (ip_off == 8) /* 802.3-SNAP frame */
ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
else if (ip_off != 0)
return -2;
ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
TPD_IPHL_SHIFT;
ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
ptpd->word3 |= (skb_shinfo(skb)->gso_size &
TPD_MSS_MASK) << TPD_MSS_SHIFT;
ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
return 3;
}
}
return false;
}
static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
struct tx_packet_desc *ptpd)
{
u8 css, cso;
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
css = (u8) (skb->csum_start - skb_headroom(skb));
cso = css + (u8) skb->csum_offset;
if (unlikely(css & 0x1)) {
/* L1 hardware requires an even number here */
if (netif_msg_tx_err(adapter))
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"payload offset not an even number\n");
return -1;
}
ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
TPD_PLOADOFFSET_SHIFT;
ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
TPD_CCSUMOFFSET_SHIFT;
ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
return true;
}
return 0;
}
static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
struct tx_packet_desc *ptpd)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
u16 buf_len = skb->len;
struct page *page;
unsigned long offset;
unsigned int nr_frags;
unsigned int f;
int retval;
u16 next_to_use;
u16 data_len;
u8 hdr_len;
buf_len -= skb->data_len;
nr_frags = skb_shinfo(skb)->nr_frags;
next_to_use = atomic_read(&tpd_ring->next_to_use);
buffer_info = &tpd_ring->buffer_info[next_to_use];
BUG_ON(buffer_info->skb);
/* put skb in last TPD */
buffer_info->skb = NULL;
retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
if (retval) {
/* TSO */
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
buffer_info->length = hdr_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(adapter->pdev, page,
offset, hdr_len,
PCI_DMA_TODEVICE);
if (++next_to_use == tpd_ring->count)
next_to_use = 0;
if (buf_len > hdr_len) {
int i, nseg;
data_len = buf_len - hdr_len;
nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
ATL1_MAX_TX_BUF_LEN;
for (i = 0; i < nseg; i++) {
buffer_info =
&tpd_ring->buffer_info[next_to_use];
buffer_info->skb = NULL;
buffer_info->length =
(ATL1_MAX_TX_BUF_LEN >=
data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
data_len -= buffer_info->length;
page = virt_to_page(skb->data +
(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
offset = (unsigned long)(skb->data +
(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
~PAGE_MASK;
buffer_info->dma = pci_map_page(adapter->pdev,
page, offset, buffer_info->length,
PCI_DMA_TODEVICE);
if (++next_to_use == tpd_ring->count)
next_to_use = 0;
}
}
} else {
/* not TSO */
buffer_info->length = buf_len;
page = virt_to_page(skb->data);
offset = (unsigned long)skb->data & ~PAGE_MASK;
buffer_info->dma = pci_map_page(adapter->pdev, page,
offset, buf_len, PCI_DMA_TODEVICE);
if (++next_to_use == tpd_ring->count)
next_to_use = 0;
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
u16 i, nseg;
frag = &skb_shinfo(skb)->frags[f];
buf_len = frag->size;
nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
ATL1_MAX_TX_BUF_LEN;
for (i = 0; i < nseg; i++) {
buffer_info = &tpd_ring->buffer_info[next_to_use];
BUG_ON(buffer_info->skb);
buffer_info->skb = NULL;
buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
ATL1_MAX_TX_BUF_LEN : buf_len;
buf_len -= buffer_info->length;
buffer_info->dma = pci_map_page(adapter->pdev,
frag->page,
frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
buffer_info->length, PCI_DMA_TODEVICE);
if (++next_to_use == tpd_ring->count)
next_to_use = 0;
}
}
/* last tpd's buffer-info */
buffer_info->skb = skb;
}
static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
struct tx_packet_desc *ptpd)
{
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
struct atl1_buffer *buffer_info;
struct tx_packet_desc *tpd;
u16 j;
u32 val;
u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
for (j = 0; j < count; j++) {
buffer_info = &tpd_ring->buffer_info[next_to_use];
tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
if (tpd != ptpd)
memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
tpd->word2 |= (cpu_to_le16(buffer_info->length) &
TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
/*
* if this is the first packet in a TSO chain, set
* TPD_HDRFLAG, otherwise, clear it.
*/
val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
TPD_SEGMENT_EN_MASK;
if (val) {
if (!j)
tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
else
tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
}
if (j == (count - 1))
tpd->word3 |= 1 << TPD_EOP_SHIFT;
if (++next_to_use == tpd_ring->count)
next_to_use = 0;
}
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
atomic_set(&tpd_ring->next_to_use, next_to_use);
}
static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
int len;
int tso;
int count = 1;
int ret_val;
struct tx_packet_desc *ptpd;
u16 frag_size;
u16 vlan_tag;
unsigned int nr_frags = 0;
unsigned int mss = 0;
unsigned int f;
unsigned int proto_hdr_len;
len = skb_headlen(skb);
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++) {
frag_size = skb_shinfo(skb)->frags[f].size;
if (frag_size)
count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
ATL1_MAX_TX_BUF_LEN;
}
mss = skb_shinfo(skb)->gso_size;
if (mss) {
if (skb->protocol == htons(ETH_P_IP)) {
proto_hdr_len = (skb_transport_offset(skb) +
tcp_hdrlen(skb));
if (unlikely(proto_hdr_len > len)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* need additional TPD ? */
if (proto_hdr_len != len)
count += (len - proto_hdr_len +
ATL1_MAX_TX_BUF_LEN - 1) /
ATL1_MAX_TX_BUF_LEN;
}
}
if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
/* not enough descriptors */
netif_stop_queue(netdev);
if (netif_msg_tx_queued(adapter))
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"tx busy\n");
return NETDEV_TX_BUSY;
}
ptpd = ATL1_TPD_DESC(tpd_ring,
(u16) atomic_read(&tpd_ring->next_to_use));
memset(ptpd, 0, sizeof(struct tx_packet_desc));
if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
vlan_tag = vlan_tx_tag_get(skb);
vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
TPD_VLANTAG_SHIFT;
}
tso = atl1_tso(adapter, skb, ptpd);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (!tso) {
ret_val = atl1_tx_csum(adapter, skb, ptpd);
if (ret_val < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
atl1_tx_map(adapter, skb, ptpd);
atl1_tx_queue(adapter, count, ptpd);
atl1_update_mailbox(adapter);
mmiowb();
return NETDEV_TX_OK;
}
/*
* atl1_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl1_intr(int irq, void *data)
{
struct atl1_adapter *adapter = netdev_priv(data);
u32 status;
int max_ints = 10;
status = adapter->cmb.cmb->int_stats;
if (!status)
return IRQ_NONE;
do {
/* clear CMB interrupt status at once */
adapter->cmb.cmb->int_stats = 0;
if (status & ISR_GPHY) /* clear phy status */
atlx_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
/* check if SMB intr */
if (status & ISR_SMB)
atl1_inc_smb(adapter);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
if (netif_msg_intr(adapter))
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"pcie phy link down %x\n", status);
if (netif_running(adapter->netdev)) { /* reset MAC */
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
schedule_work(&adapter->pcie_dma_to_rst_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error ? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
if (netif_msg_intr(adapter))
dev_printk(KERN_DEBUG, &adapter->pdev->dev,
"pcie DMA r/w error (status = 0x%x)\n",
status);
iowrite32(0, adapter->hw.hw_addr + REG_IMR);
schedule_work(&adapter->pcie_dma_to_rst_task);
return IRQ_HANDLED;
}
/* link event */
if (status & ISR_GPHY) {
adapter->soft_stats.tx_carrier_errors++;
atl1_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_CMB_TX)
atl1_intr_tx(adapter);
/* rx exception */
if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
ISR_HOST_RRD_OV | ISR_CMB_RX))) {
if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
ISR_HOST_RRD_OV))
if (netif_msg_intr(adapter))
dev_printk(KERN_DEBUG,
&adapter->pdev->dev,
"rx exception, ISR = 0x%x\n",
status);
atl1_intr_rx(adapter);
}
if (--max_ints < 0)
break;
} while ((status = adapter->cmb.cmb->int_stats));
/* re-enable Interrupt */
iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
return IRQ_HANDLED;
}
/*
* atl1_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl1_phy_config(unsigned long data)
{
struct atl1_adapter *adapter = (struct atl1_adapter *)data;
struct atl1_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->lock, flags);
adapter->phy_timer_pending = false;
atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
spin_unlock_irqrestore(&adapter->lock, flags);
}
/*
* Orphaned vendor comment left intact here:
* <vendor comment>
* If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
* will assert. We do soft reset <0x1400=1> according
* with the SPEC. BUT, it seemes that PCIE or DMA
* state-machine will not be reset. DMAR_TO_INT will
* assert again and again.
* </vendor comment>
*/
static int atl1_reset(struct atl1_adapter *adapter)
{
int ret;
ret = atl1_reset_hw(&adapter->hw);
if (ret)
return ret;
return atl1_init_hw(&adapter->hw);
}
static s32 atl1_up(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
int irq_flags = IRQF_SAMPLE_RANDOM;
/* hardware has been reset, we need to reload some things */
atlx_set_multi(netdev);
atl1_init_ring_ptrs(adapter);
atlx_restore_vlan(adapter);
err = atl1_alloc_rx_buffers(adapter);
if (unlikely(!err))
/* no RX BUFFER allocated */
return -ENOMEM;
if (unlikely(atl1_configure(adapter))) {
err = -EIO;
goto err_up;
}
err = pci_enable_msi(adapter->pdev);
if (err) {
if (netif_msg_ifup(adapter))
dev_info(&adapter->pdev->dev,
"Unable to enable MSI: %d\n", err);
irq_flags |= IRQF_SHARED;
}
err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
netdev->name, netdev);
if (unlikely(err))
goto err_up;
atlx_irq_enable(adapter);
atl1_check_link(adapter);
netif_start_queue(netdev);
return 0;
err_up:
pci_disable_msi(adapter->pdev);
/* free rx_buffers */
atl1_clean_rx_ring(adapter);
return err;
}
static void atl1_down(struct atl1_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
netif_stop_queue(netdev);
del_timer_sync(&adapter->phy_config_timer);
adapter->phy_timer_pending = false;
atlx_irq_disable(adapter);
free_irq(adapter->pdev->irq, netdev);
pci_disable_msi(adapter->pdev);
atl1_reset_hw(&adapter->hw);
adapter->cmb.cmb->int_stats = 0;
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
netif_carrier_off(netdev);
atl1_clean_tx_ring(adapter);
atl1_clean_rx_ring(adapter);
}
static void atl1_tx_timeout_task(struct work_struct *work)
{
struct atl1_adapter *adapter =
container_of(work, struct atl1_adapter, tx_timeout_task);
struct net_device *netdev = adapter->netdev;
netif_device_detach(netdev);
atl1_down(adapter);
atl1_up(adapter);
netif_device_attach(netdev);
}
/*
* atl1_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int old_mtu = netdev->mtu;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
if (netif_msg_link(adapter))
dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
return -EINVAL;
}
adapter->hw.max_frame_size = max_frame;
adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
adapter->rx_buffer_len = (max_frame + 7) & ~7;
adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
netdev->mtu = new_mtu;
if ((old_mtu != new_mtu) && netif_running(netdev)) {
atl1_down(adapter);
atl1_up(adapter);
}
return 0;
}
/*
* atl1_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl1_open(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int err;
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = atl1_setup_ring_resources(adapter);
if (err)
return err;
err = atl1_up(adapter);
if (err)
goto err_up;
return 0;
err_up:
atl1_reset(adapter);
return err;
}
/*
* atl1_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl1_close(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
atl1_down(adapter);
atl1_free_ring_resources(adapter);
return 0;
}
#ifdef CONFIG_PM
static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
u32 ctrl = 0;
u32 wufc = adapter->wol;
u32 val;
int retval;
u16 speed;
u16 duplex;
netif_device_detach(netdev);
if (netif_running(netdev))
atl1_down(adapter);
retval = pci_save_state(pdev);
if (retval)
return retval;
atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
val = ctrl & BMSR_LSTATUS;
if (val)
wufc &= ~ATLX_WUFC_LNKC;
if (val && wufc) {
val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
if (val) {
if (netif_msg_ifdown(adapter))
dev_printk(KERN_DEBUG, &pdev->dev,
"error getting speed/duplex\n");
goto disable_wol;
}
ctrl = 0;
/* enable magic packet WOL */
if (wufc & ATLX_WUFC_MAG)
ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
ioread32(hw->hw_addr + REG_WOL_CTRL);
/* configure the mac */
ctrl = MAC_CTRL_RX_EN;
ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
if (duplex == FULL_DUPLEX)
ctrl |= MAC_CTRL_DUPLX;
ctrl |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
if (adapter->vlgrp)
ctrl |= MAC_CTRL_RMV_VLAN;
if (wufc & ATLX_WUFC_MAG)
ctrl |= MAC_CTRL_BC_EN;
iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
ioread32(hw->hw_addr + REG_MAC_CTRL);
/* poke the PHY */
ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto exit;
}
if (!val && wufc) {
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
ioread32(hw->hw_addr + REG_WOL_CTRL);
iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
ioread32(hw->hw_addr + REG_MAC_CTRL);
hw->phy_configured = false;
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto exit;
}
disable_wol:
iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
ioread32(hw->hw_addr + REG_WOL_CTRL);
ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
hw->phy_configured = false;
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
exit:
if (netif_running(netdev))
pci_disable_msi(adapter->pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int atl1_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
if (netif_msg_ifup(adapter))
dev_printk(KERN_DEBUG, &pdev->dev,
"error enabling pci device\n");
return err;
}
pci_set_master(pdev);
iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
atl1_reset_hw(&adapter->hw);
adapter->cmb.cmb->int_stats = 0;
if (netif_running(netdev))
atl1_up(adapter);
netif_device_attach(netdev);
return 0;
}
#else
#define atl1_suspend NULL
#define atl1_resume NULL
#endif
static void atl1_shutdown(struct pci_dev *pdev)
{
#ifdef CONFIG_PM
atl1_suspend(pdev, PMSG_SUSPEND);
#endif
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void atl1_poll_controller(struct net_device *netdev)
{
disable_irq(netdev->irq);
atl1_intr(netdev->irq, netdev);
enable_irq(netdev->irq);
}
#endif
static const struct net_device_ops atl1_netdev_ops = {
.ndo_open = atl1_open,
.ndo_stop = atl1_close,
.ndo_start_xmit = atl1_xmit_frame,
.ndo_set_multicast_list = atlx_set_multi,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = atl1_set_mac,
.ndo_change_mtu = atl1_change_mtu,
.ndo_do_ioctl = atlx_ioctl,
.ndo_tx_timeout = atlx_tx_timeout,
.ndo_vlan_rx_register = atlx_vlan_rx_register,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = atl1_poll_controller,
#endif
};
/*
* atl1_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl1_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl1_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl1_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl1_adapter *adapter;
static int cards_found = 0;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
/*
* The atl1 chip can DMA to 64-bit addresses, but it uses a single
* shared register for the high 32 bits, so only a single, aligned,
* 4 GB physical address range can be used at a time.
*
* Supporting 64-bit DMA on this hardware is more trouble than it's
* worth. It is far easier to limit to 32-bit DMA than update
* various kernel subsystems to support the mechanics required by a
* fixed-high-32-bit system.
*/
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto err_dma;
}
/*
* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl1_driver_name
*/
err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
if (err)
goto err_request_regions;
/*
* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings
*/
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct atl1_adapter));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_pci_iomap;
}
/* get device revision number */
adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
(REG_MASTER_CTRL + 2));
if (netif_msg_probe(adapter))
dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
/* set default ring resource counts */
adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
adapter->mii.dev = netdev;
adapter->mii.mdio_read = mdio_read;
adapter->mii.mdio_write = mdio_write;
adapter->mii.phy_id_mask = 0x1f;
adapter->mii.reg_num_mask = 0x1f;
netdev->netdev_ops = &atl1_netdev_ops;
netdev->watchdog_timeo = 5 * HZ;
netdev->ethtool_ops = &atl1_ethtool_ops;
adapter->bd_number = cards_found;
/* setup the private structure */
err = atl1_sw_init(adapter);
if (err)
goto err_common;
netdev->features = NETIF_F_HW_CSUM;
netdev->features |= NETIF_F_SG;
netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
/*
* patch for some L1 of old version,
* the final version of L1 may not need these
* patches
*/
/* atl1_pcie_patch(adapter); */
/* really reset GPHY core */
iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
/*
* reset the controller to
* put the device in a known good starting state
*/
if (atl1_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_common;
}
/* copy the MAC address out of the EEPROM */
atl1_read_mac_addr(&adapter->hw);
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
err = -EIO;
goto err_common;
}
atl1_check_options(adapter);
/* pre-init the MAC, and setup link */
err = atl1_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_common;
}
atl1_pcie_patch(adapter);
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
setup_timer(&adapter->phy_config_timer, &atl1_phy_config,
(unsigned long)adapter);
adapter->phy_timer_pending = false;
INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
err = register_netdev(netdev);
if (err)
goto err_common;
cards_found++;
atl1_via_workaround(adapter);
return 0;
err_common:
pci_iounmap(pdev, adapter->hw.hw_addr);
err_pci_iomap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_dma:
err_request_regions:
pci_disable_device(pdev);
return err;
}
/*
* atl1_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl1_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
static void __devexit atl1_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1_adapter *adapter;
/* Device not available. Return. */
if (!netdev)
return;
adapter = netdev_priv(netdev);
/*
* Some atl1 boards lack persistent storage for their MAC, and get it
* from the BIOS during POST. If we've been messing with the MAC
* address, we need to save the permanent one.
*/
if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
ETH_ALEN);
atl1_set_mac_addr(&adapter->hw);
}
iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
unregister_netdev(netdev);
pci_iounmap(pdev, adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static struct pci_driver atl1_driver = {
.name = ATLX_DRIVER_NAME,
.id_table = atl1_pci_tbl,
.probe = atl1_probe,
.remove = __devexit_p(atl1_remove),
.suspend = atl1_suspend,
.resume = atl1_resume,
.shutdown = atl1_shutdown
};
/*
* atl1_exit_module - Driver Exit Cleanup Routine
*
* atl1_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl1_exit_module(void)
{
pci_unregister_driver(&atl1_driver);
}
/*
* atl1_init_module - Driver Registration Routine
*
* atl1_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl1_init_module(void)
{
return pci_register_driver(&atl1_driver);
}
module_init(atl1_init_module);
module_exit(atl1_exit_module);
struct atl1_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
#define ATL1_STAT(m) \
sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
static struct atl1_stats atl1_gstrings_stats[] = {
{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
{"multicast", ATL1_STAT(soft_stats.multicast)},
{"collisions", ATL1_STAT(soft_stats.collisions)},
{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
};
static void atl1_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
int i;
char *p;
for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
}
static int atl1_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(atl1_gstrings_stats);
default:
return -EOPNOTSUPP;
}
}
static int atl1_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL) {
ecmd->advertising |= ADVERTISED_Autoneg;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->advertising |=
(ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full);
} else
ecmd->advertising |= (ADVERTISED_1000baseT_Full);
}
ecmd->port = PORT_TP;
ecmd->phy_address = 0;
ecmd->transceiver = XCVR_INTERNAL;
if (netif_carrier_ok(adapter->netdev)) {
u16 link_speed, link_duplex;
atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
ecmd->speed = link_speed;
if (link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL)
ecmd->autoneg = AUTONEG_ENABLE;
else
ecmd->autoneg = AUTONEG_DISABLE;
return 0;
}
static int atl1_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
u16 phy_data;
int ret_val = 0;
u16 old_media_type = hw->media_type;
if (netif_running(adapter->netdev)) {
if (netif_msg_link(adapter))
dev_dbg(&adapter->pdev->dev,
"ethtool shutting down adapter\n");
atl1_down(adapter);
}
if (ecmd->autoneg == AUTONEG_ENABLE)
hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
else {
if (ecmd->speed == SPEED_1000) {
if (ecmd->duplex != DUPLEX_FULL) {
if (netif_msg_link(adapter))
dev_warn(&adapter->pdev->dev,
"1000M half is invalid\n");
ret_val = -EINVAL;
goto exit_sset;
}
hw->media_type = MEDIA_TYPE_1000M_FULL;
} else if (ecmd->speed == SPEED_100) {
if (ecmd->duplex == DUPLEX_FULL)
hw->media_type = MEDIA_TYPE_100M_FULL;
else
hw->media_type = MEDIA_TYPE_100M_HALF;
} else {
if (ecmd->duplex == DUPLEX_FULL)
hw->media_type = MEDIA_TYPE_10M_FULL;
else
hw->media_type = MEDIA_TYPE_10M_HALF;
}
}
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
ecmd->advertising =
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full |
ADVERTISED_Autoneg | ADVERTISED_TP;
break;
case MEDIA_TYPE_1000M_FULL:
ecmd->advertising =
ADVERTISED_1000baseT_Full |
ADVERTISED_Autoneg | ADVERTISED_TP;
break;
default:
ecmd->advertising = 0;
break;
}
if (atl1_phy_setup_autoneg_adv(hw)) {
ret_val = -EINVAL;
if (netif_msg_link(adapter))
dev_warn(&adapter->pdev->dev,
"invalid ethtool speed/duplex setting\n");
goto exit_sset;
}
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL)
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
else {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data =
MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
break;
default:
/* MEDIA_TYPE_10M_HALF: */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
break;
}
}
atl1_write_phy_reg(hw, MII_BMCR, phy_data);
exit_sset:
if (ret_val)
hw->media_type = old_media_type;
if (netif_running(adapter->netdev)) {
if (netif_msg_link(adapter))
dev_dbg(&adapter->pdev->dev,
"ethtool starting adapter\n");
atl1_up(adapter);
} else if (!ret_val) {
if (netif_msg_link(adapter))
dev_dbg(&adapter->pdev->dev,
"ethtool resetting adapter\n");
atl1_reset(adapter);
}
return ret_val;
}
static void atl1_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
sizeof(drvinfo->version));
strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
drvinfo->eedump_len = ATL1_EEDUMP_LEN;
}
static void atl1_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
if (adapter->wol & ATLX_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
return;
}
static int atl1_set_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= ATLX_WUFC_MAG;
return 0;
}
static u32 atl1_get_msglevel(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void atl1_set_msglevel(struct net_device *netdev, u32 value)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = value;
}
static int atl1_get_regs_len(struct net_device *netdev)
{
return ATL1_REG_COUNT * sizeof(u32);
}
static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
void *p)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
unsigned int i;
u32 *regbuf = p;
for (i = 0; i < ATL1_REG_COUNT; i++) {
/*
* This switch statement avoids reserved regions
* of register space.
*/
switch (i) {
case 6 ... 9:
case 14:
case 29 ... 31:
case 34 ... 63:
case 75 ... 127:
case 136 ... 1023:
case 1027 ... 1087:
case 1091 ... 1151:
case 1194 ... 1195:
case 1200 ... 1201:
case 1206 ... 1213:
case 1216 ... 1279:
case 1290 ... 1311:
case 1323 ... 1343:
case 1358 ... 1359:
case 1368 ... 1375:
case 1378 ... 1383:
case 1388 ... 1391:
case 1393 ... 1395:
case 1402 ... 1403:
case 1410 ... 1471:
case 1522 ... 1535:
/* reserved region; don't read it */
regbuf[i] = 0;
break;
default:
/* unreserved region */
regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
}
}
}
static void atl1_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
ring->rx_max_pending = ATL1_MAX_RFD;
ring->tx_max_pending = ATL1_MAX_TPD;
ring->rx_mini_max_pending = 0;
ring->rx_jumbo_max_pending = 0;
ring->rx_pending = rxdr->count;
ring->tx_pending = txdr->count;
ring->rx_mini_pending = 0;
ring->rx_jumbo_pending = 0;
}
static int atl1_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
struct atl1_tpd_ring tpd_old, tpd_new;
struct atl1_rfd_ring rfd_old, rfd_new;
struct atl1_rrd_ring rrd_old, rrd_new;
struct atl1_ring_header rhdr_old, rhdr_new;
int err;
tpd_old = adapter->tpd_ring;
rfd_old = adapter->rfd_ring;
rrd_old = adapter->rrd_ring;
rhdr_old = adapter->ring_header;
if (netif_running(adapter->netdev))
atl1_down(adapter);
rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
rfdr->count;
rfdr->count = (rfdr->count + 3) & ~3;
rrdr->count = rfdr->count;
tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
tpdr->count;
tpdr->count = (tpdr->count + 3) & ~3;
if (netif_running(adapter->netdev)) {
/* try to get new resources before deleting old */
err = atl1_setup_ring_resources(adapter);
if (err)
goto err_setup_ring;
/*
* save the new, restore the old in order to free it,
* then restore the new back again
*/
rfd_new = adapter->rfd_ring;
rrd_new = adapter->rrd_ring;
tpd_new = adapter->tpd_ring;
rhdr_new = adapter->ring_header;
adapter->rfd_ring = rfd_old;
adapter->rrd_ring = rrd_old;
adapter->tpd_ring = tpd_old;
adapter->ring_header = rhdr_old;
atl1_free_ring_resources(adapter);
adapter->rfd_ring = rfd_new;
adapter->rrd_ring = rrd_new;
adapter->tpd_ring = tpd_new;
adapter->ring_header = rhdr_new;
err = atl1_up(adapter);
if (err)
return err;
}
return 0;
err_setup_ring:
adapter->rfd_ring = rfd_old;
adapter->rrd_ring = rrd_old;
adapter->tpd_ring = tpd_old;
adapter->ring_header = rhdr_old;
atl1_up(adapter);
return err;
}
static void atl1_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *epause)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL) {
epause->autoneg = AUTONEG_ENABLE;
} else {
epause->autoneg = AUTONEG_DISABLE;
}
epause->rx_pause = 1;
epause->tx_pause = 1;
}
static int atl1_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *epause)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL) {
epause->autoneg = AUTONEG_ENABLE;
} else {
epause->autoneg = AUTONEG_DISABLE;
}
epause->rx_pause = 1;
epause->tx_pause = 1;
return 0;
}
/* FIXME: is this right? -- CHS */
static u32 atl1_get_rx_csum(struct net_device *netdev)
{
return 1;
}
static void atl1_get_strings(struct net_device *netdev, u32 stringset,
u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
memcpy(p, atl1_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
}
}
static int atl1_nway_reset(struct net_device *netdev)
{
struct atl1_adapter *adapter = netdev_priv(netdev);
struct atl1_hw *hw = &adapter->hw;
if (netif_running(netdev)) {
u16 phy_data;
atl1_down(adapter);
if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
hw->media_type == MEDIA_TYPE_1000M_FULL) {
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
} else {
switch (hw->media_type) {
case MEDIA_TYPE_100M_FULL:
phy_data = MII_CR_FULL_DUPLEX |
MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_100M_HALF:
phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
break;
case MEDIA_TYPE_10M_FULL:
phy_data = MII_CR_FULL_DUPLEX |
MII_CR_SPEED_10 | MII_CR_RESET;
break;
default:
/* MEDIA_TYPE_10M_HALF */
phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
}
}
atl1_write_phy_reg(hw, MII_BMCR, phy_data);
atl1_up(adapter);
}
return 0;
}
const struct ethtool_ops atl1_ethtool_ops = {
.get_settings = atl1_get_settings,
.set_settings = atl1_set_settings,
.get_drvinfo = atl1_get_drvinfo,
.get_wol = atl1_get_wol,
.set_wol = atl1_set_wol,
.get_msglevel = atl1_get_msglevel,
.set_msglevel = atl1_set_msglevel,
.get_regs_len = atl1_get_regs_len,
.get_regs = atl1_get_regs,
.get_ringparam = atl1_get_ringparam,
.set_ringparam = atl1_set_ringparam,
.get_pauseparam = atl1_get_pauseparam,
.set_pauseparam = atl1_set_pauseparam,
.get_rx_csum = atl1_get_rx_csum,
.set_tx_csum = ethtool_op_set_tx_hw_csum,
.get_link = ethtool_op_get_link,
.set_sg = ethtool_op_set_sg,
.get_strings = atl1_get_strings,
.nway_reset = atl1_nway_reset,
.get_ethtool_stats = atl1_get_ethtool_stats,
.get_sset_count = atl1_get_sset_count,
.set_tso = ethtool_op_set_tso,
};