/*
* linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
*
* Copyright (c) 2005, Advanced Micro Devices, Inc.
*
* Developed with help from the 2.4.30 MMC AU1XXX controller including
* the following copyright notices:
* Copyright (c) 2003-2004 Embedded Edge, LLC.
* Portions Copyright (C) 2002 Embedix, Inc
* Copyright 2002 Hewlett-Packard Company
* 2.6 version of this driver inspired by:
* (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
* All Rights Reserved.
* (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Why is a timer used to detect insert events?
*
* From the AU1100 MMC application guide:
* If the Au1100-based design is intended to support both MultiMediaCards
* and 1- or 4-data bit SecureDigital cards, then the solution is to
* connect a weak (560KOhm) pull-up resistor to connector pin 1.
* In doing so, a MMC card never enters SPI-mode communications,
* but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
* (the low to high transition will not occur).
*
* So we use the timer to check the status manually.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include <asm/io.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#include <asm/scatterlist.h>
#include <au1xxx.h>
#include "au1xmmc.h"
#define DRIVER_NAME "au1xxx-mmc"
/* Set this to enable special debugging macros */
#ifdef DEBUG
#define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
#else
#define DBG(fmt, idx, args...)
#endif
const struct {
u32 iobase;
u32 tx_devid, rx_devid;
u16 bcsrpwr;
u16 bcsrstatus;
u16 wpstatus;
} au1xmmc_card_table[] = {
{ SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
#ifndef CONFIG_MIPS_DB1200
{ SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
#endif
};
#define AU1XMMC_CONTROLLER_COUNT \
(sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
/* This array stores pointers for the hosts (used by the IRQ handler) */
struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
static int dma = 1;
#ifdef MODULE
module_param(dma, bool, 0);
MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
#endif
static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
{
u32 val = au_readl(HOST_CONFIG(host));
val |= mask;
au_writel(val, HOST_CONFIG(host));
au_sync();
}
static inline void FLUSH_FIFO(struct au1xmmc_host *host)
{
u32 val = au_readl(HOST_CONFIG2(host));
au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
au_sync_delay(1);
/* SEND_STOP will turn off clock control - this re-enables it */
val &= ~SD_CONFIG2_DF;
au_writel(val, HOST_CONFIG2(host));
au_sync();
}
static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
{
u32 val = au_readl(HOST_CONFIG(host));
val &= ~mask;
au_writel(val, HOST_CONFIG(host));
au_sync();
}
static inline void SEND_STOP(struct au1xmmc_host *host)
{
/* We know the value of CONFIG2, so avoid a read we don't need */
u32 mask = SD_CONFIG2_EN;
WARN_ON(host->status != HOST_S_DATA);
host->status = HOST_S_STOP;
au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
au_sync();
/* Send the stop commmand */
au_writel(STOP_CMD, HOST_CMD(host));
}
static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
{
u32 val = au1xmmc_card_table[host->id].bcsrpwr;
bcsr->board &= ~val;
if (state) bcsr->board |= val;
au_sync_delay(1);
}
static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
{
return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
? 1 : 0;
}
static inline int au1xmmc_card_readonly(struct au1xmmc_host *host)
{
return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
? 1 : 0;
}
static void au1xmmc_finish_request(struct au1xmmc_host *host)
{
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
host->flags &= HOST_F_ACTIVE;
host->dma.len = 0;
host->dma.dir = 0;
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = 0;
host->status = HOST_S_IDLE;
bcsr->disk_leds |= (1 << 8);
mmc_request_done(host->mmc, mrq);
}
static void au1xmmc_tasklet_finish(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) param;
au1xmmc_finish_request(host);
}
static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
struct mmc_command *cmd)
{
u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
switch (mmc_resp_type(cmd)) {
case MMC_RSP_R1:
mmccmd |= SD_CMD_RT_1;
break;
case MMC_RSP_R1B:
mmccmd |= SD_CMD_RT_1B;
break;
case MMC_RSP_R2:
mmccmd |= SD_CMD_RT_2;
break;
case MMC_RSP_R3:
mmccmd |= SD_CMD_RT_3;
break;
}
switch(cmd->opcode) {
case MMC_READ_SINGLE_BLOCK:
case SD_APP_SEND_SCR:
mmccmd |= SD_CMD_CT_2;
break;
case MMC_READ_MULTIPLE_BLOCK:
mmccmd |= SD_CMD_CT_4;
break;
case MMC_WRITE_BLOCK:
mmccmd |= SD_CMD_CT_1;
break;
case MMC_WRITE_MULTIPLE_BLOCK:
mmccmd |= SD_CMD_CT_3;
break;
case MMC_STOP_TRANSMISSION:
mmccmd |= SD_CMD_CT_7;
break;
}
au_writel(cmd->arg, HOST_CMDARG(host));
au_sync();
if (wait)
IRQ_OFF(host, SD_CONFIG_CR);
au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
au_sync();
/* Wait for the command to go on the line */
while(1) {
if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
break;
}
/* Wait for the command to come back */
if (wait) {
u32 status = au_readl(HOST_STATUS(host));
while(!(status & SD_STATUS_CR))
status = au_readl(HOST_STATUS(host));
/* Clear the CR status */
au_writel(SD_STATUS_CR, HOST_STATUS(host));
IRQ_ON(host, SD_CONFIG_CR);
}
return MMC_ERR_NONE;
}
static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data;
u32 crc;
WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
if (host->mrq == NULL)
return;
data = mrq->cmd->data;
if (status == 0)
status = au_readl(HOST_STATUS(host));
/* The transaction is really over when the SD_STATUS_DB bit is clear */
while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
status = au_readl(HOST_STATUS(host));
data->error = MMC_ERR_NONE;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
/* Process any errors */
crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
if (host->flags & HOST_F_XMIT)
crc |= ((status & 0x07) == 0x02) ? 0 : 1;
if (crc)
data->error = MMC_ERR_BADCRC;
/* Clear the CRC bits */
au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
data->bytes_xfered = 0;
if (data->error == MMC_ERR_NONE) {
if (host->flags & HOST_F_DMA) {
u32 chan = DMA_CHANNEL(host);
chan_tab_t *c = *((chan_tab_t **) chan);
au1x_dma_chan_t *cp = c->chan_ptr;
data->bytes_xfered = cp->ddma_bytecnt;
}
else
data->bytes_xfered =
(data->blocks * data->blksz) -
host->pio.len;
}
au1xmmc_finish_request(host);
}
static void au1xmmc_tasklet_data(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) param;
u32 status = au_readl(HOST_STATUS(host));
au1xmmc_data_complete(host, status);
}
#define AU1XMMC_MAX_TRANSFER 8
static void au1xmmc_send_pio(struct au1xmmc_host *host)
{
struct mmc_data *data = 0;
int sg_len, max, count = 0;
unsigned char *sg_ptr;
u32 status = 0;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_XMIT))
return;
/* This is the pointer to the data buffer */
sg = &data->sg[host->pio.index];
sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = data->sg[host->pio.index].length - host->pio.offset;
/* Check to if we need less then the size of the sg_buffer */
max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
for(count = 0; count < max; count++ ) {
unsigned char val;
status = au_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_TH))
break;
val = *sg_ptr++;
au_writel((unsigned long) val, HOST_TXPORT(host));
au_sync();
}
host->pio.len -= count;
host->pio.offset += count;
if (count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
IRQ_OFF(host, SD_CONFIG_TH);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
static void au1xmmc_receive_pio(struct au1xmmc_host *host)
{
struct mmc_data *data = 0;
int sg_len = 0, max = 0, count = 0;
unsigned char *sg_ptr = 0;
u32 status = 0;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_RECV))
return;
max = host->pio.len;
if (host->pio.index < host->dma.len) {
sg = &data->sg[host->pio.index];
sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
/* Check to if we need less then the size of the sg_buffer */
if (sg_len < max) max = sg_len;
}
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for(count = 0; count < max; count++ ) {
u32 val;
status = au_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_NE))
break;
if (status & SD_STATUS_RC) {
DBG("RX CRC Error [%d + %d].\n", host->id,
host->pio.len, count);
break;
}
if (status & SD_STATUS_RO) {
DBG("RX Overrun [%d + %d]\n", host->id,
host->pio.len, count);
break;
}
else if (status & SD_STATUS_RU) {
DBG("RX Underrun [%d + %d]\n", host->id,
host->pio.len, count);
break;
}
val = au_readl(HOST_RXPORT(host));
if (sg_ptr)
*sg_ptr++ = (unsigned char) (val & 0xFF);
}
host->pio.len -= count;
host->pio.offset += count;
if (sg_len && count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
//IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
IRQ_OFF(host, SD_CONFIG_NE);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
/* static void au1xmmc_cmd_complete
This is called when a command has been completed - grab the response
and check for errors. Then start the data transfer if it is indicated.
*/
static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd;
int trans;
if (!host->mrq)
return;
cmd = mrq->cmd;
cmd->error = MMC_ERR_NONE;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
u32 r[4];
int i;
r[0] = au_readl(host->iobase + SD_RESP3);
r[1] = au_readl(host->iobase + SD_RESP2);
r[2] = au_readl(host->iobase + SD_RESP1);
r[3] = au_readl(host->iobase + SD_RESP0);
/* The CRC is omitted from the response, so really
* we only got 120 bytes, but the engine expects
* 128 bits, so we have to shift things up
*/
for(i = 0; i < 4; i++) {
cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
if (i != 3)
cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
}
} else {
/* Techincally, we should be getting all 48 bits of
* the response (SD_RESP1 + SD_RESP2), but because
* our response omits the CRC, our data ends up
* being shifted 8 bits to the right. In this case,
* that means that the OSR data starts at bit 31,
* so we can just read RESP0 and return that
*/
cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
}
}
/* Figure out errors */
if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
cmd->error = MMC_ERR_BADCRC;
trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
if (!trans || cmd->error != MMC_ERR_NONE) {
IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
return;
}
host->status = HOST_S_DATA;
if (host->flags & HOST_F_DMA) {
u32 channel = DMA_CHANNEL(host);
/* Start the DMA as soon as the buffer gets something in it */
if (host->flags & HOST_F_RECV) {
u32 mask = SD_STATUS_DB | SD_STATUS_NE;
while((status & mask) != mask)
status = au_readl(HOST_STATUS(host));
}
au1xxx_dbdma_start(channel);
}
}
static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
{
unsigned int pbus = get_au1x00_speed();
unsigned int divisor;
u32 config;
/* From databook:
divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
*/
pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
pbus /= 2;
divisor = ((pbus / rate) / 2) - 1;
config = au_readl(HOST_CONFIG(host));
config &= ~(SD_CONFIG_DIV);
config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
au_writel(config, HOST_CONFIG(host));
au_sync();
}
static int
au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
{
int datalen = data->blocks * data->blksz;
if (dma != 0)
host->flags |= HOST_F_DMA;
if (data->flags & MMC_DATA_READ)
host->flags |= HOST_F_RECV;
else
host->flags |= HOST_F_XMIT;
if (host->mrq->stop)
host->flags |= HOST_F_STOP;
host->dma.dir = DMA_BIDIRECTIONAL;
host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma.dir);
if (host->dma.len == 0)
return MMC_ERR_TIMEOUT;
au_writel(data->blksz - 1, HOST_BLKSIZE(host));
if (host->flags & HOST_F_DMA) {
int i;
u32 channel = DMA_CHANNEL(host);
au1xxx_dbdma_stop(channel);
for(i = 0; i < host->dma.len; i++) {
u32 ret = 0, flags = DDMA_FLAGS_NOIE;
struct scatterlist *sg = &data->sg[i];
int sg_len = sg->length;
int len = (datalen > sg_len) ? sg_len : datalen;
if (i == host->dma.len - 1)
flags = DDMA_FLAGS_IE;
if (host->flags & HOST_F_XMIT){
ret = au1xxx_dbdma_put_source_flags(channel,
(void *) (page_address(sg->page) +
sg->offset),
len, flags);
}
else {
ret = au1xxx_dbdma_put_dest_flags(channel,
(void *) (page_address(sg->page) +
sg->offset),
len, flags);
}
if (!ret)
goto dataerr;
datalen -= len;
}
}
else {
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = datalen;
if (host->flags & HOST_F_XMIT)
IRQ_ON(host, SD_CONFIG_TH);
else
IRQ_ON(host, SD_CONFIG_NE);
//IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
}
return MMC_ERR_NONE;
dataerr:
dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
return MMC_ERR_TIMEOUT;
}
/* static void au1xmmc_request
This actually starts a command or data transaction
*/
static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
{
struct au1xmmc_host *host = mmc_priv(mmc);
int ret = MMC_ERR_NONE;
WARN_ON(irqs_disabled());
WARN_ON(host->status != HOST_S_IDLE);
host->mrq = mrq;
host->status = HOST_S_CMD;
bcsr->disk_leds &= ~(1 << 8);
if (mrq->data) {
FLUSH_FIFO(host);
ret = au1xmmc_prepare_data(host, mrq->data);
}
if (ret == MMC_ERR_NONE)
ret = au1xmmc_send_command(host, 0, mrq->cmd);
if (ret != MMC_ERR_NONE) {
mrq->cmd->error = ret;
au1xmmc_finish_request(host);
}
}
static void au1xmmc_reset_controller(struct au1xmmc_host *host)
{
/* Apply the clock */
au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
au_sync_delay(1);
au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
au_sync_delay(5);
au_writel(~0, HOST_STATUS(host));
au_sync();
au_writel(0, HOST_BLKSIZE(host));
au_writel(0x001fffff, HOST_TIMEOUT(host));
au_sync();
au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
au_sync();
au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
au_sync_delay(1);
au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
au_sync();
/* Configure interrupts */
au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
au_sync();
}
static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (ios->power_mode == MMC_POWER_OFF)
au1xmmc_set_power(host, 0);
else if (ios->power_mode == MMC_POWER_ON) {
au1xmmc_set_power(host, 1);
}
if (ios->clock && ios->clock != host->clock) {
au1xmmc_set_clock(host, ios->clock);
host->clock = ios->clock;
}
}
static void au1xmmc_dma_callback(int irq, void *dev_id, struct pt_regs *regs)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
/* Avoid spurious interrupts */
if (!host->mrq)
return;
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
#define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
#define STATUS_DATA_IN (SD_STATUS_NE)
#define STATUS_DATA_OUT (SD_STATUS_TH)
static irqreturn_t au1xmmc_irq(int irq, void *dev_id, struct pt_regs *regs)
{
u32 status;
int i, ret = 0;
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct au1xmmc_host * host = au1xmmc_hosts[i];
u32 handled = 1;
status = au_readl(HOST_STATUS(host));
if (host->mrq && (status & STATUS_TIMEOUT)) {
if (status & SD_STATUS_RAT)
host->mrq->cmd->error = MMC_ERR_TIMEOUT;
else if (status & SD_STATUS_DT)
host->mrq->data->error = MMC_ERR_TIMEOUT;
/* In PIO mode, interrupts might still be enabled */
IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
//IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
}
#if 0
else if (status & SD_STATUS_DD) {
/* Sometimes we get a DD before a NE in PIO mode */
if (!(host->flags & HOST_F_DMA) &&
(status & SD_STATUS_NE))
au1xmmc_receive_pio(host);
else {
au1xmmc_data_complete(host, status);
//tasklet_schedule(&host->data_task);
}
}
#endif
else if (status & (SD_STATUS_CR)) {
if (host->status == HOST_S_CMD)
au1xmmc_cmd_complete(host,status);
}
else if (!(host->flags & HOST_F_DMA)) {
if ((host->flags & HOST_F_XMIT) &&
(status & STATUS_DATA_OUT))
au1xmmc_send_pio(host);
else if ((host->flags & HOST_F_RECV) &&
(status & STATUS_DATA_IN))
au1xmmc_receive_pio(host);
}
else if (status & 0x203FBC70) {
DBG("Unhandled status %8.8x\n", host->id, status);
handled = 0;
}
au_writel(status, HOST_STATUS(host));
au_sync();
ret |= handled;
}
enable_irq(AU1100_SD_IRQ);
return ret;
}
static void au1xmmc_poll_event(unsigned long arg)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
int card = au1xmmc_card_inserted(host);
int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
if (card != controller) {
host->flags &= ~HOST_F_ACTIVE;
if (card) host->flags |= HOST_F_ACTIVE;
mmc_detect_change(host->mmc, 0);
}
if (host->mrq != NULL) {
u32 status = au_readl(HOST_STATUS(host));
DBG("PENDING - %8.8x\n", host->id, status);
}
mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
}
static dbdev_tab_t au1xmmc_mem_dbdev =
{
DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
};
static void au1xmmc_init_dma(struct au1xmmc_host *host)
{
u32 rxchan, txchan;
int txid = au1xmmc_card_table[host->id].tx_devid;
int rxid = au1xmmc_card_table[host->id].rx_devid;
/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
of 8 bits. And since devices are shared, we need to create
our own to avoid freaking out other devices
*/
int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
txchan = au1xxx_dbdma_chan_alloc(memid, txid,
au1xmmc_dma_callback, (void *) host);
rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
au1xmmc_dma_callback, (void *) host);
au1xxx_dbdma_set_devwidth(txchan, 8);
au1xxx_dbdma_set_devwidth(rxchan, 8);
au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
host->tx_chan = txchan;
host->rx_chan = rxchan;
}
struct mmc_host_ops au1xmmc_ops = {
.request = au1xmmc_request,
.set_ios = au1xmmc_set_ios,
};
static int __devinit au1xmmc_probe(struct platform_device *pdev)
{
int i, ret = 0;
/* THe interrupt is shared among all controllers */
ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, SA_INTERRUPT, "MMC", 0);
if (ret) {
printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
AU1100_SD_IRQ, ret);
return -ENXIO;
}
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
struct au1xmmc_host *host = 0;
if (!mmc) {
printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
au1xmmc_hosts[i] = 0;
continue;
}
mmc->ops = &au1xmmc_ops;
mmc->f_min = 450000;
mmc->f_max = 24000000;
mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
mmc->ocr_avail = AU1XMMC_OCR;
host = mmc_priv(mmc);
host->mmc = mmc;
host->id = i;
host->iobase = au1xmmc_card_table[host->id].iobase;
host->clock = 0;
host->power_mode = MMC_POWER_OFF;
host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
host->status = HOST_S_IDLE;
init_timer(&host->timer);
host->timer.function = au1xmmc_poll_event;
host->timer.data = (unsigned long) host;
host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
tasklet_init(&host->data_task, au1xmmc_tasklet_data,
(unsigned long) host);
tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
(unsigned long) host);
spin_lock_init(&host->lock);
if (dma != 0)
au1xmmc_init_dma(host);
au1xmmc_reset_controller(host);
mmc_add_host(mmc);
au1xmmc_hosts[i] = host;
add_timer(&host->timer);
printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
host->id, host->iobase, dma ? "dma" : "pio");
}
enable_irq(AU1100_SD_IRQ);
return 0;
}
static int __devexit au1xmmc_remove(struct platform_device *pdev)
{
int i;
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct au1xmmc_host *host = au1xmmc_hosts[i];
if (!host) continue;
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
del_timer_sync(&host->timer);
au1xmmc_set_power(host, 0);
mmc_remove_host(host->mmc);
au1xxx_dbdma_chan_free(host->tx_chan);
au1xxx_dbdma_chan_free(host->rx_chan);
au_writel(0x0, HOST_ENABLE(host));
au_sync();
}
free_irq(AU1100_SD_IRQ, 0);
return 0;
}
static struct platform_driver au1xmmc_driver = {
.probe = au1xmmc_probe,
.remove = au1xmmc_remove,
.suspend = NULL,
.resume = NULL,
.driver = {
.name = DRIVER_NAME,
},
};
static int __init au1xmmc_init(void)
{
return platform_driver_register(&au1xmmc_driver);
}
static void __exit au1xmmc_exit(void)
{
platform_driver_unregister(&au1xmmc_driver);
}
module_init(au1xmmc_init);
module_exit(au1xmmc_exit);
#ifdef MODULE
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
MODULE_LICENSE("GPL");
#endif