/*
tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner
Copyright (C) 2007, 2008 Michael Krufky <mkrufky@linuxtv.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/delay.h>
#include <linux/videodev2.h>
#include "tda18271-priv.h"
int tda18271_debug;
module_param_named(debug, tda18271_debug, int, 0644);
MODULE_PARM_DESC(debug, "set debug level "
"(info=1, map=2, reg=4, adv=8, cal=16 (or-able))");
static int tda18271_cal_on_startup;
module_param_named(cal, tda18271_cal_on_startup, int, 0644);
MODULE_PARM_DESC(cal, "perform RF tracking filter calibration on startup");
static LIST_HEAD(tda18271_list);
static DEFINE_MUTEX(tda18271_list_mutex);
/*---------------------------------------------------------------------*/
static int tda18271_ir_cal_init(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
tda18271_read_regs(fe);
/* test IR_CAL_OK to see if we need init */
if ((regs[R_EP1] & 0x08) == 0)
tda18271_init_regs(fe);
return 0;
}
/* ------------------------------------------------------------------ */
static int tda18271_channel_configuration(struct dvb_frontend *fe,
u32 ifc, u32 freq, u32 bw, u8 std,
int radio)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u32 N;
/* update TV broadcast parameters */
/* set standard */
regs[R_EP3] &= ~0x1f; /* clear std bits */
regs[R_EP3] |= std;
/* set cal mode to normal */
regs[R_EP4] &= ~0x03;
/* update IF output level & IF notch frequency */
regs[R_EP4] &= ~0x1c; /* clear if level bits */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_MPD] &= ~0x80; /* IF notch = 0 */
break;
case TDA18271_DIGITAL:
regs[R_EP4] |= 0x04; /* IF level = 1 */
regs[R_MPD] |= 0x80; /* IF notch = 1 */
break;
}
if (radio)
regs[R_EP4] |= 0x80;
else
regs[R_EP4] &= ~0x80;
/* update RF_TOP / IF_TOP */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_EB22] = 0x2c;
break;
case TDA18271_DIGITAL:
regs[R_EB22] = 0x37;
break;
}
tda18271_write_regs(fe, R_EB22, 1);
/* --------------------------------------------------------------- */
/* disable Power Level Indicator */
regs[R_EP1] |= 0x40;
/* frequency dependent parameters */
tda18271_calc_ir_measure(fe, &freq);
tda18271_calc_bp_filter(fe, &freq);
tda18271_calc_rf_band(fe, &freq);
tda18271_calc_gain_taper(fe, &freq);
/* --------------------------------------------------------------- */
/* dual tuner and agc1 extra configuration */
/* main vco when Master, cal vco when slave */
regs[R_EB1] |= 0x04; /* FIXME: assumes master */
/* agc1 always active */
regs[R_EB1] &= ~0x02;
/* agc1 has priority on agc2 */
regs[R_EB1] &= ~0x01;
tda18271_write_regs(fe, R_EB1, 1);
/* --------------------------------------------------------------- */
N = freq + ifc;
/* FIXME: assumes master */
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_MPD, 4);
tda18271_write_regs(fe, R_TM, 7);
/* main pll charge pump source */
regs[R_EB4] |= 0x20;
tda18271_write_regs(fe, R_EB4, 1);
msleep(1);
/* normal operation for the main pll */
regs[R_EB4] &= ~0x20;
tda18271_write_regs(fe, R_EB4, 1);
msleep(5);
return 0;
}
static int tda18271_read_thermometer(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
int tm;
/* switch thermometer on */
regs[R_TM] |= 0x10;
tda18271_write_regs(fe, R_TM, 1);
/* read thermometer info */
tda18271_read_regs(fe);
if ((((regs[R_TM] & 0x0f) == 0x00) && ((regs[R_TM] & 0x20) == 0x20)) ||
(((regs[R_TM] & 0x0f) == 0x08) && ((regs[R_TM] & 0x20) == 0x00))) {
if ((regs[R_TM] & 0x20) == 0x20)
regs[R_TM] &= ~0x20;
else
regs[R_TM] |= 0x20;
tda18271_write_regs(fe, R_TM, 1);
msleep(10); /* temperature sensing */
/* read thermometer info */
tda18271_read_regs(fe);
}
tm = tda18271_lookup_thermometer(fe);
/* switch thermometer off */
regs[R_TM] &= ~0x10;
tda18271_write_regs(fe, R_TM, 1);
/* set CAL mode to normal */
regs[R_EP4] &= ~0x03;
tda18271_write_regs(fe, R_EP4, 1);
return tm;
}
static int tda18271_rf_tracking_filters_correction(struct dvb_frontend *fe,
u32 freq)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state;
unsigned char *regs = priv->tda18271_regs;
int tm_current, rfcal_comp, approx, i;
u8 dc_over_dt, rf_tab;
/* power up */
tda18271_set_standby_mode(fe, 0, 0, 0);
/* read die current temperature */
tm_current = tda18271_read_thermometer(fe);
/* frequency dependent parameters */
tda18271_calc_rf_cal(fe, &freq);
rf_tab = regs[R_EB14];
i = tda18271_lookup_rf_band(fe, &freq, NULL);
if (i < 0)
return -EINVAL;
if ((0 == map[i].rf3) || (freq / 1000 < map[i].rf2)) {
approx = map[i].rf_a1 *
(freq / 1000 - map[i].rf1) + map[i].rf_b1 + rf_tab;
} else {
approx = map[i].rf_a2 *
(freq / 1000 - map[i].rf2) + map[i].rf_b2 + rf_tab;
}
if (approx < 0)
approx = 0;
if (approx > 255)
approx = 255;
tda18271_lookup_map(fe, RF_CAL_DC_OVER_DT, &freq, &dc_over_dt);
/* calculate temperature compensation */
rfcal_comp = dc_over_dt * (tm_current - priv->tm_rfcal);
regs[R_EB14] = approx + rfcal_comp;
tda18271_write_regs(fe, R_EB14, 1);
return 0;
}
static int tda18271_por(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
/* power up detector 1 */
regs[R_EB12] &= ~0x20;
tda18271_write_regs(fe, R_EB12, 1);
regs[R_EB18] &= ~0x80; /* turn agc1 loop on */
regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */
tda18271_write_regs(fe, R_EB18, 1);
regs[R_EB21] |= 0x03; /* set agc2_gain to -6 dB */
/* POR mode */
tda18271_set_standby_mode(fe, 1, 0, 0);
/* disable 1.5 MHz low pass filter */
regs[R_EB23] &= ~0x04; /* forcelp_fc2_en = 0 */
regs[R_EB23] &= ~0x02; /* XXX: lp_fc[2] = 0 */
tda18271_write_regs(fe, R_EB21, 3);
return 0;
}
static int tda18271_calibrate_rf(struct dvb_frontend *fe, u32 freq)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u32 N;
/* set CAL mode to normal */
regs[R_EP4] &= ~0x03;
tda18271_write_regs(fe, R_EP4, 1);
/* switch off agc1 */
regs[R_EP3] |= 0x40; /* sm_lt = 1 */
regs[R_EB18] |= 0x03; /* set agc1_gain to 15 dB */
tda18271_write_regs(fe, R_EB18, 1);
/* frequency dependent parameters */
tda18271_calc_bp_filter(fe, &freq);
tda18271_calc_gain_taper(fe, &freq);
tda18271_calc_rf_band(fe, &freq);
tda18271_calc_km(fe, &freq);
tda18271_write_regs(fe, R_EP1, 3);
tda18271_write_regs(fe, R_EB13, 1);
/* main pll charge pump source */
regs[R_EB4] |= 0x20;
tda18271_write_regs(fe, R_EB4, 1);
/* cal pll charge pump source */
regs[R_EB7] |= 0x20;
tda18271_write_regs(fe, R_EB7, 1);
/* force dcdc converter to 0 V */
regs[R_EB14] = 0x00;
tda18271_write_regs(fe, R_EB14, 1);
/* disable plls lock */
regs[R_EB20] &= ~0x20;
tda18271_write_regs(fe, R_EB20, 1);
/* set CAL mode to RF tracking filter calibration */
regs[R_EP4] |= 0x03;
tda18271_write_regs(fe, R_EP4, 2);
/* --------------------------------------------------------------- */
/* set the internal calibration signal */
N = freq;
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_MPD, 4);
/* downconvert internal calibration */
N += 1000000;
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_MPD, 4);
msleep(5);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
/* --------------------------------------------------------------- */
/* normal operation for the main pll */
regs[R_EB4] &= ~0x20;
tda18271_write_regs(fe, R_EB4, 1);
/* normal operation for the cal pll */
regs[R_EB7] &= ~0x20;
tda18271_write_regs(fe, R_EB7, 1);
msleep(5); /* plls locking */
/* launch the rf tracking filters calibration */
regs[R_EB20] |= 0x20;
tda18271_write_regs(fe, R_EB20, 1);
msleep(60); /* calibration */
/* --------------------------------------------------------------- */
/* set CAL mode to normal */
regs[R_EP4] &= ~0x03;
/* switch on agc1 */
regs[R_EP3] &= ~0x40; /* sm_lt = 0 */
regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */
tda18271_write_regs(fe, R_EB18, 1);
tda18271_write_regs(fe, R_EP3, 2);
/* synchronization */
tda18271_write_regs(fe, R_EP1, 1);
/* get calibration result */
tda18271_read_extended(fe);
return regs[R_EB14];
}
static int tda18271_powerscan(struct dvb_frontend *fe,
u32 *freq_in, u32 *freq_out)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
int sgn, bcal, count, wait;
u8 cid_target;
u16 count_limit;
u32 freq;
freq = *freq_in;
tda18271_calc_rf_band(fe, &freq);
tda18271_calc_rf_cal(fe, &freq);
tda18271_calc_gain_taper(fe, &freq);
tda18271_lookup_cid_target(fe, &freq, &cid_target, &count_limit);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EB14, 1);
/* downconvert frequency */
freq += 1000000;
tda18271_calc_main_pll(fe, freq);
tda18271_write_regs(fe, R_MPD, 4);
msleep(5); /* pll locking */
/* detection mode */
regs[R_EP4] &= ~0x03;
regs[R_EP4] |= 0x01;
tda18271_write_regs(fe, R_EP4, 1);
/* launch power detection measurement */
tda18271_write_regs(fe, R_EP2, 1);
/* read power detection info, stored in EB10 */
tda18271_read_extended(fe);
/* algorithm initialization */
sgn = 1;
*freq_out = *freq_in;
bcal = 0;
count = 0;
wait = false;
while ((regs[R_EB10] & 0x3f) < cid_target) {
/* downconvert updated freq to 1 MHz */
freq = *freq_in + (sgn * count) + 1000000;
tda18271_calc_main_pll(fe, freq);
tda18271_write_regs(fe, R_MPD, 4);
if (wait) {
msleep(5); /* pll locking */
wait = false;
} else
udelay(100); /* pll locking */
/* launch power detection measurement */
tda18271_write_regs(fe, R_EP2, 1);
/* read power detection info, stored in EB10 */
tda18271_read_extended(fe);
count += 200;
if (count < count_limit)
continue;
if (sgn <= 0)
break;
sgn = -1 * sgn;
count = 200;
wait = true;
}
if ((regs[R_EB10] & 0x3f) >= cid_target) {
bcal = 1;
*freq_out = freq - 1000000;
} else
bcal = 0;
tda_cal("bcal = %d, freq_in = %d, freq_out = %d (freq = %d)\n",
bcal, *freq_in, *freq_out, freq);
return bcal;
}
static int tda18271_powerscan_init(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
/* set standard to digital */
regs[R_EP3] &= ~0x1f; /* clear std bits */
regs[R_EP3] |= 0x12;
/* set cal mode to normal */
regs[R_EP4] &= ~0x03;
/* update IF output level & IF notch frequency */
regs[R_EP4] &= ~0x1c; /* clear if level bits */
tda18271_write_regs(fe, R_EP3, 2);
regs[R_EB18] &= ~0x03; /* set agc1_gain to 6 dB */
tda18271_write_regs(fe, R_EB18, 1);
regs[R_EB21] &= ~0x03; /* set agc2_gain to -15 dB */
/* 1.5 MHz low pass filter */
regs[R_EB23] |= 0x04; /* forcelp_fc2_en = 1 */
regs[R_EB23] |= 0x02; /* lp_fc[2] = 1 */
tda18271_write_regs(fe, R_EB21, 3);
return 0;
}
static int tda18271_rf_tracking_filters_init(struct dvb_frontend *fe, u32 freq)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_rf_tracking_filter_cal *map = priv->rf_cal_state;
unsigned char *regs = priv->tda18271_regs;
int bcal, rf, i;
#define RF1 0
#define RF2 1
#define RF3 2
u32 rf_default[3];
u32 rf_freq[3];
u8 prog_cal[3];
u8 prog_tab[3];
i = tda18271_lookup_rf_band(fe, &freq, NULL);
if (i < 0)
return i;
rf_default[RF1] = 1000 * map[i].rf1_def;
rf_default[RF2] = 1000 * map[i].rf2_def;
rf_default[RF3] = 1000 * map[i].rf3_def;
for (rf = RF1; rf <= RF3; rf++) {
if (0 == rf_default[rf])
return 0;
tda_cal("freq = %d, rf = %d\n", freq, rf);
/* look for optimized calibration frequency */
bcal = tda18271_powerscan(fe, &rf_default[rf], &rf_freq[rf]);
tda18271_calc_rf_cal(fe, &rf_freq[rf]);
prog_tab[rf] = regs[R_EB14];
if (1 == bcal)
prog_cal[rf] = tda18271_calibrate_rf(fe, rf_freq[rf]);
else
prog_cal[rf] = prog_tab[rf];
switch (rf) {
case RF1:
map[i].rf_a1 = 0;
map[i].rf_b1 = prog_cal[RF1] - prog_tab[RF1];
map[i].rf1 = rf_freq[RF1] / 1000;
break;
case RF2:
map[i].rf_a1 = (prog_cal[RF2] - prog_tab[RF2] -
prog_cal[RF1] + prog_tab[RF1]) /
((rf_freq[RF2] - rf_freq[RF1]) / 1000);
map[i].rf2 = rf_freq[RF2] / 1000;
break;
case RF3:
map[i].rf_a2 = (prog_cal[RF3] - prog_tab[RF3] -
prog_cal[RF2] + prog_tab[RF2]) /
((rf_freq[RF3] - rf_freq[RF2]) / 1000);
map[i].rf_b2 = prog_cal[RF2] - prog_tab[RF2];
map[i].rf3 = rf_freq[RF3] / 1000;
break;
default:
BUG();
}
}
return 0;
}
static int tda18271_calc_rf_filter_curve(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned int i;
tda_info("tda18271: performing RF tracking filter calibration\n");
/* wait for die temperature stabilization */
msleep(200);
tda18271_powerscan_init(fe);
/* rf band calibration */
for (i = 0; priv->rf_cal_state[i].rfmax != 0; i++)
tda18271_rf_tracking_filters_init(fe, 1000 *
priv->rf_cal_state[i].rfmax);
priv->tm_rfcal = tda18271_read_thermometer(fe);
return 0;
}
/* ------------------------------------------------------------------ */
static int tda18271_rf_cal_init(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
/* test RF_CAL_OK to see if we need init */
if ((regs[R_EP1] & 0x10) == 0)
priv->cal_initialized = false;
if (priv->cal_initialized)
return 0;
tda18271_calc_rf_filter_curve(fe);
tda18271_por(fe);
tda_info("tda18271: RF tracking filter calibration complete\n");
priv->cal_initialized = true;
return 0;
}
static int tda18271_init(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
mutex_lock(&priv->lock);
/* power up */
tda18271_set_standby_mode(fe, 0, 0, 0);
/* initialization */
tda18271_ir_cal_init(fe);
if (priv->id == TDA18271HDC2)
tda18271_rf_cal_init(fe);
mutex_unlock(&priv->lock);
return 0;
}
static int tda18271c2_tune(struct dvb_frontend *fe,
u32 ifc, u32 freq, u32 bw, u8 std, int radio)
{
struct tda18271_priv *priv = fe->tuner_priv;
tda_dbg("freq = %d, ifc = %d\n", freq, ifc);
tda18271_init(fe);
mutex_lock(&priv->lock);
tda18271_rf_tracking_filters_correction(fe, freq);
tda18271_channel_configuration(fe, ifc, freq, bw, std, radio);
mutex_unlock(&priv->lock);
return 0;
}
/* ------------------------------------------------------------------ */
static int tda18271c1_tune(struct dvb_frontend *fe,
u32 ifc, u32 freq, u32 bw, u8 std, int radio)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u32 N = 0;
tda18271_init(fe);
mutex_lock(&priv->lock);
tda_dbg("freq = %d, ifc = %d\n", freq, ifc);
/* RF tracking filter calibration */
/* calculate bp filter */
tda18271_calc_bp_filter(fe, &freq);
tda18271_write_regs(fe, R_EP1, 1);
regs[R_EB4] &= 0x07;
regs[R_EB4] |= 0x60;
tda18271_write_regs(fe, R_EB4, 1);
regs[R_EB7] = 0x60;
tda18271_write_regs(fe, R_EB7, 1);
regs[R_EB14] = 0x00;
tda18271_write_regs(fe, R_EB14, 1);
regs[R_EB20] = 0xcc;
tda18271_write_regs(fe, R_EB20, 1);
/* set cal mode to RF tracking filter calibration */
regs[R_EP4] |= 0x03;
/* calculate cal pll */
switch (priv->mode) {
case TDA18271_ANALOG:
N = freq - 1250000;
break;
case TDA18271_DIGITAL:
N = freq + bw / 2;
break;
}
tda18271_calc_cal_pll(fe, N);
/* calculate main pll */
switch (priv->mode) {
case TDA18271_ANALOG:
N = freq - 250000;
break;
case TDA18271_DIGITAL:
N = freq + bw / 2 + 1000000;
break;
}
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_EP3, 11);
msleep(5); /* RF tracking filter calibration initialization */
/* search for K,M,CO for RF calibration */
tda18271_calc_km(fe, &freq);
tda18271_write_regs(fe, R_EB13, 1);
/* search for rf band */
tda18271_calc_rf_band(fe, &freq);
/* search for gain taper */
tda18271_calc_gain_taper(fe, &freq);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
regs[R_EB4] &= 0x07;
regs[R_EB4] |= 0x40;
tda18271_write_regs(fe, R_EB4, 1);
regs[R_EB7] = 0x40;
tda18271_write_regs(fe, R_EB7, 1);
msleep(10);
regs[R_EB20] = 0xec;
tda18271_write_regs(fe, R_EB20, 1);
msleep(60); /* RF tracking filter calibration completion */
regs[R_EP4] &= ~0x03; /* set cal mode to normal */
tda18271_write_regs(fe, R_EP4, 1);
tda18271_write_regs(fe, R_EP1, 1);
/* RF tracking filter correction for VHF_Low band */
if (0 == tda18271_calc_rf_cal(fe, &freq))
tda18271_write_regs(fe, R_EB14, 1);
/* Channel Configuration */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_EB22] = 0x2c;
break;
case TDA18271_DIGITAL:
regs[R_EB22] = 0x37;
break;
}
tda18271_write_regs(fe, R_EB22, 1);
regs[R_EP1] |= 0x40; /* set dis power level on */
/* set standard */
regs[R_EP3] &= ~0x1f; /* clear std bits */
/* see table 22 */
regs[R_EP3] |= std;
regs[R_EP4] &= ~0x03; /* set cal mode to normal */
regs[R_EP4] &= ~0x1c; /* clear if level bits */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_MPD] &= ~0x80; /* IF notch = 0 */
break;
case TDA18271_DIGITAL:
regs[R_EP4] |= 0x04;
regs[R_MPD] |= 0x80;
break;
}
if (radio)
regs[R_EP4] |= 0x80;
else
regs[R_EP4] &= ~0x80;
/* image rejection validity */
tda18271_calc_ir_measure(fe, &freq);
/* calculate MAIN PLL */
N = freq + ifc;
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_TM, 15);
msleep(5);
mutex_unlock(&priv->lock);
return 0;
}
static inline int tda18271_tune(struct dvb_frontend *fe,
u32 ifc, u32 freq, u32 bw, u8 std, int radio)
{
struct tda18271_priv *priv = fe->tuner_priv;
int ret = -EINVAL;
switch (priv->id) {
case TDA18271HDC1:
ret = tda18271c1_tune(fe, ifc, freq, bw, std, radio);
break;
case TDA18271HDC2:
ret = tda18271c2_tune(fe, ifc, freq, bw, std, radio);
break;
}
return ret;
}
/* ------------------------------------------------------------------ */
static int tda18271_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_std_map *std_map = &priv->std;
int ret;
u8 std;
u16 sgIF;
u32 bw, freq = params->frequency;
priv->mode = TDA18271_DIGITAL;
/* see table 22 */
if (fe->ops.info.type == FE_ATSC) {
switch (params->u.vsb.modulation) {
case VSB_8:
case VSB_16:
std = std_map->atsc_6.std_bits;
sgIF = std_map->atsc_6.if_freq;
break;
case QAM_64:
case QAM_256:
std = std_map->qam_6.std_bits;
sgIF = std_map->qam_6.if_freq;
break;
default:
tda_warn("modulation not set!\n");
return -EINVAL;
}
#if 0
/* userspace request is already center adjusted */
freq += 1750000; /* Adjust to center (+1.75MHZ) */
#endif
bw = 6000000;
} else if (fe->ops.info.type == FE_OFDM) {
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
bw = 6000000;
std = std_map->dvbt_6.std_bits;
sgIF = std_map->dvbt_6.if_freq;
break;
case BANDWIDTH_7_MHZ:
bw = 7000000;
std = std_map->dvbt_7.std_bits;
sgIF = std_map->dvbt_7.if_freq;
break;
case BANDWIDTH_8_MHZ:
bw = 8000000;
std = std_map->dvbt_8.std_bits;
sgIF = std_map->dvbt_8.if_freq;
break;
default:
tda_warn("bandwidth not set!\n");
return -EINVAL;
}
} else {
tda_warn("modulation type not supported!\n");
return -EINVAL;
}
ret = tda18271_tune(fe, sgIF * 1000, freq, bw, std, 0);
if (ret < 0)
goto fail;
priv->frequency = freq;
priv->bandwidth = (fe->ops.info.type == FE_OFDM) ?
params->u.ofdm.bandwidth : 0;
fail:
return ret;
}
static int tda18271_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_std_map *std_map = &priv->std;
char *mode;
int ret, radio = 0;
u8 std;
u16 sgIF;
u32 freq = params->frequency * 62500;
priv->mode = TDA18271_ANALOG;
if (params->mode == V4L2_TUNER_RADIO) {
radio = 1;
freq = freq / 1000;
std = std_map->fm_radio.std_bits;
sgIF = std_map->fm_radio.if_freq;
mode = "fm";
} else if (params->std & V4L2_STD_MN) {
std = std_map->atv_mn.std_bits;
sgIF = std_map->atv_mn.if_freq;
mode = "MN";
} else if (params->std & V4L2_STD_B) {
std = std_map->atv_b.std_bits;
sgIF = std_map->atv_b.if_freq;
mode = "B";
} else if (params->std & V4L2_STD_GH) {
std = std_map->atv_gh.std_bits;
sgIF = std_map->atv_gh.if_freq;
mode = "GH";
} else if (params->std & V4L2_STD_PAL_I) {
std = std_map->atv_i.std_bits;
sgIF = std_map->atv_i.if_freq;
mode = "I";
} else if (params->std & V4L2_STD_DK) {
std = std_map->atv_dk.std_bits;
sgIF = std_map->atv_dk.if_freq;
mode = "DK";
} else if (params->std & V4L2_STD_SECAM_L) {
std = std_map->atv_l.std_bits;
sgIF = std_map->atv_l.if_freq;
mode = "L";
} else if (params->std & V4L2_STD_SECAM_LC) {
std = std_map->atv_lc.std_bits;
sgIF = std_map->atv_lc.if_freq;
mode = "L'";
} else {
std = std_map->atv_i.std_bits;
sgIF = std_map->atv_i.if_freq;
mode = "xx";
}
tda_dbg("setting tda18271 to system %s\n", mode);
ret = tda18271_tune(fe, sgIF * 1000, freq, 0, std, radio);
if (ret < 0)
goto fail;
priv->frequency = freq;
priv->bandwidth = 0;
fail:
return ret;
}
static int tda18271_sleep(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
mutex_lock(&priv->lock);
/* standby mode w/ slave tuner output
* & loop thru & xtal oscillator on */
tda18271_set_standby_mode(fe, 1, 0, 0);
mutex_unlock(&priv->lock);
return 0;
}
static int tda18271_release(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
mutex_lock(&tda18271_list_mutex);
priv->count--;
if (!priv->count) {
tda_dbg("destroying instance @ %d-%04x\n",
i2c_adapter_id(priv->i2c_adap),
priv->i2c_addr);
list_del(&priv->tda18271_list);
kfree(priv);
}
mutex_unlock(&tda18271_list_mutex);
fe->tuner_priv = NULL;
return 0;
}
static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct tda18271_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct tda18271_priv *priv = fe->tuner_priv;
*bandwidth = priv->bandwidth;
return 0;
}
/* ------------------------------------------------------------------ */
#define tda18271_update_std(std_cfg, name) do { \
if (map->std_cfg.if_freq + map->std_cfg.std_bits > 0) { \
tda_dbg("Using custom std config for %s\n", name); \
memcpy(&std->std_cfg, &map->std_cfg, \
sizeof(struct tda18271_std_map_item)); \
} } while (0)
#define tda18271_dump_std_item(std_cfg, name) do { \
tda_dbg("(%s) if freq = %d, std bits = 0x%02x\n", \
name, std->std_cfg.if_freq, std->std_cfg.std_bits); \
} while (0)
static int tda18271_dump_std_map(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_std_map *std = &priv->std;
tda_dbg("========== STANDARD MAP SETTINGS ==========\n");
tda18271_dump_std_item(fm_radio, "fm");
tda18271_dump_std_item(atv_b, "pal b");
tda18271_dump_std_item(atv_dk, "pal dk");
tda18271_dump_std_item(atv_gh, "pal gh");
tda18271_dump_std_item(atv_i, "pal i");
tda18271_dump_std_item(atv_l, "pal l");
tda18271_dump_std_item(atv_lc, "pal l'");
tda18271_dump_std_item(atv_mn, "atv mn");
tda18271_dump_std_item(atsc_6, "atsc 6");
tda18271_dump_std_item(dvbt_6, "dvbt 6");
tda18271_dump_std_item(dvbt_7, "dvbt 7");
tda18271_dump_std_item(dvbt_8, "dvbt 8");
tda18271_dump_std_item(qam_6, "qam 6");
tda18271_dump_std_item(qam_8, "qam 8");
return 0;
}
static int tda18271_update_std_map(struct dvb_frontend *fe,
struct tda18271_std_map *map)
{
struct tda18271_priv *priv = fe->tuner_priv;
struct tda18271_std_map *std = &priv->std;
if (!map)
return -EINVAL;
tda18271_update_std(fm_radio, "fm");
tda18271_update_std(atv_b, "atv b");
tda18271_update_std(atv_dk, "atv dk");
tda18271_update_std(atv_gh, "atv gh");
tda18271_update_std(atv_i, "atv i");
tda18271_update_std(atv_l, "atv l");
tda18271_update_std(atv_lc, "atv l'");
tda18271_update_std(atv_mn, "atv mn");
tda18271_update_std(atsc_6, "atsc 6");
tda18271_update_std(dvbt_6, "dvbt 6");
tda18271_update_std(dvbt_7, "dvbt 7");
tda18271_update_std(dvbt_8, "dvbt 8");
tda18271_update_std(qam_6, "qam 6");
tda18271_update_std(qam_8, "qam 8");
return 0;
}
static int tda18271_get_id(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
char *name;
int ret = 0;
mutex_lock(&priv->lock);
tda18271_read_regs(fe);
mutex_unlock(&priv->lock);
switch (regs[R_ID] & 0x7f) {
case 3:
name = "TDA18271HD/C1";
priv->id = TDA18271HDC1;
break;
case 4:
name = "TDA18271HD/C2";
priv->id = TDA18271HDC2;
break;
default:
name = "Unknown device";
ret = -EINVAL;
break;
}
tda_info("%s detected @ %d-%04x%s\n", name,
i2c_adapter_id(priv->i2c_adap), priv->i2c_addr,
(0 == ret) ? "" : ", device not supported.");
return ret;
}
static struct dvb_tuner_ops tda18271_tuner_ops = {
.info = {
.name = "NXP TDA18271HD",
.frequency_min = 45000000,
.frequency_max = 864000000,
.frequency_step = 62500
},
.init = tda18271_init,
.sleep = tda18271_sleep,
.set_params = tda18271_set_params,
.set_analog_params = tda18271_set_analog_params,
.release = tda18271_release,
.get_frequency = tda18271_get_frequency,
.get_bandwidth = tda18271_get_bandwidth,
};
struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
struct i2c_adapter *i2c,
struct tda18271_config *cfg)
{
struct tda18271_priv *priv = NULL;
int state_found = 0;
mutex_lock(&tda18271_list_mutex);
list_for_each_entry(priv, &tda18271_list, tda18271_list) {
if ((i2c_adapter_id(priv->i2c_adap) == i2c_adapter_id(i2c)) &&
(priv->i2c_addr == addr)) {
tda_dbg("attaching existing tuner @ %d-%04x\n",
i2c_adapter_id(priv->i2c_adap),
priv->i2c_addr);
priv->count++;
fe->tuner_priv = priv;
state_found = 1;
/* allow dvb driver to override i2c gate setting */
if ((cfg) && (cfg->gate != TDA18271_GATE_ANALOG))
priv->gate = cfg->gate;
break;
}
}
if (state_found == 0) {
tda_dbg("creating new tuner instance @ %d-%04x\n",
i2c_adapter_id(i2c), addr);
priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
if (priv == NULL) {
mutex_unlock(&tda18271_list_mutex);
return NULL;
}
priv->i2c_addr = addr;
priv->i2c_adap = i2c;
priv->gate = (cfg) ? cfg->gate : TDA18271_GATE_AUTO;
priv->cal_initialized = false;
mutex_init(&priv->lock);
priv->count++;
fe->tuner_priv = priv;
list_add_tail(&priv->tda18271_list, &tda18271_list);
if (tda18271_get_id(fe) < 0)
goto fail;
if (tda18271_assign_map_layout(fe) < 0)
goto fail;
mutex_lock(&priv->lock);
tda18271_init_regs(fe);
if ((tda18271_cal_on_startup) && (priv->id == TDA18271HDC2))
tda18271_rf_cal_init(fe);
mutex_unlock(&priv->lock);
}
/* override default std map with values in config struct */
if ((cfg) && (cfg->std_map))
tda18271_update_std_map(fe, cfg->std_map);
mutex_unlock(&tda18271_list_mutex);
memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (tda18271_debug & DBG_MAP)
tda18271_dump_std_map(fe);
return fe;
fail:
mutex_unlock(&tda18271_list_mutex);
tda18271_release(fe);
return NULL;
}
EXPORT_SYMBOL_GPL(tda18271_attach);
MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.2");
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* ---------------------------------------------------------------------------
* Local variables:
* c-basic-offset: 8
* End:
*/