/*
* Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bio-list.h"
#include "dm-uevent.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/moduleparam.h>
#include <linux/blkpg.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/hdreg.h>
#include <linux/blktrace_api.h>
#include <trace/block.h>
#define DM_MSG_PREFIX "core"
static const char *_name = DM_NAME;
static unsigned int major = 0;
static unsigned int _major = 0;
static DEFINE_SPINLOCK(_minor_lock);
/*
* For bio-based dm.
* One of these is allocated per bio.
*/
struct dm_io {
struct mapped_device *md;
int error;
atomic_t io_count;
struct bio *bio;
unsigned long start_time;
};
/*
* For bio-based dm.
* One of these is allocated per target within a bio. Hopefully
* this will be simplified out one day.
*/
struct dm_target_io {
struct dm_io *io;
struct dm_target *ti;
union map_info info;
};
DEFINE_TRACE(block_bio_complete);
/*
* For request-based dm.
* One of these is allocated per request.
*/
struct dm_rq_target_io {
struct mapped_device *md;
struct dm_target *ti;
struct request *orig, clone;
int error;
union map_info info;
};
/*
* For request-based dm.
* One of these is allocated per bio.
*/
struct dm_rq_clone_bio_info {
struct bio *orig;
struct request *rq;
};
union map_info *dm_get_mapinfo(struct bio *bio)
{
if (bio && bio->bi_private)
return &((struct dm_target_io *)bio->bi_private)->info;
return NULL;
}
#define MINOR_ALLOCED ((void *)-1)
/*
* Bits for the md->flags field.
*/
#define DMF_BLOCK_IO 0
#define DMF_SUSPENDED 1
#define DMF_FROZEN 2
#define DMF_FREEING 3
#define DMF_DELETING 4
#define DMF_NOFLUSH_SUSPENDING 5
/*
* Work processed by per-device workqueue.
*/
struct dm_wq_req {
enum {
DM_WQ_FLUSH_DEFERRED,
} type;
struct work_struct work;
struct mapped_device *md;
void *context;
};
struct mapped_device {
struct rw_semaphore io_lock;
struct mutex suspend_lock;
spinlock_t pushback_lock;
rwlock_t map_lock;
atomic_t holders;
atomic_t open_count;
unsigned long flags;
struct request_queue *queue;
struct gendisk *disk;
char name[16];
void *interface_ptr;
/*
* A list of ios that arrived while we were suspended.
*/
atomic_t pending;
wait_queue_head_t wait;
struct bio_list deferred;
struct bio_list pushback;
/*
* Processing queue (flush/barriers)
*/
struct workqueue_struct *wq;
/*
* The current mapping.
*/
struct dm_table *map;
/*
* io objects are allocated from here.
*/
mempool_t *io_pool;
mempool_t *tio_pool;
struct bio_set *bs;
/*
* Event handling.
*/
atomic_t event_nr;
wait_queue_head_t eventq;
atomic_t uevent_seq;
struct list_head uevent_list;
spinlock_t uevent_lock; /* Protect access to uevent_list */
/*
* freeze/thaw support require holding onto a super block
*/
struct super_block *frozen_sb;
struct block_device *suspended_bdev;
/* forced geometry settings */
struct hd_geometry geometry;
};
#define MIN_IOS 256
static struct kmem_cache *_io_cache;
static struct kmem_cache *_tio_cache;
static struct kmem_cache *_rq_tio_cache;
static struct kmem_cache *_rq_bio_info_cache;
static int __init local_init(void)
{
int r = -ENOMEM;
/* allocate a slab for the dm_ios */
_io_cache = KMEM_CACHE(dm_io, 0);
if (!_io_cache)
return r;
/* allocate a slab for the target ios */
_tio_cache = KMEM_CACHE(dm_target_io, 0);
if (!_tio_cache)
goto out_free_io_cache;
_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
if (!_rq_tio_cache)
goto out_free_tio_cache;
_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
if (!_rq_bio_info_cache)
goto out_free_rq_tio_cache;
r = dm_uevent_init();
if (r)
goto out_free_rq_bio_info_cache;
_major = major;
r = register_blkdev(_major, _name);
if (r < 0)
goto out_uevent_exit;
if (!_major)
_major = r;
return 0;
out_uevent_exit:
dm_uevent_exit();
out_free_rq_bio_info_cache:
kmem_cache_destroy(_rq_bio_info_cache);
out_free_rq_tio_cache:
kmem_cache_destroy(_rq_tio_cache);
out_free_tio_cache:
kmem_cache_destroy(_tio_cache);
out_free_io_cache:
kmem_cache_destroy(_io_cache);
return r;
}
static void local_exit(void)
{
kmem_cache_destroy(_rq_bio_info_cache);
kmem_cache_destroy(_rq_tio_cache);
kmem_cache_destroy(_tio_cache);
kmem_cache_destroy(_io_cache);
unregister_blkdev(_major, _name);
dm_uevent_exit();
_major = 0;
DMINFO("cleaned up");
}
static int (*_inits[])(void) __initdata = {
local_init,
dm_target_init,
dm_linear_init,
dm_stripe_init,
dm_kcopyd_init,
dm_interface_init,
};
static void (*_exits[])(void) = {
local_exit,
dm_target_exit,
dm_linear_exit,
dm_stripe_exit,
dm_kcopyd_exit,
dm_interface_exit,
};
static int __init dm_init(void)
{
const int count = ARRAY_SIZE(_inits);
int r, i;
for (i = 0; i < count; i++) {
r = _inits[i]();
if (r)
goto bad;
}
return 0;
bad:
while (i--)
_exits[i]();
return r;
}
static void __exit dm_exit(void)
{
int i = ARRAY_SIZE(_exits);
while (i--)
_exits[i]();
}
/*
* Block device functions
*/
static int dm_blk_open(struct block_device *bdev, fmode_t mode)
{
struct mapped_device *md;
spin_lock(&_minor_lock);
md = bdev->bd_disk->private_data;
if (!md)
goto out;
if (test_bit(DMF_FREEING, &md->flags) ||
test_bit(DMF_DELETING, &md->flags)) {
md = NULL;
goto out;
}
dm_get(md);
atomic_inc(&md->open_count);
out:
spin_unlock(&_minor_lock);
return md ? 0 : -ENXIO;
}
static int dm_blk_close(struct gendisk *disk, fmode_t mode)
{
struct mapped_device *md = disk->private_data;
atomic_dec(&md->open_count);
dm_put(md);
return 0;
}
int dm_open_count(struct mapped_device *md)
{
return atomic_read(&md->open_count);
}
/*
* Guarantees nothing is using the device before it's deleted.
*/
int dm_lock_for_deletion(struct mapped_device *md)
{
int r = 0;
spin_lock(&_minor_lock);
if (dm_open_count(md))
r = -EBUSY;
else
set_bit(DMF_DELETING, &md->flags);
spin_unlock(&_minor_lock);
return r;
}
static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mapped_device *md = bdev->bd_disk->private_data;
return dm_get_geometry(md, geo);
}
static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct mapped_device *md = bdev->bd_disk->private_data;
struct dm_table *map = dm_get_table(md);
struct dm_target *tgt;
int r = -ENOTTY;
if (!map || !dm_table_get_size(map))
goto out;
/* We only support devices that have a single target */
if (dm_table_get_num_targets(map) != 1)
goto out;
tgt = dm_table_get_target(map, 0);
if (dm_suspended(md)) {
r = -EAGAIN;
goto out;
}
if (tgt->type->ioctl)
r = tgt->type->ioctl(tgt, cmd, arg);
out:
dm_table_put(map);
return r;
}
static struct dm_io *alloc_io(struct mapped_device *md)
{
return mempool_alloc(md->io_pool, GFP_NOIO);
}
static void free_io(struct mapped_device *md, struct dm_io *io)
{
mempool_free(io, md->io_pool);
}
static struct dm_target_io *alloc_tio(struct mapped_device *md)
{
return mempool_alloc(md->tio_pool, GFP_NOIO);
}
static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
{
mempool_free(tio, md->tio_pool);
}
static void start_io_acct(struct dm_io *io)
{
struct mapped_device *md = io->md;
int cpu;
io->start_time = jiffies;
cpu = part_stat_lock();
part_round_stats(cpu, &dm_disk(md)->part0);
part_stat_unlock();
dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
}
static void end_io_acct(struct dm_io *io)
{
struct mapped_device *md = io->md;
struct bio *bio = io->bio;
unsigned long duration = jiffies - io->start_time;
int pending, cpu;
int rw = bio_data_dir(bio);
cpu = part_stat_lock();
part_round_stats(cpu, &dm_disk(md)->part0);
part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
part_stat_unlock();
dm_disk(md)->part0.in_flight = pending =
atomic_dec_return(&md->pending);
/* nudge anyone waiting on suspend queue */
if (!pending)
wake_up(&md->wait);
}
/*
* Add the bio to the list of deferred io.
*/
static int queue_io(struct mapped_device *md, struct bio *bio)
{
down_write(&md->io_lock);
if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
up_write(&md->io_lock);
return 1;
}
bio_list_add(&md->deferred, bio);
up_write(&md->io_lock);
return 0; /* deferred successfully */
}
/*
* Everyone (including functions in this file), should use this
* function to access the md->map field, and make sure they call
* dm_table_put() when finished.
*/
struct dm_table *dm_get_table(struct mapped_device *md)
{
struct dm_table *t;
read_lock(&md->map_lock);
t = md->map;
if (t)
dm_table_get(t);
read_unlock(&md->map_lock);
return t;
}
/*
* Get the geometry associated with a dm device
*/
int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
*geo = md->geometry;
return 0;
}
/*
* Set the geometry of a device.
*/
int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
if (geo->start > sz) {
DMWARN("Start sector is beyond the geometry limits.");
return -EINVAL;
}
md->geometry = *geo;
return 0;
}
/*-----------------------------------------------------------------
* CRUD START:
* A more elegant soln is in the works that uses the queue
* merge fn, unfortunately there are a couple of changes to
* the block layer that I want to make for this. So in the
* interests of getting something for people to use I give
* you this clearly demarcated crap.
*---------------------------------------------------------------*/
static int __noflush_suspending(struct mapped_device *md)
{
return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
}
/*
* Decrements the number of outstanding ios that a bio has been
* cloned into, completing the original io if necc.
*/
static void dec_pending(struct dm_io *io, int error)
{
unsigned long flags;
/* Push-back supersedes any I/O errors */
if (error && !(io->error > 0 && __noflush_suspending(io->md)))
io->error = error;
if (atomic_dec_and_test(&io->io_count)) {
if (io->error == DM_ENDIO_REQUEUE) {
/*
* Target requested pushing back the I/O.
* This must be handled before the sleeper on
* suspend queue merges the pushback list.
*/
spin_lock_irqsave(&io->md->pushback_lock, flags);
if (__noflush_suspending(io->md))
bio_list_add(&io->md->pushback, io->bio);
else
/* noflush suspend was interrupted. */
io->error = -EIO;
spin_unlock_irqrestore(&io->md->pushback_lock, flags);
}
end_io_acct(io);
if (io->error != DM_ENDIO_REQUEUE) {
trace_block_bio_complete(io->md->queue, io->bio);
bio_endio(io->bio, io->error);
}
free_io(io->md, io);
}
}
static void clone_endio(struct bio *bio, int error)
{
int r = 0;
struct dm_target_io *tio = bio->bi_private;
struct mapped_device *md = tio->io->md;
dm_endio_fn endio = tio->ti->type->end_io;
if (!bio_flagged(bio, BIO_UPTODATE) && !error)
error = -EIO;
if (endio) {
r = endio(tio->ti, bio, error, &tio->info);
if (r < 0 || r == DM_ENDIO_REQUEUE)
/*
* error and requeue request are handled
* in dec_pending().
*/
error = r;
else if (r == DM_ENDIO_INCOMPLETE)
/* The target will handle the io */
return;
else if (r) {
DMWARN("unimplemented target endio return value: %d", r);
BUG();
}
}
dec_pending(tio->io, error);
/*
* Store md for cleanup instead of tio which is about to get freed.
*/
bio->bi_private = md->bs;
bio_put(bio);
free_tio(md, tio);
}
static sector_t max_io_len(struct mapped_device *md,
sector_t sector, struct dm_target *ti)
{
sector_t offset = sector - ti->begin;
sector_t len = ti->len - offset;
/*
* Does the target need to split even further ?
*/
if (ti->split_io) {
sector_t boundary;
boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
- offset;
if (len > boundary)
len = boundary;
}
return len;
}
static void __map_bio(struct dm_target *ti, struct bio *clone,
struct dm_target_io *tio)
{
int r;
sector_t sector;
struct mapped_device *md;
/*
* Sanity checks.
*/
BUG_ON(!clone->bi_size);
clone->bi_end_io = clone_endio;
clone->bi_private = tio;
/*
* Map the clone. If r == 0 we don't need to do
* anything, the target has assumed ownership of
* this io.
*/
atomic_inc(&tio->io->io_count);
sector = clone->bi_sector;
r = ti->type->map(ti, clone, &tio->info);
if (r == DM_MAPIO_REMAPPED) {
/* the bio has been remapped so dispatch it */
trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
tio->io->bio->bi_bdev->bd_dev,
clone->bi_sector, sector);
generic_make_request(clone);
} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
/* error the io and bail out, or requeue it if needed */
md = tio->io->md;
dec_pending(tio->io, r);
/*
* Store bio_set for cleanup.
*/
clone->bi_private = md->bs;
bio_put(clone);
free_tio(md, tio);
} else if (r) {
DMWARN("unimplemented target map return value: %d", r);
BUG();
}
}
struct clone_info {
struct mapped_device *md;
struct dm_table *map;
struct bio *bio;
struct dm_io *io;
sector_t sector;
sector_t sector_count;
unsigned short idx;
};
static void dm_bio_destructor(struct bio *bio)
{
struct bio_set *bs = bio->bi_private;
bio_free(bio, bs);
}
/*
* Creates a little bio that is just does part of a bvec.
*/
static struct bio *split_bvec(struct bio *bio, sector_t sector,
unsigned short idx, unsigned int offset,
unsigned int len, struct bio_set *bs)
{
struct bio *clone;
struct bio_vec *bv = bio->bi_io_vec + idx;
clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
clone->bi_destructor = dm_bio_destructor;
*clone->bi_io_vec = *bv;
clone->bi_sector = sector;
clone->bi_bdev = bio->bi_bdev;
clone->bi_rw = bio->bi_rw;
clone->bi_vcnt = 1;
clone->bi_size = to_bytes(len);
clone->bi_io_vec->bv_offset = offset;
clone->bi_io_vec->bv_len = clone->bi_size;
clone->bi_flags |= 1 << BIO_CLONED;
return clone;
}
/*
* Creates a bio that consists of range of complete bvecs.
*/
static struct bio *clone_bio(struct bio *bio, sector_t sector,
unsigned short idx, unsigned short bv_count,
unsigned int len, struct bio_set *bs)
{
struct bio *clone;
clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
__bio_clone(clone, bio);
clone->bi_destructor = dm_bio_destructor;
clone->bi_sector = sector;
clone->bi_idx = idx;
clone->bi_vcnt = idx + bv_count;
clone->bi_size = to_bytes(len);
clone->bi_flags &= ~(1 << BIO_SEG_VALID);
return clone;
}
static int __clone_and_map(struct clone_info *ci)
{
struct bio *clone, *bio = ci->bio;
struct dm_target *ti;
sector_t len = 0, max;
struct dm_target_io *tio;
ti = dm_table_find_target(ci->map, ci->sector);
if (!dm_target_is_valid(ti))
return -EIO;
max = max_io_len(ci->md, ci->sector, ti);
/*
* Allocate a target io object.
*/
tio = alloc_tio(ci->md);
tio->io = ci->io;
tio->ti = ti;
memset(&tio->info, 0, sizeof(tio->info));
if (ci->sector_count <= max) {
/*
* Optimise for the simple case where we can do all of
* the remaining io with a single clone.
*/
clone = clone_bio(bio, ci->sector, ci->idx,
bio->bi_vcnt - ci->idx, ci->sector_count,
ci->md->bs);
__map_bio(ti, clone, tio);
ci->sector_count = 0;
} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
/*
* There are some bvecs that don't span targets.
* Do as many of these as possible.
*/
int i;
sector_t remaining = max;
sector_t bv_len;
for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
bv_len = to_sector(bio->bi_io_vec[i].bv_len);
if (bv_len > remaining)
break;
remaining -= bv_len;
len += bv_len;
}
clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
ci->md->bs);
__map_bio(ti, clone, tio);
ci->sector += len;
ci->sector_count -= len;
ci->idx = i;
} else {
/*
* Handle a bvec that must be split between two or more targets.
*/
struct bio_vec *bv = bio->bi_io_vec + ci->idx;
sector_t remaining = to_sector(bv->bv_len);
unsigned int offset = 0;
do {
if (offset) {
ti = dm_table_find_target(ci->map, ci->sector);
if (!dm_target_is_valid(ti))
return -EIO;
max = max_io_len(ci->md, ci->sector, ti);
tio = alloc_tio(ci->md);
tio->io = ci->io;
tio->ti = ti;
memset(&tio->info, 0, sizeof(tio->info));
}
len = min(remaining, max);
clone = split_bvec(bio, ci->sector, ci->idx,
bv->bv_offset + offset, len,
ci->md->bs);
__map_bio(ti, clone, tio);
ci->sector += len;
ci->sector_count -= len;
offset += to_bytes(len);
} while (remaining -= len);
ci->idx++;
}
return 0;
}
/*
* Split the bio into several clones.
*/
static int __split_bio(struct mapped_device *md, struct bio *bio)
{
struct clone_info ci;
int error = 0;
ci.map = dm_get_table(md);
if (unlikely(!ci.map))
return -EIO;
if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
dm_table_put(ci.map);
bio_endio(bio, -EOPNOTSUPP);
return 0;
}
ci.md = md;
ci.bio = bio;
ci.io = alloc_io(md);
ci.io->error = 0;
atomic_set(&ci.io->io_count, 1);
ci.io->bio = bio;
ci.io->md = md;
ci.sector = bio->bi_sector;
ci.sector_count = bio_sectors(bio);
ci.idx = bio->bi_idx;
start_io_acct(ci.io);
while (ci.sector_count && !error)
error = __clone_and_map(&ci);
/* drop the extra reference count */
dec_pending(ci.io, error);
dm_table_put(ci.map);
return 0;
}
/*-----------------------------------------------------------------
* CRUD END
*---------------------------------------------------------------*/
static int dm_merge_bvec(struct request_queue *q,
struct bvec_merge_data *bvm,
struct bio_vec *biovec)
{
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_table(md);
struct dm_target *ti;
sector_t max_sectors;
int max_size = 0;
if (unlikely(!map))
goto out;
ti = dm_table_find_target(map, bvm->bi_sector);
if (!dm_target_is_valid(ti))
goto out_table;
/*
* Find maximum amount of I/O that won't need splitting
*/
max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
(sector_t) BIO_MAX_SECTORS);
max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
if (max_size < 0)
max_size = 0;
/*
* merge_bvec_fn() returns number of bytes
* it can accept at this offset
* max is precomputed maximal io size
*/
if (max_size && ti->type->merge)
max_size = ti->type->merge(ti, bvm, biovec, max_size);
out_table:
dm_table_put(map);
out:
/*
* Always allow an entire first page
*/
if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
max_size = biovec->bv_len;
return max_size;
}
/*
* The request function that just remaps the bio built up by
* dm_merge_bvec.
*/
static int dm_request(struct request_queue *q, struct bio *bio)
{
int r = -EIO;
int rw = bio_data_dir(bio);
struct mapped_device *md = q->queuedata;
int cpu;
down_read(&md->io_lock);
cpu = part_stat_lock();
part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
part_stat_unlock();
/*
* If we're suspended we have to queue
* this io for later.
*/
while (test_bit(DMF_BLOCK_IO, &md->flags)) {
up_read(&md->io_lock);
if (bio_rw(bio) != READA)
r = queue_io(md, bio);
if (r <= 0)
goto out_req;
/*
* We're in a while loop, because someone could suspend
* before we get to the following read lock.
*/
down_read(&md->io_lock);
}
r = __split_bio(md, bio);
up_read(&md->io_lock);
out_req:
if (r < 0)
bio_io_error(bio);
return 0;
}
static void dm_unplug_all(struct request_queue *q)
{
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_table(md);
if (map) {
dm_table_unplug_all(map);
dm_table_put(map);
}
}
static int dm_any_congested(void *congested_data, int bdi_bits)
{
int r = bdi_bits;
struct mapped_device *md = congested_data;
struct dm_table *map;
if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
map = dm_get_table(md);
if (map) {
r = dm_table_any_congested(map, bdi_bits);
dm_table_put(map);
}
}
return r;
}
/*-----------------------------------------------------------------
* An IDR is used to keep track of allocated minor numbers.
*---------------------------------------------------------------*/
static DEFINE_IDR(_minor_idr);
static void free_minor(int minor)
{
spin_lock(&_minor_lock);
idr_remove(&_minor_idr, minor);
spin_unlock(&_minor_lock);
}
/*
* See if the device with a specific minor # is free.
*/
static int specific_minor(int minor)
{
int r, m;
if (minor >= (1 << MINORBITS))
return -EINVAL;
r = idr_pre_get(&_minor_idr, GFP_KERNEL);
if (!r)
return -ENOMEM;
spin_lock(&_minor_lock);
if (idr_find(&_minor_idr, minor)) {
r = -EBUSY;
goto out;
}
r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
if (r)
goto out;
if (m != minor) {
idr_remove(&_minor_idr, m);
r = -EBUSY;
goto out;
}
out:
spin_unlock(&_minor_lock);
return r;
}
static int next_free_minor(int *minor)
{
int r, m;
r = idr_pre_get(&_minor_idr, GFP_KERNEL);
if (!r)
return -ENOMEM;
spin_lock(&_minor_lock);
r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
if (r)
goto out;
if (m >= (1 << MINORBITS)) {
idr_remove(&_minor_idr, m);
r = -ENOSPC;
goto out;
}
*minor = m;
out:
spin_unlock(&_minor_lock);
return r;
}
static struct block_device_operations dm_blk_dops;
/*
* Allocate and initialise a blank device with a given minor.
*/
static struct mapped_device *alloc_dev(int minor)
{
int r;
struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
void *old_md;
if (!md) {
DMWARN("unable to allocate device, out of memory.");
return NULL;
}
if (!try_module_get(THIS_MODULE))
goto bad_module_get;
/* get a minor number for the dev */
if (minor == DM_ANY_MINOR)
r = next_free_minor(&minor);
else
r = specific_minor(minor);
if (r < 0)
goto bad_minor;
init_rwsem(&md->io_lock);
mutex_init(&md->suspend_lock);
spin_lock_init(&md->pushback_lock);
rwlock_init(&md->map_lock);
atomic_set(&md->holders, 1);
atomic_set(&md->open_count, 0);
atomic_set(&md->event_nr, 0);
atomic_set(&md->uevent_seq, 0);
INIT_LIST_HEAD(&md->uevent_list);
spin_lock_init(&md->uevent_lock);
md->queue = blk_alloc_queue(GFP_KERNEL);
if (!md->queue)
goto bad_queue;
md->queue->queuedata = md;
md->queue->backing_dev_info.congested_fn = dm_any_congested;
md->queue->backing_dev_info.congested_data = md;
blk_queue_make_request(md->queue, dm_request);
blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
md->queue->unplug_fn = dm_unplug_all;
blk_queue_merge_bvec(md->queue, dm_merge_bvec);
md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
if (!md->io_pool)
goto bad_io_pool;
md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
if (!md->tio_pool)
goto bad_tio_pool;
md->bs = bioset_create(16, 0);
if (!md->bs)
goto bad_no_bioset;
md->disk = alloc_disk(1);
if (!md->disk)
goto bad_disk;
atomic_set(&md->pending, 0);
init_waitqueue_head(&md->wait);
init_waitqueue_head(&md->eventq);
md->disk->major = _major;
md->disk->first_minor = minor;
md->disk->fops = &dm_blk_dops;
md->disk->queue = md->queue;
md->disk->private_data = md;
sprintf(md->disk->disk_name, "dm-%d", minor);
add_disk(md->disk);
format_dev_t(md->name, MKDEV(_major, minor));
md->wq = create_singlethread_workqueue("kdmflush");
if (!md->wq)
goto bad_thread;
/* Populate the mapping, nobody knows we exist yet */
spin_lock(&_minor_lock);
old_md = idr_replace(&_minor_idr, md, minor);
spin_unlock(&_minor_lock);
BUG_ON(old_md != MINOR_ALLOCED);
return md;
bad_thread:
put_disk(md->disk);
bad_disk:
bioset_free(md->bs);
bad_no_bioset:
mempool_destroy(md->tio_pool);
bad_tio_pool:
mempool_destroy(md->io_pool);
bad_io_pool:
blk_cleanup_queue(md->queue);
bad_queue:
free_minor(minor);
bad_minor:
module_put(THIS_MODULE);
bad_module_get:
kfree(md);
return NULL;
}
static void unlock_fs(struct mapped_device *md);
static void free_dev(struct mapped_device *md)
{
int minor = MINOR(disk_devt(md->disk));
if (md->suspended_bdev) {
unlock_fs(md);
bdput(md->suspended_bdev);
}
destroy_workqueue(md->wq);
mempool_destroy(md->tio_pool);
mempool_destroy(md->io_pool);
bioset_free(md->bs);
del_gendisk(md->disk);
free_minor(minor);
spin_lock(&_minor_lock);
md->disk->private_data = NULL;
spin_unlock(&_minor_lock);
put_disk(md->disk);
blk_cleanup_queue(md->queue);
module_put(THIS_MODULE);
kfree(md);
}
/*
* Bind a table to the device.
*/
static void event_callback(void *context)
{
unsigned long flags;
LIST_HEAD(uevents);
struct mapped_device *md = (struct mapped_device *) context;
spin_lock_irqsave(&md->uevent_lock, flags);
list_splice_init(&md->uevent_list, &uevents);
spin_unlock_irqrestore(&md->uevent_lock, flags);
dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
atomic_inc(&md->event_nr);
wake_up(&md->eventq);
}
static void __set_size(struct mapped_device *md, sector_t size)
{
set_capacity(md->disk, size);
mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
}
static int __bind(struct mapped_device *md, struct dm_table *t)
{
struct request_queue *q = md->queue;
sector_t size;
size = dm_table_get_size(t);
/*
* Wipe any geometry if the size of the table changed.
*/
if (size != get_capacity(md->disk))
memset(&md->geometry, 0, sizeof(md->geometry));
if (md->suspended_bdev)
__set_size(md, size);
if (!size) {
dm_table_destroy(t);
return 0;
}
dm_table_event_callback(t, event_callback, md);
write_lock(&md->map_lock);
md->map = t;
dm_table_set_restrictions(t, q);
write_unlock(&md->map_lock);
return 0;
}
static void __unbind(struct mapped_device *md)
{
struct dm_table *map = md->map;
if (!map)
return;
dm_table_event_callback(map, NULL, NULL);
write_lock(&md->map_lock);
md->map = NULL;
write_unlock(&md->map_lock);
dm_table_destroy(map);
}
/*
* Constructor for a new device.
*/
int dm_create(int minor, struct mapped_device **result)
{
struct mapped_device *md;
md = alloc_dev(minor);
if (!md)
return -ENXIO;
*result = md;
return 0;
}
static struct mapped_device *dm_find_md(dev_t dev)
{
struct mapped_device *md;
unsigned minor = MINOR(dev);
if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
return NULL;
spin_lock(&_minor_lock);
md = idr_find(&_minor_idr, minor);
if (md && (md == MINOR_ALLOCED ||
(MINOR(disk_devt(dm_disk(md))) != minor) ||
test_bit(DMF_FREEING, &md->flags))) {
md = NULL;
goto out;
}
out:
spin_unlock(&_minor_lock);
return md;
}
struct mapped_device *dm_get_md(dev_t dev)
{
struct mapped_device *md = dm_find_md(dev);
if (md)
dm_get(md);
return md;
}
void *dm_get_mdptr(struct mapped_device *md)
{
return md->interface_ptr;
}
void dm_set_mdptr(struct mapped_device *md, void *ptr)
{
md->interface_ptr = ptr;
}
void dm_get(struct mapped_device *md)
{
atomic_inc(&md->holders);
}
const char *dm_device_name(struct mapped_device *md)
{
return md->name;
}
EXPORT_SYMBOL_GPL(dm_device_name);
void dm_put(struct mapped_device *md)
{
struct dm_table *map;
BUG_ON(test_bit(DMF_FREEING, &md->flags));
if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
map = dm_get_table(md);
idr_replace(&_minor_idr, MINOR_ALLOCED,
MINOR(disk_devt(dm_disk(md))));
set_bit(DMF_FREEING, &md->flags);
spin_unlock(&_minor_lock);
if (!dm_suspended(md)) {
dm_table_presuspend_targets(map);
dm_table_postsuspend_targets(map);
}
dm_table_put(map);
__unbind(md);
free_dev(md);
}
}
EXPORT_SYMBOL_GPL(dm_put);
static int dm_wait_for_completion(struct mapped_device *md)
{
int r = 0;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
smp_mb();
if (!atomic_read(&md->pending))
break;
if (signal_pending(current)) {
r = -EINTR;
break;
}
io_schedule();
}
set_current_state(TASK_RUNNING);
return r;
}
/*
* Process the deferred bios
*/
static void __flush_deferred_io(struct mapped_device *md)
{
struct bio *c;
while ((c = bio_list_pop(&md->deferred))) {
if (__split_bio(md, c))
bio_io_error(c);
}
clear_bit(DMF_BLOCK_IO, &md->flags);
}
static void __merge_pushback_list(struct mapped_device *md)
{
unsigned long flags;
spin_lock_irqsave(&md->pushback_lock, flags);
clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
bio_list_merge_head(&md->deferred, &md->pushback);
bio_list_init(&md->pushback);
spin_unlock_irqrestore(&md->pushback_lock, flags);
}
static void dm_wq_work(struct work_struct *work)
{
struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
struct mapped_device *md = req->md;
down_write(&md->io_lock);
switch (req->type) {
case DM_WQ_FLUSH_DEFERRED:
__flush_deferred_io(md);
break;
default:
DMERR("dm_wq_work: unrecognised work type %d", req->type);
BUG();
}
up_write(&md->io_lock);
}
static void dm_wq_queue(struct mapped_device *md, int type, void *context,
struct dm_wq_req *req)
{
req->type = type;
req->md = md;
req->context = context;
INIT_WORK(&req->work, dm_wq_work);
queue_work(md->wq, &req->work);
}
static void dm_queue_flush(struct mapped_device *md, int type, void *context)
{
struct dm_wq_req req;
dm_wq_queue(md, type, context, &req);
flush_workqueue(md->wq);
}
/*
* Swap in a new table (destroying old one).
*/
int dm_swap_table(struct mapped_device *md, struct dm_table *table)
{
int r = -EINVAL;
mutex_lock(&md->suspend_lock);
/* device must be suspended */
if (!dm_suspended(md))
goto out;
/* without bdev, the device size cannot be changed */
if (!md->suspended_bdev)
if (get_capacity(md->disk) != dm_table_get_size(table))
goto out;
__unbind(md);
r = __bind(md, table);
out:
mutex_unlock(&md->suspend_lock);
return r;
}
/*
* Functions to lock and unlock any filesystem running on the
* device.
*/
static int lock_fs(struct mapped_device *md)
{
int r;
WARN_ON(md->frozen_sb);
md->frozen_sb = freeze_bdev(md->suspended_bdev);
if (IS_ERR(md->frozen_sb)) {
r = PTR_ERR(md->frozen_sb);
md->frozen_sb = NULL;
return r;
}
set_bit(DMF_FROZEN, &md->flags);
/* don't bdput right now, we don't want the bdev
* to go away while it is locked.
*/
return 0;
}
static void unlock_fs(struct mapped_device *md)
{
if (!test_bit(DMF_FROZEN, &md->flags))
return;
thaw_bdev(md->suspended_bdev, md->frozen_sb);
md->frozen_sb = NULL;
clear_bit(DMF_FROZEN, &md->flags);
}
/*
* We need to be able to change a mapping table under a mounted
* filesystem. For example we might want to move some data in
* the background. Before the table can be swapped with
* dm_bind_table, dm_suspend must be called to flush any in
* flight bios and ensure that any further io gets deferred.
*/
int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
{
struct dm_table *map = NULL;
DECLARE_WAITQUEUE(wait, current);
int r = 0;
int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
mutex_lock(&md->suspend_lock);
if (dm_suspended(md)) {
r = -EINVAL;
goto out_unlock;
}
map = dm_get_table(md);
/*
* DMF_NOFLUSH_SUSPENDING must be set before presuspend.
* This flag is cleared before dm_suspend returns.
*/
if (noflush)
set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
/* This does not get reverted if there's an error later. */
dm_table_presuspend_targets(map);
/* bdget() can stall if the pending I/Os are not flushed */
if (!noflush) {
md->suspended_bdev = bdget_disk(md->disk, 0);
if (!md->suspended_bdev) {
DMWARN("bdget failed in dm_suspend");
r = -ENOMEM;
goto out;
}
/*
* Flush I/O to the device. noflush supersedes do_lockfs,
* because lock_fs() needs to flush I/Os.
*/
if (do_lockfs) {
r = lock_fs(md);
if (r)
goto out;
}
}
/*
* First we set the BLOCK_IO flag so no more ios will be mapped.
*/
down_write(&md->io_lock);
set_bit(DMF_BLOCK_IO, &md->flags);
add_wait_queue(&md->wait, &wait);
up_write(&md->io_lock);
/* unplug */
if (map)
dm_table_unplug_all(map);
/*
* Wait for the already-mapped ios to complete.
*/
r = dm_wait_for_completion(md);
down_write(&md->io_lock);
remove_wait_queue(&md->wait, &wait);
if (noflush)
__merge_pushback_list(md);
up_write(&md->io_lock);
/* were we interrupted ? */
if (r < 0) {
dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
unlock_fs(md);
goto out; /* pushback list is already flushed, so skip flush */
}
dm_table_postsuspend_targets(map);
set_bit(DMF_SUSPENDED, &md->flags);
out:
if (r && md->suspended_bdev) {
bdput(md->suspended_bdev);
md->suspended_bdev = NULL;
}
dm_table_put(map);
out_unlock:
mutex_unlock(&md->suspend_lock);
return r;
}
int dm_resume(struct mapped_device *md)
{
int r = -EINVAL;
struct dm_table *map = NULL;
mutex_lock(&md->suspend_lock);
if (!dm_suspended(md))
goto out;
map = dm_get_table(md);
if (!map || !dm_table_get_size(map))
goto out;
r = dm_table_resume_targets(map);
if (r)
goto out;
dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
unlock_fs(md);
if (md->suspended_bdev) {
bdput(md->suspended_bdev);
md->suspended_bdev = NULL;
}
clear_bit(DMF_SUSPENDED, &md->flags);
dm_table_unplug_all(map);
dm_kobject_uevent(md);
r = 0;
out:
dm_table_put(map);
mutex_unlock(&md->suspend_lock);
return r;
}
/*-----------------------------------------------------------------
* Event notification.
*---------------------------------------------------------------*/
void dm_kobject_uevent(struct mapped_device *md)
{
kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
}
uint32_t dm_next_uevent_seq(struct mapped_device *md)
{
return atomic_add_return(1, &md->uevent_seq);
}
uint32_t dm_get_event_nr(struct mapped_device *md)
{
return atomic_read(&md->event_nr);
}
int dm_wait_event(struct mapped_device *md, int event_nr)
{
return wait_event_interruptible(md->eventq,
(event_nr != atomic_read(&md->event_nr)));
}
void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
{
unsigned long flags;
spin_lock_irqsave(&md->uevent_lock, flags);
list_add(elist, &md->uevent_list);
spin_unlock_irqrestore(&md->uevent_lock, flags);
}
/*
* The gendisk is only valid as long as you have a reference
* count on 'md'.
*/
struct gendisk *dm_disk(struct mapped_device *md)
{
return md->disk;
}
int dm_suspended(struct mapped_device *md)
{
return test_bit(DMF_SUSPENDED, &md->flags);
}
int dm_noflush_suspending(struct dm_target *ti)
{
struct mapped_device *md = dm_table_get_md(ti->table);
int r = __noflush_suspending(md);
dm_put(md);
return r;
}
EXPORT_SYMBOL_GPL(dm_noflush_suspending);
static struct block_device_operations dm_blk_dops = {
.open = dm_blk_open,
.release = dm_blk_close,
.ioctl = dm_blk_ioctl,
.getgeo = dm_blk_getgeo,
.owner = THIS_MODULE
};
EXPORT_SYMBOL(dm_get_mapinfo);
/*
* module hooks
*/
module_init(dm_init);
module_exit(dm_exit);
module_param(major, uint, 0);
MODULE_PARM_DESC(major, "The major number of the device mapper");
MODULE_DESCRIPTION(DM_NAME " driver");
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");