aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/macintosh/therm_pm72.c
blob: 4f50ee5767a23eff6b58a8082ceb2c5f1ea15e11 (plain) (tree)
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

























































































































                                                                              
                      

































































































































































                                                                        
                   

                                       























































































































































































































































































































































                                                                                     
                                                                                                



                                                     
                                                                                                    

















































                                                                          
                                                                                                 







                                                                 
                                                                                                 


































































































































































































































                                                                                                    
                                                         








                                                                           
                                        































































                                                                                    
                                                        




























































                                                                                    
                                                       








































































































































































































































































































































































































































































































































































































































                                                                                                   

                                          
                                                                     
















































































































































































































































































































                                                                                           
                                                                                
 





                                                
                                                  








                                               
                                         

         
                                






                                                          
                                    




























                                                                                 
                                                                    
























                                                                          
/*
 * Device driver for the thermostats & fan controller of  the
 * Apple G5 "PowerMac7,2" desktop machines.
 *
 * (c) Copyright IBM Corp. 2003-2004
 *
 * Maintained by: Benjamin Herrenschmidt
 *                <benh@kernel.crashing.org>
 * 
 *
 * The algorithm used is the PID control algorithm, used the same
 * way the published Darwin code does, using the same values that
 * are present in the Darwin 7.0 snapshot property lists.
 *
 * As far as the CPUs control loops are concerned, I use the
 * calibration & PID constants provided by the EEPROM,
 * I do _not_ embed any value from the property lists, as the ones
 * provided by Darwin 7.0 seem to always have an older version that
 * what I've seen on the actual computers.
 * It would be interesting to verify that though. Darwin has a
 * version code of 1.0.0d11 for all control loops it seems, while
 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
 *
 * Darwin doesn't provide source to all parts, some missing
 * bits like the AppleFCU driver or the actual scale of some
 * of the values returned by sensors had to be "guessed" some
 * way... or based on what Open Firmware does.
 *
 * I didn't yet figure out how to get the slots power consumption
 * out of the FCU, so that part has not been implemented yet and
 * the slots fan is set to a fixed 50% PWM, hoping this value is
 * safe enough ...
 *
 * Note: I have observed strange oscillations of the CPU control
 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
 * oscillates slowly (over several minutes) between the minimum
 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
 * this, it could be some incorrect constant or an error in the
 * way I ported the algorithm, or it could be just normal. I
 * don't have full understanding on the way Apple tweaked the PID
 * algorithm for the CPU control, it is definitely not a standard
 * implementation...
 *
 * TODO:  - Check MPU structure version/signature
 *        - Add things like /sbin/overtemp for non-critical
 *          overtemp conditions so userland can take some policy
 *          decisions, like slewing down CPUs
 *	  - Deal with fan and i2c failures in a better way
 *	  - Maybe do a generic PID based on params used for
 *	    U3 and Drives ? Definitely need to factor code a bit
 *          bettter... also make sensor detection more robust using
 *          the device-tree to probe for them
 *        - Figure out how to get the slots consumption and set the
 *          slots fan accordingly
 *
 * History:
 *
 *  Nov. 13, 2003 : 0.5
 *	- First release
 *
 *  Nov. 14, 2003 : 0.6
 *	- Read fan speed from FCU, low level fan routines now deal
 *	  with errors & check fan status, though higher level don't
 *	  do much.
 *	- Move a bunch of definitions to .h file
 *
 *  Nov. 18, 2003 : 0.7
 *	- Fix build on ppc64 kernel
 *	- Move back statics definitions to .c file
 *	- Avoid calling schedule_timeout with a negative number
 *
 *  Dec. 18, 2003 : 0.8
 *	- Fix typo when reading back fan speed on 2 CPU machines
 *
 *  Mar. 11, 2004 : 0.9
 *	- Rework code accessing the ADC chips, make it more robust and
 *	  closer to the chip spec. Also make sure it is configured properly,
 *        I've seen yet unexplained cases where on startup, I would have stale
 *        values in the configuration register
 *	- Switch back to use of target fan speed for PID, thus lowering
 *        pressure on i2c
 *
 *  Oct. 20, 2004 : 1.1
 *	- Add device-tree lookup for fan IDs, should detect liquid cooling
 *        pumps when present
 *	- Enable driver for PowerMac7,3 machines
 *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
 *	- Add new CPU cooling algorithm for machines with liquid cooling
 *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
 *	- Fix a signed/unsigned compare issue in some PID loops
 *
 *  Mar. 10, 2005 : 1.2
 *	- Add basic support for Xserve G5
 *	- Retreive pumps min/max from EEPROM image in device-tree (broken)
 *	- Use min/max macros here or there
 *	- Latest darwin updated U3H min fan speed to 20% PWM
 *
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/wait.h>
#include <linux/reboot.h>
#include <linux/kmod.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/sections.h>
#include <asm/of_device.h>
#include <asm/macio.h>

#include "therm_pm72.h"

#define VERSION "1.2b2"

#undef DEBUG

#ifdef DEBUG
#define DBG(args...)	printk(args)
#else
#define DBG(args...)	do { } while(0)
#endif


/*
 * Driver statics
 */

static struct of_device *		of_dev;
static struct i2c_adapter *		u3_0;
static struct i2c_adapter *		u3_1;
static struct i2c_adapter *		k2;
static struct i2c_client *		fcu;
static struct cpu_pid_state		cpu_state[2];
static struct basckside_pid_params	backside_params;
static struct backside_pid_state	backside_state;
static struct drives_pid_state		drives_state;
static struct dimm_pid_state		dimms_state;
static int				state;
static int				cpu_count;
static int				cpu_pid_type;
static pid_t				ctrl_task;
static struct completion		ctrl_complete;
static int				critical_state;
static int				rackmac;
static s32				dimm_output_clamp;

static DECLARE_MUTEX(driver_lock);

/*
 * We have 3 types of CPU PID control. One is "split" old style control
 * for intake & exhaust fans, the other is "combined" control for both
 * CPUs that also deals with the pumps when present. To be "compatible"
 * with OS X at this point, we only use "COMBINED" on the machines that
 * are identified as having the pumps (though that identification is at
 * least dodgy). Ultimately, we could probably switch completely to this
 * algorithm provided we hack it to deal with the UP case
 */
#define CPU_PID_TYPE_SPLIT	0
#define CPU_PID_TYPE_COMBINED	1
#define CPU_PID_TYPE_RACKMAC	2

/*
 * This table describes all fans in the FCU. The "id" and "type" values
 * are defaults valid for all earlier machines. Newer machines will
 * eventually override the table content based on the device-tree
 */
struct fcu_fan_table
{
	char*	loc;	/* location code */
	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
	int	id;	/* id or -1 */
};

#define FCU_FAN_RPM		0
#define FCU_FAN_PWM		1

#define FCU_FAN_ABSENT_ID	-1

#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)

struct fcu_fan_table	fcu_fans[] = {
	[BACKSIDE_FAN_PWM_INDEX] = {
		.loc	= "BACKSIDE,SYS CTRLR FAN",
		.type	= FCU_FAN_PWM,
		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
	},
	[DRIVES_FAN_RPM_INDEX] = {
		.loc	= "DRIVE BAY",
		.type	= FCU_FAN_RPM,
		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
	},
	[SLOTS_FAN_PWM_INDEX] = {
		.loc	= "SLOT,PCI FAN",
		.type	= FCU_FAN_PWM,
		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
	},
	[CPUA_INTAKE_FAN_RPM_INDEX] = {
		.loc	= "CPU A INTAKE",
		.type	= FCU_FAN_RPM,
		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
	},
	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
		.loc	= "CPU A EXHAUST",
		.type	= FCU_FAN_RPM,
		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
	},
	[CPUB_INTAKE_FAN_RPM_INDEX] = {
		.loc	= "CPU B INTAKE",
		.type	= FCU_FAN_RPM,
		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
	},
	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
		.loc	= "CPU B EXHAUST",
		.type	= FCU_FAN_RPM,
		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
	},
	/* pumps aren't present by default, have to be looked up in the
	 * device-tree
	 */
	[CPUA_PUMP_RPM_INDEX] = {
		.loc	= "CPU A PUMP",
		.type	= FCU_FAN_RPM,		
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPUB_PUMP_RPM_INDEX] = {
		.loc	= "CPU B PUMP",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	/* Xserve fans */
	[CPU_A1_FAN_RPM_INDEX] = {
		.loc	= "CPU A 1",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPU_A2_FAN_RPM_INDEX] = {
		.loc	= "CPU A 2",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPU_A3_FAN_RPM_INDEX] = {
		.loc	= "CPU A 3",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPU_B1_FAN_RPM_INDEX] = {
		.loc	= "CPU B 1",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPU_B2_FAN_RPM_INDEX] = {
		.loc	= "CPU B 2",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
	[CPU_B3_FAN_RPM_INDEX] = {
		.loc	= "CPU B 3",
		.type	= FCU_FAN_RPM,
		.id	= FCU_FAN_ABSENT_ID,
	},
};

/*
 * i2c_driver structure to attach to the host i2c controller
 */

static int therm_pm72_attach(struct i2c_adapter *adapter);
static int therm_pm72_detach(struct i2c_adapter *adapter);

static struct i2c_driver therm_pm72_driver =
{
	.driver = {
		.name	= "therm_pm72",
	},
	.attach_adapter	= therm_pm72_attach,
	.detach_adapter	= therm_pm72_detach,
};

/*
 * Utility function to create an i2c_client structure and
 * attach it to one of u3 adapters
 */
static struct i2c_client *attach_i2c_chip(int id, const char *name)
{
	struct i2c_client *clt;
	struct i2c_adapter *adap;

	if (id & 0x200)
		adap = k2;
	else if (id & 0x100)
		adap = u3_1;
	else
		adap = u3_0;
	if (adap == NULL)
		return NULL;

	clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
	if (clt == NULL)
		return NULL;
	memset(clt, 0, sizeof(struct i2c_client));

	clt->addr = (id >> 1) & 0x7f;
	clt->adapter = adap;
	clt->driver = &therm_pm72_driver;
	strncpy(clt->name, name, I2C_NAME_SIZE-1);

	if (i2c_attach_client(clt)) {
		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
		kfree(clt);
		return NULL;
	}
	return clt;
}

/*
 * Utility function to get rid of the i2c_client structure
 * (will also detach from the adapter hopepfully)
 */
static void detach_i2c_chip(struct i2c_client *clt)
{
	i2c_detach_client(clt);
	kfree(clt);
}

/*
 * Here are the i2c chip access wrappers
 */

static void initialize_adc(struct cpu_pid_state *state)
{
	int rc;
	u8 buf[2];

	/* Read ADC the configuration register and cache it. We
	 * also make sure Config2 contains proper values, I've seen
	 * cases where we got stale grabage in there, thus preventing
	 * proper reading of conv. values
	 */

	/* Clear Config2 */
	buf[0] = 5;
	buf[1] = 0;
	i2c_master_send(state->monitor, buf, 2);

	/* Read & cache Config1 */
	buf[0] = 1;
	rc = i2c_master_send(state->monitor, buf, 1);
	if (rc > 0) {
		rc = i2c_master_recv(state->monitor, buf, 1);
		if (rc > 0) {
			state->adc_config = buf[0];
			DBG("ADC config reg: %02x\n", state->adc_config);
			/* Disable shutdown mode */
		       	state->adc_config &= 0xfe;
			buf[0] = 1;
			buf[1] = state->adc_config;
			rc = i2c_master_send(state->monitor, buf, 2);
		}
	}
	if (rc <= 0)
		printk(KERN_ERR "therm_pm72: Error reading ADC config"
		       " register !\n");
}

static int read_smon_adc(struct cpu_pid_state *state, int chan)
{
	int rc, data, tries = 0;
	u8 buf[2];

	for (;;) {
		/* Set channel */
		buf[0] = 1;
		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
		rc = i2c_master_send(state->monitor, buf, 2);
		if (rc <= 0)
			goto error;
		/* Wait for convertion */
		msleep(1);
		/* Switch to data register */
		buf[0] = 4;
		rc = i2c_master_send(state->monitor, buf, 1);
		if (rc <= 0)
			goto error;
		/* Read result */
		rc = i2c_master_recv(state->monitor, buf, 2);
		if (rc < 0)
			goto error;
		data = ((u16)buf[0]) << 8 | (u16)buf[1];
		return data >> 6;
	error:
		DBG("Error reading ADC, retrying...\n");
		if (++tries > 10) {
			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
			return -1;
		}
		msleep(10);
	}
}

static int read_lm87_reg(struct i2c_client * chip, int reg)
{
	int rc, tries = 0;
	u8 buf;

	for (;;) {
		/* Set address */
		buf = (u8)reg;
		rc = i2c_master_send(chip, &buf, 1);
		if (rc <= 0)
			goto error;
		rc = i2c_master_recv(chip, &buf, 1);
		if (rc <= 0)
			goto error;
		return (int)buf;
	error:
		DBG("Error reading LM87, retrying...\n");
		if (++tries > 10) {
			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
			return -1;
		}
		msleep(10);
	}
}

static int fan_read_reg(int reg, unsigned char *buf, int nb)
{
	int tries, nr, nw;

	buf[0] = reg;
	tries = 0;
	for (;;) {
		nw = i2c_master_send(fcu, buf, 1);
		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
			break;
		msleep(10);
		++tries;
	}
	if (nw <= 0) {
		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
		return -EIO;
	}
	tries = 0;
	for (;;) {
		nr = i2c_master_recv(fcu, buf, nb);
		if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
			break;
		msleep(10);
		++tries;
	}
	if (nr <= 0)
		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
	return nr;
}

static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
{
	int tries, nw;
	unsigned char buf[16];

	buf[0] = reg;
	memcpy(buf+1, ptr, nb);
	++nb;
	tries = 0;
	for (;;) {
		nw = i2c_master_send(fcu, buf, nb);
		if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
			break;
		msleep(10);
		++tries;
	}
	if (nw < 0)
		printk(KERN_ERR "Failure writing to FCU: %d", nw);
	return nw;
}

static int start_fcu(void)
{
	unsigned char buf = 0xff;
	int rc;

	rc = fan_write_reg(0xe, &buf, 1);
	if (rc < 0)
		return -EIO;
	rc = fan_write_reg(0x2e, &buf, 1);
	if (rc < 0)
		return -EIO;
	return 0;
}

static int set_rpm_fan(int fan_index, int rpm)
{
	unsigned char buf[2];
	int rc, id;

	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
		return -EINVAL;
	id = fcu_fans[fan_index].id; 
	if (id == FCU_FAN_ABSENT_ID)
		return -EINVAL;

	if (rpm < 300)
		rpm = 300;
	else if (rpm > 8191)
		rpm = 8191;
	buf[0] = rpm >> 5;
	buf[1] = rpm << 3;
	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
	if (rc < 0)
		return -EIO;
	return 0;
}

static int get_rpm_fan(int fan_index, int programmed)
{
	unsigned char failure;
	unsigned char active;
	unsigned char buf[2];
	int rc, id, reg_base;

	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
		return -EINVAL;
	id = fcu_fans[fan_index].id; 
	if (id == FCU_FAN_ABSENT_ID)
		return -EINVAL;

	rc = fan_read_reg(0xb, &failure, 1);
	if (rc != 1)
		return -EIO;
	if ((failure & (1 << id)) != 0)
		return -EFAULT;
	rc = fan_read_reg(0xd, &active, 1);
	if (rc != 1)
		return -EIO;
	if ((active & (1 << id)) == 0)
		return -ENXIO;

	/* Programmed value or real current speed */
	reg_base = programmed ? 0x10 : 0x11;
	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
	if (rc != 2)
		return -EIO;

	return (buf[0] << 5) | buf[1] >> 3;
}

static int set_pwm_fan(int fan_index, int pwm)
{
	unsigned char buf[2];
	int rc, id;

	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
		return -EINVAL;
	id = fcu_fans[fan_index].id; 
	if (id == FCU_FAN_ABSENT_ID)
		return -EINVAL;

	if (pwm < 10)
		pwm = 10;
	else if (pwm > 100)
		pwm = 100;
	pwm = (pwm * 2559) / 1000;
	buf[0] = pwm;
	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
	if (rc < 0)
		return rc;
	return 0;
}

static int get_pwm_fan(int fan_index)
{
	unsigned char failure;
	unsigned char active;
	unsigned char buf[2];
	int rc, id;

	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
		return -EINVAL;
	id = fcu_fans[fan_index].id; 
	if (id == FCU_FAN_ABSENT_ID)
		return -EINVAL;

	rc = fan_read_reg(0x2b, &failure, 1);
	if (rc != 1)
		return -EIO;
	if ((failure & (1 << id)) != 0)
		return -EFAULT;
	rc = fan_read_reg(0x2d, &active, 1);
	if (rc != 1)
		return -EIO;
	if ((active & (1 << id)) == 0)
		return -ENXIO;

	/* Programmed value or real current speed */
	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
	if (rc != 1)
		return -EIO;

	return (buf[0] * 1000) / 2559;
}

/*
 * Utility routine to read the CPU calibration EEPROM data
 * from the device-tree
 */
static int read_eeprom(int cpu, struct mpu_data *out)
{
	struct device_node *np;
	char nodename[64];
	u8 *data;
	int len;

	/* prom.c routine for finding a node by path is a bit brain dead
	 * and requires exact @xxx unit numbers. This is a bit ugly but
	 * will work for these machines
	 */
	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
	np = of_find_node_by_path(nodename);
	if (np == NULL) {
		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
		return -ENODEV;
	}
	data = (u8 *)get_property(np, "cpuid", &len);
	if (data == NULL) {
		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
		of_node_put(np);
		return -ENODEV;
	}
	memcpy(out, data, sizeof(struct mpu_data));
	of_node_put(np);
	
	return 0;
}

static void fetch_cpu_pumps_minmax(void)
{
	struct cpu_pid_state *state0 = &cpu_state[0];
	struct cpu_pid_state *state1 = &cpu_state[1];
	u16 pump_min = 0, pump_max = 0xffff;
	u16 tmp[4];

	/* Try to fetch pumps min/max infos from eeprom */

	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
		pump_min = max(pump_min, tmp[0]);
		pump_max = min(pump_max, tmp[1]);
	}
	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
		pump_min = max(pump_min, tmp[2]);
		pump_max = min(pump_max, tmp[3]);
	}

	/* Double check the values, this _IS_ needed as the EEPROM on
	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
	 * same to the same value ... (grrrr)
	 */
	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
		pump_min = CPU_PUMP_OUTPUT_MIN;
		pump_max = CPU_PUMP_OUTPUT_MAX;
	}

	state0->pump_min = state1->pump_min = pump_min;
	state0->pump_max = state1->pump_max = pump_max;
}

/* 
 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 * pass around to the attribute functions, so we don't really have
 * choice but implement a bunch of them...
 *
 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 * the input twice... I accept patches :)
 */
#define BUILD_SHOW_FUNC_FIX(name, data)				\
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
{								\
	ssize_t r;						\
	down(&driver_lock);					\
	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
	up(&driver_lock);					\
	return r;						\
}
#define BUILD_SHOW_FUNC_INT(name, data)				\
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
{								\
	return sprintf(buf, "%d", data);			\
}

BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)

BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)

BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)

BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)

BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)

static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);

static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);

static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);

static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);

static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);

/*
 * CPUs fans control loop
 */

static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
{
	s32 ltemp, volts, amps;
	int index, rc = 0;

	/* Default (in case of error) */
	*temp = state->cur_temp;
	*power = state->cur_power;

	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
		index = (state->index == 0) ?
			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
	else
		index = (state->index == 0) ?
			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;

	/* Read current fan status */
	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
	if (rc < 0) {
		/* XXX What do we do now ? Nothing for now, keep old value, but
		 * return error upstream
		 */
		DBG("  cpu %d, fan reading error !\n", state->index);
	} else {
		state->rpm = rc;
		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
	}

	/* Get some sensor readings and scale it */
	ltemp = read_smon_adc(state, 1);
	if (ltemp == -1) {
		/* XXX What do we do now ? */
		state->overtemp++;
		if (rc == 0)
			rc = -EIO;
		DBG("  cpu %d, temp reading error !\n", state->index);
	} else {
		/* Fixup temperature according to diode calibration
		 */
		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
		    state->index,
		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
		state->last_temp = *temp;
		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
	}

	/*
	 * Read voltage & current and calculate power
	 */
	volts = read_smon_adc(state, 3);
	amps = read_smon_adc(state, 4);

	/* Scale voltage and current raw sensor values according to fixed scales
	 * obtained in Darwin and calculate power from I and V
	 */
	volts *= ADC_CPU_VOLTAGE_SCALE;
	amps *= ADC_CPU_CURRENT_SCALE;
	*power = (((u64)volts) * ((u64)amps)) >> 16;
	state->voltage = volts;
	state->current_a = amps;
	state->last_power = *power;

	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
	    state->index, FIX32TOPRINT(state->current_a),
	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));

	return 0;
}

static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
{
	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
	s64 integ_p, deriv_p, prop_p, sum; 
	int i;

	/* Calculate power target value (could be done once for all)
	 * and convert to a 16.16 fp number
	 */
	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
	DBG("  power target: %d.%03d, error: %d.%03d\n",
	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));

	/* Store temperature and power in history array */
	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
	state->temp_history[state->cur_temp] = temp;
	state->cur_power = (state->cur_power + 1) % state->count_power;
	state->power_history[state->cur_power] = power;
	state->error_history[state->cur_power] = power_target - power;
	
	/* If first loop, fill the history table */
	if (state->first) {
		for (i = 0; i < (state->count_power - 1); i++) {
			state->cur_power = (state->cur_power + 1) % state->count_power;
			state->power_history[state->cur_power] = power;
			state->error_history[state->cur_power] = power_target - power;
		}
		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
			state->temp_history[state->cur_temp] = temp;			
		}
		state->first = 0;
	}

	/* Calculate the integral term normally based on the "power" values */
	sum = 0;
	integral = 0;
	for (i = 0; i < state->count_power; i++)
		integral += state->error_history[i];
	integral *= CPU_PID_INTERVAL;
	DBG("  integral: %08x\n", integral);

	/* Calculate the adjusted input (sense value).
	 *   G_r is 12.20
	 *   integ is 16.16
	 *   so the result is 28.36
	 *
	 * input target is mpu.ttarget, input max is mpu.tmax
	 */
	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
	adj_in_target = (state->mpu.ttarget << 16);
	if (adj_in_target > sval)
		adj_in_target = sval;
	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
	    state->mpu.ttarget);

	/* Calculate the derivative term */
	derivative = state->temp_history[state->cur_temp] -
		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
				    % CPU_TEMP_HISTORY_SIZE];
	derivative /= CPU_PID_INTERVAL;
	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
	sum += deriv_p;

	/* Calculate the proportional term */
	proportional = temp - adj_in_target;
	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
	sum += prop_p;

	/* Scale sum */
	sum >>= 36;

	DBG("   sum: %d\n", (int)sum);
	state->rpm += (s32)sum;
}

static void do_monitor_cpu_combined(void)
{
	struct cpu_pid_state *state0 = &cpu_state[0];
	struct cpu_pid_state *state1 = &cpu_state[1];
	s32 temp0, power0, temp1, power1;
	s32 temp_combi, power_combi;
	int rc, intake, pump;

	rc = do_read_one_cpu_values(state0, &temp0, &power0);
	if (rc < 0) {
		/* XXX What do we do now ? */
	}
	state1->overtemp = 0;
	rc = do_read_one_cpu_values(state1, &temp1, &power1);
	if (rc < 0) {
		/* XXX What do we do now ? */
	}
	if (state1->overtemp)
		state0->overtemp++;

	temp_combi = max(temp0, temp1);
	power_combi = max(power0, power1);

	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
	 * full blown immediately and try to trigger a shutdown
	 */
	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
		       temp_combi >> 16);
		state0->overtemp += CPU_MAX_OVERTEMP / 4;
	} else if (temp_combi > (state0->mpu.tmax << 16))
		state0->overtemp++;
	else
		state0->overtemp = 0;
	if (state0->overtemp >= CPU_MAX_OVERTEMP)
		critical_state = 1;
	if (state0->overtemp > 0) {
		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
		pump = state0->pump_max;
		goto do_set_fans;
	}

	/* Do the PID */
	do_cpu_pid(state0, temp_combi, power_combi);

	/* Range check */
	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);

	/* Calculate intake fan speed */
	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
	state0->intake_rpm = intake;

	/* Calculate pump speed */
	pump = (state0->rpm * state0->pump_max) /
		state0->mpu.rmaxn_exhaust_fan;
	pump = min(pump, state0->pump_max);
	pump = max(pump, state0->pump_min);
	
 do_set_fans:
	/* We copy values from state 0 to state 1 for /sysfs */
	state1->rpm = state0->rpm;
	state1->intake_rpm = state0->intake_rpm;

	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);

	/* We should check for errors, shouldn't we ? But then, what
	 * do we do once the error occurs ? For FCU notified fan
	 * failures (-EFAULT) we probably want to notify userland
	 * some way...
	 */
	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);

	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
}

static void do_monitor_cpu_split(struct cpu_pid_state *state)
{
	s32 temp, power;
	int rc, intake;

	/* Read current fan status */
	rc = do_read_one_cpu_values(state, &temp, &power);
	if (rc < 0) {
		/* XXX What do we do now ? */
	}

	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
	 * full blown immediately and try to trigger a shutdown
	 */
	if (temp >= ((state->mpu.tmax + 8) << 16)) {
		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
		       " (%d) !\n",
		       state->index, temp >> 16);
		state->overtemp += CPU_MAX_OVERTEMP / 4;
	} else if (temp > (state->mpu.tmax << 16))
		state->overtemp++;
	else
		state->overtemp = 0;
	if (state->overtemp >= CPU_MAX_OVERTEMP)
		critical_state = 1;
	if (state->overtemp > 0) {
		state->rpm = state->mpu.rmaxn_exhaust_fan;
		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
		goto do_set_fans;
	}

	/* Do the PID */
	do_cpu_pid(state, temp, power);

	/* Range check */
	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);

	/* Calculate intake fan */
	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
	intake = max(intake, (int)state->mpu.rminn_intake_fan);
	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
	state->intake_rpm = intake;

 do_set_fans:
	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
	    state->index, (int)state->rpm, intake, state->overtemp);

	/* We should check for errors, shouldn't we ? But then, what
	 * do we do once the error occurs ? For FCU notified fan
	 * failures (-EFAULT) we probably want to notify userland
	 * some way...
	 */
	if (state->index == 0) {
		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
	} else {
		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
	}
}

static void do_monitor_cpu_rack(struct cpu_pid_state *state)
{
	s32 temp, power, fan_min;
	int rc;

	/* Read current fan status */
	rc = do_read_one_cpu_values(state, &temp, &power);
	if (rc < 0) {
		/* XXX What do we do now ? */
	}

	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
	 * full blown immediately and try to trigger a shutdown
	 */
	if (temp >= ((state->mpu.tmax + 8) << 16)) {
		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
		       " (%d) !\n",
		       state->index, temp >> 16);
		state->overtemp = CPU_MAX_OVERTEMP / 4;
	} else if (temp > (state->mpu.tmax << 16))
		state->overtemp++;
	else
		state->overtemp = 0;
	if (state->overtemp >= CPU_MAX_OVERTEMP)
		critical_state = 1;
	if (state->overtemp > 0) {
		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
		goto do_set_fans;
	}

	/* Do the PID */
	do_cpu_pid(state, temp, power);

	/* Check clamp from dimms */
	fan_min = dimm_output_clamp;
	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);

	state->rpm = max(state->rpm, (int)fan_min);
	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
	state->intake_rpm = state->rpm;

 do_set_fans:
	DBG("** CPU %d RPM: %d overtemp: %d\n",
	    state->index, (int)state->rpm, state->overtemp);

	/* We should check for errors, shouldn't we ? But then, what
	 * do we do once the error occurs ? For FCU notified fan
	 * failures (-EFAULT) we probably want to notify userland
	 * some way...
	 */
	if (state->index == 0) {
		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
	} else {
		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
	}
}

/*
 * Initialize the state structure for one CPU control loop
 */
static int init_cpu_state(struct cpu_pid_state *state, int index)
{
	state->index = index;
	state->first = 1;
	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
	state->overtemp = 0;
	state->adc_config = 0x00;


	if (index == 0)
		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
	else if (index == 1)
		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
	if (state->monitor == NULL)
		goto fail;

	if (read_eeprom(index, &state->mpu))
		goto fail;

	state->count_power = state->mpu.tguardband;
	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
		printk(KERN_WARNING "Warning ! too many power history slots\n");
		state->count_power = CPU_POWER_HISTORY_SIZE;
	}
	DBG("CPU %d Using %d power history entries\n", index, state->count_power);

	if (index == 0) {
		device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
		device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
		device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
		device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
		device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
	} else {
		device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
		device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
		device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
		device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
		device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
	}

	return 0;
 fail:
	if (state->monitor)
		detach_i2c_chip(state->monitor);
	state->monitor = NULL;
	
	return -ENODEV;
}

/*
 * Dispose of the state data for one CPU control loop
 */
static void dispose_cpu_state(struct cpu_pid_state *state)
{
	if (state->monitor == NULL)
		return;

	if (state->index == 0) {
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
	} else {
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
	}

	detach_i2c_chip(state->monitor);
	state->monitor = NULL;
}

/*
 * Motherboard backside & U3 heatsink fan control loop
 */
static void do_monitor_backside(struct backside_pid_state *state)
{
	s32 temp, integral, derivative, fan_min;
	s64 integ_p, deriv_p, prop_p, sum; 
	int i, rc;

	if (--state->ticks != 0)
		return;
	state->ticks = backside_params.interval;

	DBG("backside:\n");

	/* Check fan status */
	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
	if (rc < 0) {
		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
		/* XXX What do we do now ? */
	} else
		state->pwm = rc;
	DBG("  current pwm: %d\n", state->pwm);

	/* Get some sensor readings */
	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
	state->last_temp = temp;
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
	    FIX32TOPRINT(backside_params.input_target));

	/* Store temperature and error in history array */
	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
	state->sample_history[state->cur_sample] = temp;
	state->error_history[state->cur_sample] = temp - backside_params.input_target;
	
	/* If first loop, fill the history table */
	if (state->first) {
		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
			state->cur_sample = (state->cur_sample + 1) %
				BACKSIDE_PID_HISTORY_SIZE;
			state->sample_history[state->cur_sample] = temp;
			state->error_history[state->cur_sample] =
				temp - backside_params.input_target;
		}
		state->first = 0;
	}

	/* Calculate the integral term */
	sum = 0;
	integral = 0;
	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
		integral += state->error_history[i];
	integral *= backside_params.interval;
	DBG("  integral: %08x\n", integral);
	integ_p = ((s64)backside_params.G_r) * (s64)integral;
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
	sum += integ_p;

	/* Calculate the derivative term */
	derivative = state->error_history[state->cur_sample] -
		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
				    % BACKSIDE_PID_HISTORY_SIZE];
	derivative /= backside_params.interval;
	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
	sum += deriv_p;

	/* Calculate the proportional term */
	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
	sum += prop_p;

	/* Scale sum */
	sum >>= 36;

	DBG("   sum: %d\n", (int)sum);
	if (backside_params.additive)
		state->pwm += (s32)sum;
	else
		state->pwm = sum;

	/* Check for clamp */
	fan_min = (dimm_output_clamp * 100) / 14000;
	fan_min = max(fan_min, backside_params.output_min);

	state->pwm = max(state->pwm, fan_min);
	state->pwm = min(state->pwm, backside_params.output_max);

	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
}

/*
 * Initialize the state structure for the backside fan control loop
 */
static int init_backside_state(struct backside_pid_state *state)
{
	struct device_node *u3;
	int u3h = 1; /* conservative by default */

	/*
	 * There are different PID params for machines with U3 and machines
	 * with U3H, pick the right ones now
	 */
	u3 = of_find_node_by_path("/u3@0,f8000000");
	if (u3 != NULL) {
		u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
		if (vers)
			if (((*vers) & 0x3f) < 0x34)
				u3h = 0;
		of_node_put(u3);
	}

	if (rackmac) {
		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
		backside_params.G_r = BACKSIDE_PID_G_r;
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
		backside_params.additive = 0;
	} else if (u3h) {
		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
		backside_params.interval = BACKSIDE_PID_INTERVAL;
		backside_params.G_p = BACKSIDE_PID_G_p;
		backside_params.G_r = BACKSIDE_PID_G_r;
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
		backside_params.additive = 1;
	} else {
		backside_params.G_d = BACKSIDE_PID_U3_G_d;
		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
		backside_params.interval = BACKSIDE_PID_INTERVAL;
		backside_params.G_p = BACKSIDE_PID_G_p;
		backside_params.G_r = BACKSIDE_PID_G_r;
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
		backside_params.additive = 1;
	}

	state->ticks = 1;
	state->first = 1;
	state->pwm = 50;

	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
	if (state->monitor == NULL)
		return -ENODEV;

	device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
	device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);

	return 0;
}

/*
 * Dispose of the state data for the backside control loop
 */
static void dispose_backside_state(struct backside_pid_state *state)
{
	if (state->monitor == NULL)
		return;

	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);

	detach_i2c_chip(state->monitor);
	state->monitor = NULL;
}
 
/*
 * Drives bay fan control loop
 */
static void do_monitor_drives(struct drives_pid_state *state)
{
	s32 temp, integral, derivative;
	s64 integ_p, deriv_p, prop_p, sum; 
	int i, rc;

	if (--state->ticks != 0)
		return;
	state->ticks = DRIVES_PID_INTERVAL;

	DBG("drives:\n");

	/* Check fan status */
	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
	if (rc < 0) {
		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
		/* XXX What do we do now ? */
	} else
		state->rpm = rc;
	DBG("  current rpm: %d\n", state->rpm);

	/* Get some sensor readings */
	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
	state->last_temp = temp;
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));

	/* Store temperature and error in history array */
	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
	state->sample_history[state->cur_sample] = temp;
	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
	
	/* If first loop, fill the history table */
	if (state->first) {
		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
			state->cur_sample = (state->cur_sample + 1) %
				DRIVES_PID_HISTORY_SIZE;
			state->sample_history[state->cur_sample] = temp;
			state->error_history[state->cur_sample] =
				temp - DRIVES_PID_INPUT_TARGET;
		}
		state->first = 0;
	}

	/* Calculate the integral term */
	sum = 0;
	integral = 0;
	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
		integral += state->error_history[i];
	integral *= DRIVES_PID_INTERVAL;
	DBG("  integral: %08x\n", integral);
	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
	sum += integ_p;

	/* Calculate the derivative term */
	derivative = state->error_history[state->cur_sample] -
		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
				    % DRIVES_PID_HISTORY_SIZE];
	derivative /= DRIVES_PID_INTERVAL;
	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
	sum += deriv_p;

	/* Calculate the proportional term */
	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
	sum += prop_p;

	/* Scale sum */
	sum >>= 36;

	DBG("   sum: %d\n", (int)sum);
	state->rpm += (s32)sum;

	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);

	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
}

/*
 * Initialize the state structure for the drives bay fan control loop
 */
static int init_drives_state(struct drives_pid_state *state)
{
	state->ticks = 1;
	state->first = 1;
	state->rpm = 1000;

	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
	if (state->monitor == NULL)
		return -ENODEV;

	device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
	device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);

	return 0;
}

/*
 * Dispose of the state data for the drives control loop
 */
static void dispose_drives_state(struct drives_pid_state *state)
{
	if (state->monitor == NULL)
		return;

	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);

	detach_i2c_chip(state->monitor);
	state->monitor = NULL;
}

/*
 * DIMMs temp control loop
 */
static void do_monitor_dimms(struct dimm_pid_state *state)
{
	s32 temp, integral, derivative, fan_min;
	s64 integ_p, deriv_p, prop_p, sum;
	int i;

	if (--state->ticks != 0)
		return;
	state->ticks = DIMM_PID_INTERVAL;

	DBG("DIMM:\n");

	DBG("  current value: %d\n", state->output);

	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
	if (temp < 0)
		return;
	temp <<= 16;
	state->last_temp = temp;
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));

	/* Store temperature and error in history array */
	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
	state->sample_history[state->cur_sample] = temp;
	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;

	/* If first loop, fill the history table */
	if (state->first) {
		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
			state->cur_sample = (state->cur_sample + 1) %
				DIMM_PID_HISTORY_SIZE;
			state->sample_history[state->cur_sample] = temp;
			state->error_history[state->cur_sample] =
				temp - DIMM_PID_INPUT_TARGET;
		}
		state->first = 0;
	}

	/* Calculate the integral term */
	sum = 0;
	integral = 0;
	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
		integral += state->error_history[i];
	integral *= DIMM_PID_INTERVAL;
	DBG("  integral: %08x\n", integral);
	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
	sum += integ_p;

	/* Calculate the derivative term */
	derivative = state->error_history[state->cur_sample] -
		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
				    % DIMM_PID_HISTORY_SIZE];
	derivative /= DIMM_PID_INTERVAL;
	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
	sum += deriv_p;

	/* Calculate the proportional term */
	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
	sum += prop_p;

	/* Scale sum */
	sum >>= 36;

	DBG("   sum: %d\n", (int)sum);
	state->output = (s32)sum;
	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
	dimm_output_clamp = state->output;

	DBG("** DIMM clamp value: %d\n", (int)state->output);

	/* Backside PID is only every 5 seconds, force backside fan clamping now */
	fan_min = (dimm_output_clamp * 100) / 14000;
	fan_min = max(fan_min, backside_params.output_min);
	if (backside_state.pwm < fan_min) {
		backside_state.pwm = fan_min;
		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
	}
}

/*
 * Initialize the state structure for the DIMM temp control loop
 */
static int init_dimms_state(struct dimm_pid_state *state)
{
	state->ticks = 1;
	state->first = 1;
	state->output = 4000;

	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
	if (state->monitor == NULL)
		return -ENODEV;

       	device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);

	return 0;
}

/*
 * Dispose of the state data for the drives control loop
 */
static void dispose_dimms_state(struct dimm_pid_state *state)
{
	if (state->monitor == NULL)
		return;

	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);

	detach_i2c_chip(state->monitor);
	state->monitor = NULL;
}

static int call_critical_overtemp(void)
{
	char *argv[] = { critical_overtemp_path, NULL };
	static char *envp[] = { "HOME=/",
				"TERM=linux",
				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
				NULL };

	return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
}


/*
 * Here's the kernel thread that calls the various control loops
 */
static int main_control_loop(void *x)
{
	daemonize("kfand");

	DBG("main_control_loop started\n");

	down(&driver_lock);

	if (start_fcu() < 0) {
		printk(KERN_ERR "kfand: failed to start FCU\n");
		up(&driver_lock);
		goto out;
	}

	/* Set the PCI fan once for now */
	set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);

	/* Initialize ADCs */
	initialize_adc(&cpu_state[0]);
	if (cpu_state[1].monitor != NULL)
		initialize_adc(&cpu_state[1]);

	up(&driver_lock);

	while (state == state_attached) {
		unsigned long elapsed, start;

		start = jiffies;

		down(&driver_lock);

		/* First, we always calculate the new DIMMs state on an Xserve */
		if (rackmac)
			do_monitor_dimms(&dimms_state);

		/* Then, the CPUs */
		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
			do_monitor_cpu_combined();
		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
			do_monitor_cpu_rack(&cpu_state[0]);
			if (cpu_state[1].monitor != NULL)
				do_monitor_cpu_rack(&cpu_state[1]);
			// better deal with UP
		} else {
			do_monitor_cpu_split(&cpu_state[0]);
			if (cpu_state[1].monitor != NULL)
				do_monitor_cpu_split(&cpu_state[1]);
			// better deal with UP
		}
		/* Then, the rest */
		do_monitor_backside(&backside_state);
		if (!rackmac)
			do_monitor_drives(&drives_state);
		up(&driver_lock);

		if (critical_state == 1) {
			printk(KERN_WARNING "Temperature control detected a critical condition\n");
			printk(KERN_WARNING "Attempting to shut down...\n");
			if (call_critical_overtemp()) {
				printk(KERN_WARNING "Can't call %s, power off now!\n",
				       critical_overtemp_path);
				machine_power_off();
			}
		}
		if (critical_state > 0)
			critical_state++;
		if (critical_state > MAX_CRITICAL_STATE) {
			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
			machine_power_off();
		}

		// FIXME: Deal with signals
		elapsed = jiffies - start;
		if (elapsed < HZ)
			schedule_timeout_interruptible(HZ - elapsed);
	}

 out:
	DBG("main_control_loop ended\n");

	ctrl_task = 0;
	complete_and_exit(&ctrl_complete, 0);
}

/*
 * Dispose the control loops when tearing down
 */
static void dispose_control_loops(void)
{
	dispose_cpu_state(&cpu_state[0]);
	dispose_cpu_state(&cpu_state[1]);
	dispose_backside_state(&backside_state);
	dispose_drives_state(&drives_state);
	dispose_dimms_state(&dimms_state);
}

/*
 * Create the control loops. U3-0 i2c bus is up, so we can now
 * get to the various sensors
 */
static int create_control_loops(void)
{
	struct device_node *np;

	/* Count CPUs from the device-tree, we don't care how many are
	 * actually used by Linux
	 */
	cpu_count = 0;
	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
		cpu_count++;

	DBG("counted %d CPUs in the device-tree\n", cpu_count);

	/* Decide the type of PID algorithm to use based on the presence of
	 * the pumps, though that may not be the best way, that is good enough
	 * for now
	 */
	if (rackmac)
		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
	else if (machine_is_compatible("PowerMac7,3")
	    && (cpu_count > 1)
	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
		cpu_pid_type = CPU_PID_TYPE_COMBINED;
	} else
		cpu_pid_type = CPU_PID_TYPE_SPLIT;

	/* Create control loops for everything. If any fail, everything
	 * fails
	 */
	if (init_cpu_state(&cpu_state[0], 0))
		goto fail;
	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
		fetch_cpu_pumps_minmax();

	if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
		goto fail;
	if (init_backside_state(&backside_state))
		goto fail;
	if (rackmac && init_dimms_state(&dimms_state))
		goto fail;
	if (!rackmac && init_drives_state(&drives_state))
		goto fail;

	DBG("all control loops up !\n");

	return 0;
	
 fail:
	DBG("failure creating control loops, disposing\n");

	dispose_control_loops();

	return -ENODEV;
}

/*
 * Start the control loops after everything is up, that is create
 * the thread that will make them run
 */
static void start_control_loops(void)
{
	init_completion(&ctrl_complete);

	ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
}

/*
 * Stop the control loops when tearing down
 */
static void stop_control_loops(void)
{
	if (ctrl_task != 0)
		wait_for_completion(&ctrl_complete);
}

/*
 * Attach to the i2c FCU after detecting U3-1 bus
 */
static int attach_fcu(void)
{
	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
	if (fcu == NULL)
		return -ENODEV;

	DBG("FCU attached\n");

	return 0;
}

/*
 * Detach from the i2c FCU when tearing down
 */
static void detach_fcu(void)
{
	if (fcu)
		detach_i2c_chip(fcu);
	fcu = NULL;
}

/*
 * Attach to the i2c controller. We probe the various chips based
 * on the device-tree nodes and build everything for the driver to
 * run, we then kick the driver monitoring thread
 */
static int therm_pm72_attach(struct i2c_adapter *adapter)
{
	down(&driver_lock);

	/* Check state */
	if (state == state_detached)
		state = state_attaching;
	if (state != state_attaching) {
		up(&driver_lock);
		return 0;
	}

	/* Check if we are looking for one of these */
	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
		u3_0 = adapter;
		DBG("found U3-0\n");
		if (k2 || !rackmac)
			if (create_control_loops())
				u3_0 = NULL;
	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
		u3_1 = adapter;
		DBG("found U3-1, attaching FCU\n");
		if (attach_fcu())
			u3_1 = NULL;
	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
		k2 = adapter;
		DBG("Found K2\n");
		if (u3_0 && rackmac)
			if (create_control_loops())
				k2 = NULL;
	}
	/* We got all we need, start control loops */
	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
		DBG("everything up, starting control loops\n");
		state = state_attached;
		start_control_loops();
	}
	up(&driver_lock);

	return 0;
}

/*
 * Called on every adapter when the driver or the i2c controller
 * is going away.
 */
static int therm_pm72_detach(struct i2c_adapter *adapter)
{
	down(&driver_lock);

	if (state != state_detached)
		state = state_detaching;

	/* Stop control loops if any */
	DBG("stopping control loops\n");
	up(&driver_lock);
	stop_control_loops();
	down(&driver_lock);

	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
		DBG("lost U3-0, disposing control loops\n");
		dispose_control_loops();
		u3_0 = NULL;
	}
	
	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
		DBG("lost U3-1, detaching FCU\n");
		detach_fcu();
		u3_1 = NULL;
	}
	if (u3_0 == NULL && u3_1 == NULL)
		state = state_detached;

	up(&driver_lock);

	return 0;
}

static int fan_check_loc_match(const char *loc, int fan)
{
	char	tmp[64];
	char	*c, *e;

	strlcpy(tmp, fcu_fans[fan].loc, 64);

	c = tmp;
	for (;;) {
		e = strchr(c, ',');
		if (e)
			*e = 0;
		if (strcmp(loc, c) == 0)
			return 1;
		if (e == NULL)
			break;
		c = e + 1;
	}
	return 0;
}

static void fcu_lookup_fans(struct device_node *fcu_node)
{
	struct device_node *np = NULL;
	int i;

	/* The table is filled by default with values that are suitable
	 * for the old machines without device-tree informations. We scan
	 * the device-tree and override those values with whatever is
	 * there
	 */

	DBG("Looking up FCU controls in device-tree...\n");

	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
		int type = -1;
		char *loc;
		u32 *reg;

		DBG(" control: %s, type: %s\n", np->name, np->type);

		/* Detect control type */
		if (!strcmp(np->type, "fan-rpm-control") ||
		    !strcmp(np->type, "fan-rpm"))
			type = FCU_FAN_RPM;
		if (!strcmp(np->type, "fan-pwm-control") ||
		    !strcmp(np->type, "fan-pwm"))
			type = FCU_FAN_PWM;
		/* Only care about fans for now */
		if (type == -1)
			continue;

		/* Lookup for a matching location */
		loc = (char *)get_property(np, "location", NULL);
		reg = (u32 *)get_property(np, "reg", NULL);
		if (loc == NULL || reg == NULL)
			continue;
		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);

		for (i = 0; i < FCU_FAN_COUNT; i++) {
			int fan_id;

			if (!fan_check_loc_match(loc, i))
				continue;
			DBG(" location match, index: %d\n", i);
			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
			if (type != fcu_fans[i].type) {
				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
				       "in device-tree for %s\n", np->full_name);
				break;
			}
			if (type == FCU_FAN_RPM)
				fan_id = ((*reg) - 0x10) / 2;
			else
				fan_id = ((*reg) - 0x30) / 2;
			if (fan_id > 7) {
				printk(KERN_WARNING "therm_pm72: Can't parse "
				       "fan ID in device-tree for %s\n", np->full_name);
				break;
			}
			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
			fcu_fans[i].id = fan_id;
		}
	}

	/* Now dump the array */
	printk(KERN_INFO "Detected fan controls:\n");
	for (i = 0; i < FCU_FAN_COUNT; i++) {
		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
			continue;
		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
		       fcu_fans[i].id, fcu_fans[i].loc);
	}
}

static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
{
	state = state_detached;

	/* Lookup the fans in the device tree */
	fcu_lookup_fans(dev->node);

	/* Add the driver */
	return i2c_add_driver(&therm_pm72_driver);
}

static int fcu_of_remove(struct of_device* dev)
{
	i2c_del_driver(&therm_pm72_driver);

	return 0;
}

static struct of_device_id fcu_match[] = 
{
	{
	.type		= "fcu",
	},
	{},
};

static struct of_platform_driver fcu_of_platform_driver = 
{
	.name 		= "temperature",
	.match_table	= fcu_match,
	.probe		= fcu_of_probe,
	.remove		= fcu_of_remove
};

/*
 * Check machine type, attach to i2c controller
 */
static int __init therm_pm72_init(void)
{
	struct device_node *np;

	rackmac = machine_is_compatible("RackMac3,1");

	if (!machine_is_compatible("PowerMac7,2") &&
	    !machine_is_compatible("PowerMac7,3") &&
	    !rackmac)
	    	return -ENODEV;

	printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);

	np = of_find_node_by_type(NULL, "fcu");
	if (np == NULL) {
		/* Some machines have strangely broken device-tree */
		np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
		if (np == NULL) {
			    printk(KERN_ERR "Can't find FCU in device-tree !\n");
			    return -ENODEV;
		}
	}
	of_dev = of_platform_device_create(np, "temperature", NULL);
	if (of_dev == NULL) {
		printk(KERN_ERR "Can't register FCU platform device !\n");
		return -ENODEV;
	}

	of_register_driver(&fcu_of_platform_driver);
	
	return 0;
}

static void __exit therm_pm72_exit(void)
{
	of_unregister_driver(&fcu_of_platform_driver);

	if (of_dev)
		of_device_unregister(of_dev);
}

module_init(therm_pm72_init);
module_exit(therm_pm72_exit);

MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
MODULE_LICENSE("GPL");