aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/isdn/hisax/hfc_sx.c
blob: b7e8e23be3371b7aa8f61d6dfd975cae26628379 (plain) (tree)
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972





















































































































































































































































































































                                                                                     
           


































































































































































                                                                                         
           
















































































































































































































































































































































































































































































































                                                                                                                         
                                             














                                                                                               
                                                                                                 















                                                                             
           






















                                                                   
           











































































































































































































































































































                                                                                                                                       
                     





























































































































































































                                                                                                               
/* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $
 *
 * level driver for Cologne Chip Designs hfc-s+/sp based cards
 *
 * Author       Werner Cornelius
 *              based on existing driver for CCD HFC PCI cards
 * Copyright    by Werner Cornelius  <werner@isdn4linux.de>
 * 
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 */

#include <linux/init.h>
#include "hisax.h"
#include "hfc_sx.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/isapnp.h>

extern const char *CardType[];

static const char *hfcsx_revision = "$Revision: 1.12.2.5 $";

/***************************************/
/* IRQ-table for CCDs demo board       */
/* IRQs 6,5,10,11,12,15 are supported  */
/***************************************/

/* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
 *
 * Thanks to Uwe Wisniewski
 *
 * ISA-SLOT  Signal      PIN
 * B25        IRQ3     92 IRQ_G
 * B23        IRQ5     94 IRQ_A
 * B4         IRQ2/9   95 IRQ_B
 * D3         IRQ10    96 IRQ_C
 * D4         IRQ11    97 IRQ_D
 * D5         IRQ12    98 IRQ_E
 * D6         IRQ15    99 IRQ_F
 */

#undef CCD_DEMO_BOARD
#ifdef CCD_DEMO_BOARD
static u_char ccd_sp_irqtab[16] = {
  0,0,0,0,0,2,1,0,0,0,3,4,5,0,0,6
};
#else /* Teles 16.3c */
static u_char ccd_sp_irqtab[16] = {
  0,0,0,7,0,1,0,0,0,2,3,4,5,0,0,6
};
#endif
#define NT_T1_COUNT 20		/* number of 3.125ms interrupts for G2 timeout */

#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)

/******************************/
/* In/Out access to registers */
/******************************/
static inline void
Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
{
        byteout(cs->hw.hfcsx.base+1, regnum);
	byteout(cs->hw.hfcsx.base, val);
} 

static inline u_char
Read_hfc(struct IsdnCardState *cs, u_char regnum)
{
        u_char ret; 

        byteout(cs->hw.hfcsx.base+1, regnum);
	ret = bytein(cs->hw.hfcsx.base);
	return(ret);
} 


/**************************************************/
/* select a fifo and remember which one for reuse */
/**************************************************/
static void
fifo_select(struct IsdnCardState *cs, u_char fifo)
{
        if (fifo == cs->hw.hfcsx.last_fifo) 
	  return; /* still valid */

        byteout(cs->hw.hfcsx.base+1, HFCSX_FIF_SEL);
	byteout(cs->hw.hfcsx.base, fifo);
	while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
	udelay(4);
	byteout(cs->hw.hfcsx.base, fifo);
	while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
}

/******************************************/
/* reset the specified fifo to defaults.  */
/* If its a send fifo init needed markers */
/******************************************/
static void
reset_fifo(struct IsdnCardState *cs, u_char fifo)
{
	fifo_select(cs, fifo); /* first select the fifo */
	byteout(cs->hw.hfcsx.base+1, HFCSX_CIRM);
	byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
	udelay(1);
	while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
} 


/*************************************************************/
/* write_fifo writes the skb contents to the desired fifo    */
/* if no space is available or an error occurs 0 is returned */
/* the skb is not released in any way.                       */
/*************************************************************/
static int
write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
{
       unsigned short *msp;
        int fifo_size, count, z1, z2;
	u_char f_msk, f1, f2, *src;

	if (skb->len <= 0) return(0);
        if (fifo & 1) return(0); /* no write fifo */

	fifo_select(cs, fifo);
	if (fifo & 4) {
	  fifo_size = D_FIFO_SIZE; /* D-channel */
	  f_msk = MAX_D_FRAMES;
	  if (trans_max) return(0); /* only HDLC */
	}
	else {
	  fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
	  f_msk = MAX_B_FRAMES;
	}

        z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
	z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));

	/* Check for transparent mode */
	if (trans_max) {
	  z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
	  z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
	  count = z2 - z1;
	  if (count <= 0)
	    count += fifo_size; /* free bytes */
	  if (count < skb->len+1) return(0); /* no room */
	  count = fifo_size - count; /* bytes still not send */
	  if (count > 2 * trans_max) return(0); /* delay to long */
	  count = skb->len;
	  src = skb->data;
	  while (count--)
	    Write_hfc(cs, HFCSX_FIF_DWR, *src++);
	  return(1); /* success */
	}

        msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
	msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES+1));
	f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
	f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;

	count = f1 - f2; /* frame count actually buffered */
	if (count < 0)
		count += (f_msk + 1);	/* if wrap around */
	if (count > f_msk-1) {
	  if (cs->debug & L1_DEB_ISAC_FIFO)
	    debugl1(cs, "hfcsx_write_fifo %d more as %d frames",fifo,f_msk-1);
	  return(0);
	}

	*(msp + f1) = z1; /* remember marker */

	if (cs->debug & L1_DEB_ISAC_FIFO)
		debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
			fifo, f1, f2, z1);
	/* now determine free bytes in FIFO buffer */
	count = *(msp + f2) - z1;
	if (count <= 0)
	  count += fifo_size;	/* count now contains available bytes */

	if (cs->debug & L1_DEB_ISAC_FIFO)
	  debugl1(cs, "hfcsx_write_fifo %d count(%ld/%d)",
		  fifo, skb->len, count);
	if (count < skb->len) {
	  if (cs->debug & L1_DEB_ISAC_FIFO)
	    debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
	  return(0);
	}
	
	count = skb->len; /* get frame len */
	src = skb->data;	/* source pointer */
	while (count--)
	  Write_hfc(cs, HFCSX_FIF_DWR, *src++);
	
	Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
	udelay(1);
	while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
	return(1);
} 

/***************************************************************/
/* read_fifo reads data to an skb from the desired fifo        */
/* if no data is available or an error occurs NULL is returned */
/* the skb is not released in any way.                         */
/***************************************************************/
static struct sk_buff * 
read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
{       int fifo_size, count, z1, z2;
	u_char f_msk, f1, f2, *dst;
	struct sk_buff *skb;

        if (!(fifo & 1)) return(NULL); /* no read fifo */
	fifo_select(cs, fifo);
	if (fifo & 4) {
	  fifo_size = D_FIFO_SIZE; /* D-channel */
	  f_msk = MAX_D_FRAMES;
	  if (trans_max) return(NULL); /* only hdlc */
	}
	else {
	  fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
	  f_msk = MAX_B_FRAMES;
	}

	/* transparent mode */
	if (trans_max) {
	  z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
	  z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
	  z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
	  z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
	  /* now determine bytes in actual FIFO buffer */
	  count = z1 - z2;
	  if (count <= 0)
	    count += fifo_size;	/* count now contains buffered bytes */
	  count++;
	  if (count > trans_max) 
	    count = trans_max; /* limit length */
	    if ((skb = dev_alloc_skb(count))) {
	      dst = skb_put(skb, count);
	      while (count--) 
		*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
	      return(skb);
	    }
	    else return(NULL); /* no memory */
	}

	do {
	  f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
	  f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;

	  if (f1 == f2) return(NULL); /* no frame available */

	  z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
	  z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
	  z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
	  z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));

	  if (cs->debug & L1_DEB_ISAC_FIFO)
	    debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
			fifo, f1, f2, z1, z2);
	  /* now determine bytes in actual FIFO buffer */
	  count = z1 - z2;
	  if (count <= 0)
	    count += fifo_size;	/* count now contains buffered bytes */
	  count++;

	  if (cs->debug & L1_DEB_ISAC_FIFO)
	    debugl1(cs, "hfcsx_read_fifo %d count %ld)",
		    fifo, count);

	  if ((count > fifo_size) || (count < 4)) {
	    if (cs->debug & L1_DEB_WARN)
	      debugl1(cs, "hfcsx_read_fifo %d paket inv. len %d ", fifo , count);
	    while (count) {
	      count--; /* empty fifo */
	      Read_hfc(cs, HFCSX_FIF_DRD);
	    }
	    skb = NULL;
	  } else 
	    if ((skb = dev_alloc_skb(count - 3))) {
	      count -= 3;
	      dst = skb_put(skb, count);

	      while (count--) 
		*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
		    
	      Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
	      Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
	      if (Read_hfc(cs, HFCSX_FIF_DRD)) {
		dev_kfree_skb_irq(skb);
		if (cs->debug & L1_DEB_ISAC_FIFO)
		  debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
		skb = NULL;
	      }
	    } else {
	      printk(KERN_WARNING "HFC-SX: receive out of memory\n");
	      return(NULL);
	    }

	  Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
	  udelay(1);
	  while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
	  udelay(1);
	} while (!skb); /* retry in case of crc error */
	return(skb);
} 

/******************************************/
/* free hardware resources used by driver */
/******************************************/
static void
release_io_hfcsx(struct IsdnCardState *cs)
{
	cs->hw.hfcsx.int_m2 = 0;	/* interrupt output off ! */
	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
	Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET);	/* Reset On */
	msleep(30);				/* Timeout 30ms */
	Write_hfc(cs, HFCSX_CIRM, 0);	/* Reset Off */
	del_timer(&cs->hw.hfcsx.timer);
	release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
	kfree(cs->hw.hfcsx.extra);
	cs->hw.hfcsx.extra = NULL;
}

/**********************************************************/
/* set_fifo_size determines the size of the RAM and FIFOs */
/* returning 0 -> need to reset the chip again.           */
/**********************************************************/
static int set_fifo_size(struct IsdnCardState *cs)
{
        
        if (cs->hw.hfcsx.b_fifo_size) return(1); /* already determined */

	if ((cs->hw.hfcsx.chip >> 4) == 9) {
	  cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
	  return(1);
	}

	  cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
	  cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
	  return(0);

}

/********************************************************************************/
/* function called to reset the HFC SX chip. A complete software reset of chip */
/* and fifos is done.                                                           */
/********************************************************************************/
static void
reset_hfcsx(struct IsdnCardState *cs)
{
	cs->hw.hfcsx.int_m2 = 0;	/* interrupt output off ! */
	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);

	printk(KERN_INFO "HFC_SX: resetting card\n");
	while (1) {
	  Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm ); /* Reset */
	  mdelay(30);
	  Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
	  mdelay(20);
	  if (Read_hfc(cs, HFCSX_STATUS) & 2)
	    printk(KERN_WARNING "HFC-SX init bit busy\n");
	  cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
	  if (!set_fifo_size(cs)) continue;
	  break;
	}

	cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK;	/* no echo connect , threshold */
	Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);

	Write_hfc(cs, HFCSX_CLKDEL, 0x0e);	/* ST-Bit delay for TE-Mode */
	cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
	Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);	/* S/T Auto awake */
	cs->hw.hfcsx.bswapped = 0;	/* no exchange */
	cs->hw.hfcsx.nt_mode = 0;	/* we are in TE mode */
	cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);

	cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC | 
	    HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);

	/* Clear already pending ints */
	if (Read_hfc(cs, HFCSX_INT_S1));

	Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2);	/* HFC ST 2 */
	udelay(10);
	Write_hfc(cs, HFCSX_STATES, 2);	/* HFC ST 2 */
	cs->hw.hfcsx.mst_m = HFCSX_MASTER;	/* HFC Master Mode */

	Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
	cs->hw.hfcsx.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
	cs->hw.hfcsx.sctrl_r = 0;
	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);

	/* Init GCI/IOM2 in master mode */
	/* Slots 0 and 1 are set for B-chan 1 and 2 */
	/* D- and monitor/CI channel are not enabled */
	/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
	/* STIO2 is used as data input, B1+B2 from IOM->ST */
	/* ST B-channel send disabled -> continous 1s */
	/* The IOM slots are always enabled */
	cs->hw.hfcsx.conn = 0x36;	/* set data flow directions */
	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
	Write_hfc(cs, HFCSX_B1_SSL, 0x80);	/* B1-Slot 0 STIO1 out enabled */
	Write_hfc(cs, HFCSX_B2_SSL, 0x81);	/* B2-Slot 1 STIO1 out enabled */
	Write_hfc(cs, HFCSX_B1_RSL, 0x80);	/* B1-Slot 0 STIO2 in enabled */
	Write_hfc(cs, HFCSX_B2_RSL, 0x81);	/* B2-Slot 1 STIO2 in enabled */

	/* Finally enable IRQ output */
	cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
	if (Read_hfc(cs, HFCSX_INT_S2));
}

/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcsx_Timer(struct IsdnCardState *cs)
{
	cs->hw.hfcsx.timer.expires = jiffies + 75;
	/* WD RESET */
/*      WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
   add_timer(&cs->hw.hfcsx.timer);
 */
}

/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
	if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
		return (&cs->bcs[0]);
	else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
		return (&cs->bcs[1]);
	else
		return (NULL);
}

/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
	struct sk_buff *skb;
	int count = 5;

	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
		debugl1(cs, "rec_dmsg blocked");
		return (1);
	}

	do {
	  skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
	  if (skb) {
	    skb_queue_tail(&cs->rq, skb);
	    schedule_event(cs, D_RCVBUFREADY);
	  }
	} while (--count && skb);

	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
	return (1);
}

/**********************************/
/* B-channel main receive routine */
/**********************************/
static void
main_rec_hfcsx(struct BCState *bcs)
{
	struct IsdnCardState *cs = bcs->cs;
	int count = 5;
	struct sk_buff *skb;

      Begin:
	count--;
	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
		debugl1(cs, "rec_data %d blocked", bcs->channel);
		return;
	}
	skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? 
			HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
			(bcs->mode == L1_MODE_TRANS) ? 
			HFCSX_BTRANS_THRESHOLD : 0);

	if (skb) {
	  skb_queue_tail(&bcs->rqueue, skb);
	  schedule_event(bcs, B_RCVBUFREADY);
	}

	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
	if (count && skb)
		goto Begin;
	return;
}

/**************************/
/* D-channel send routine */
/**************************/
static void
hfcsx_fill_dfifo(struct IsdnCardState *cs)
{
	if (!cs->tx_skb)
		return;
	if (cs->tx_skb->len <= 0)
		return;

	if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
	  dev_kfree_skb_any(cs->tx_skb);
	  cs->tx_skb = NULL;
	}
	return;
}

/**************************/
/* B-channel send routine */
/**************************/
static void
hfcsx_fill_fifo(struct BCState *bcs)
{
	struct IsdnCardState *cs = bcs->cs;

	if (!bcs->tx_skb)
		return;
	if (bcs->tx_skb->len <= 0)
		return;

	if (write_fifo(cs, bcs->tx_skb, 
		       ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? 
		       HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
		       (bcs->mode == L1_MODE_TRANS) ? 
		       HFCSX_BTRANS_THRESHOLD : 0)) {

	  bcs->tx_cnt -= bcs->tx_skb->len;
	  if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
		(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
		u_long	flags;
		spin_lock_irqsave(&bcs->aclock, flags);
		bcs->ackcnt += bcs->tx_skb->len;
		spin_unlock_irqrestore(&bcs->aclock, flags);
		schedule_event(bcs, B_ACKPENDING);
	  }
	  dev_kfree_skb_any(bcs->tx_skb);
	  bcs->tx_skb = NULL;
	  test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
	}
}

/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
	struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;

	switch (pr) {
		case (PH_DATA | REQUEST):
		case (PH_PULL | REQUEST):
		case (PH_PULL | INDICATION):
			st->l1.l1hw(st, pr, arg);
			break;
		case (PH_ACTIVATE | REQUEST):
			st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
			break;
		case (PH_TESTLOOP | REQUEST):
			if (1 & (long) arg)
				debugl1(cs, "PH_TEST_LOOP B1");
			if (2 & (long) arg)
				debugl1(cs, "PH_TEST_LOOP B2");
			if (!(3 & (long) arg))
				debugl1(cs, "PH_TEST_LOOP DISABLED");
			st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
			break;
		default:
			if (cs->debug)
				debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
			break;
	}
}



/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
	unsigned long flags;
	int i = *(unsigned int *) ic->parm.num;

	if ((ic->arg == 98) &&
	    (!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
	    	spin_lock_irqsave(&cs->lock, flags);
		Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0);	/* HFC ST G0 */
		udelay(10);
		cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
		Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);	/* set NT-mode */
		udelay(10);
		Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1);	/* HFC ST G1 */
		udelay(10);
		Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
		cs->dc.hfcsx.ph_state = 1;
		cs->hw.hfcsx.nt_mode = 1;
		cs->hw.hfcsx.nt_timer = 0;
		spin_unlock_irqrestore(&cs->lock, flags);
		cs->stlist->l2.l2l1 = dch_nt_l2l1;
		debugl1(cs, "NT mode activated");
		return (0);
	}
	if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
	    (cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
		return (-EINVAL);

	if (i) {
		cs->logecho = 1;
		cs->hw.hfcsx.trm |= 0x20;	/* enable echo chan */
		cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
		/* reset Channel !!!!! */
	} else {
		cs->logecho = 0;
		cs->hw.hfcsx.trm &= ~0x20;	/* disable echo chan */
		cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
	}
	cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
	cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
	cs->hw.hfcsx.conn |= 0x10;	/* B2-IOM -> B2-ST */
	cs->hw.hfcsx.ctmt &= ~2;
	spin_lock_irqsave(&cs->lock, flags);
	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
	Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
	spin_unlock_irqrestore(&cs->lock, flags);
	return (0);
}				/* hfcsx_auxcmd */

/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
	int count = 5;
	u_char *ptr;
	struct sk_buff *skb;

	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
		debugl1(cs, "echo_rec_data blocked");
		return;
	}
	do {
	  skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
	  if (skb) {
	    if (cs->debug & DEB_DLOG_HEX) {
	      ptr = cs->dlog;
	      if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
		*ptr++ = 'E';
		*ptr++ = 'C';
		*ptr++ = 'H';
		*ptr++ = 'O';
		*ptr++ = ':';
		ptr += QuickHex(ptr, skb->data, skb->len);
		ptr--;
		*ptr++ = '\n';
		*ptr = 0;
		HiSax_putstatus(cs, NULL, cs->dlog);
	      } else
		HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
	    }
	    dev_kfree_skb_any(skb);
	  }
	} while (--count && skb);

	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
	return;
}				/* receive_emsg */


/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t
hfcsx_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
	struct IsdnCardState *cs = dev_id;
	u_char exval;
	struct BCState *bcs;
	int count = 15;
	u_long flags;
	u_char val, stat;

	if (!(cs->hw.hfcsx.int_m2 & 0x08))
		return IRQ_NONE;		/* not initialised */

	spin_lock_irqsave(&cs->lock, flags);
	if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
		val = Read_hfc(cs, HFCSX_INT_S1);
		if (cs->debug & L1_DEB_ISAC)
			debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
	} else {
		spin_unlock_irqrestore(&cs->lock, flags);
		return IRQ_NONE;
	}
	if (cs->debug & L1_DEB_ISAC)
		debugl1(cs, "HFC-SX irq %x %s", val,
			test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
			"locked" : "unlocked");
	val &= cs->hw.hfcsx.int_m1;
	if (val & 0x40) {	/* state machine irq */
		exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
		if (cs->debug & L1_DEB_ISAC)
			debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
				exval);
		cs->dc.hfcsx.ph_state = exval;
		schedule_event(cs, D_L1STATECHANGE);
		val &= ~0x40;
	}
	if (val & 0x80) {	/* timer irq */
		if (cs->hw.hfcsx.nt_mode) {
			if ((--cs->hw.hfcsx.nt_timer) < 0)
				schedule_event(cs, D_L1STATECHANGE);
		}
		val &= ~0x80;
		Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
	}
	while (val) {
		if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
			cs->hw.hfcsx.int_s1 |= val;
			spin_unlock_irqrestore(&cs->lock, flags);
			return IRQ_HANDLED;
		}
		if (cs->hw.hfcsx.int_s1 & 0x18) {
			exval = val;
			val = cs->hw.hfcsx.int_s1;
			cs->hw.hfcsx.int_s1 = exval;
		}
		if (val & 0x08) {
			if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
				if (cs->debug)
					debugl1(cs, "hfcsx spurious 0x08 IRQ");
			} else
				main_rec_hfcsx(bcs);
		}
		if (val & 0x10) {
			if (cs->logecho)
				receive_emsg(cs);
			else if (!(bcs = Sel_BCS(cs, 1))) {
				if (cs->debug)
					debugl1(cs, "hfcsx spurious 0x10 IRQ");
			} else
				main_rec_hfcsx(bcs);
		}
		if (val & 0x01) {
			if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
				if (cs->debug)
					debugl1(cs, "hfcsx spurious 0x01 IRQ");
			} else {
				if (bcs->tx_skb) {
					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
						hfcsx_fill_fifo(bcs);
						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
					} else
						debugl1(cs, "fill_data %d blocked", bcs->channel);
				} else {
					if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
						if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
							hfcsx_fill_fifo(bcs);
							test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
						} else
							debugl1(cs, "fill_data %d blocked", bcs->channel);
					} else {
						schedule_event(bcs, B_XMTBUFREADY);
					}
				}
			}
		}
		if (val & 0x02) {
			if (!(bcs = Sel_BCS(cs, 1))) {
				if (cs->debug)
					debugl1(cs, "hfcsx spurious 0x02 IRQ");
			} else {
				if (bcs->tx_skb) {
					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
						hfcsx_fill_fifo(bcs);
						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
					} else
						debugl1(cs, "fill_data %d blocked", bcs->channel);
				} else {
					if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
						if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
							hfcsx_fill_fifo(bcs);
							test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
						} else
							debugl1(cs, "fill_data %d blocked", bcs->channel);
					} else {
						schedule_event(bcs, B_XMTBUFREADY);
					}
				}
			}
		}
		if (val & 0x20) {	/* receive dframe */
			receive_dmsg(cs);
		}
		if (val & 0x04) {	/* dframe transmitted */
			if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
				del_timer(&cs->dbusytimer);
			if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
				schedule_event(cs, D_CLEARBUSY);
			if (cs->tx_skb) {
				if (cs->tx_skb->len) {
					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
						hfcsx_fill_dfifo(cs);
						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
					} else {
						debugl1(cs, "hfcsx_fill_dfifo irq blocked");
					}
					goto afterXPR;
				} else {
					dev_kfree_skb_irq(cs->tx_skb);
					cs->tx_cnt = 0;
					cs->tx_skb = NULL;
				}
			}
			if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
				cs->tx_cnt = 0;
				if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
					hfcsx_fill_dfifo(cs);
					test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
				} else {
					debugl1(cs, "hfcsx_fill_dfifo irq blocked");
				}
			} else
				schedule_event(cs, D_XMTBUFREADY);
		}
	      afterXPR:
		if (cs->hw.hfcsx.int_s1 && count--) {
			val = cs->hw.hfcsx.int_s1;
			cs->hw.hfcsx.int_s1 = 0;
			if (cs->debug & L1_DEB_ISAC)
				debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
		} else
			val = 0;
	}
	spin_unlock_irqrestore(&cs->lock, flags);
	return IRQ_HANDLED;
}

/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcsx_dbusy_timer(struct IsdnCardState *cs)
{
}

/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCSX_l1hw(struct PStack *st, int pr, void *arg)
{
	struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
	struct sk_buff *skb = arg;
	u_long flags;

	switch (pr) {
		case (PH_DATA | REQUEST):
			if (cs->debug & DEB_DLOG_HEX)
				LogFrame(cs, skb->data, skb->len);
			if (cs->debug & DEB_DLOG_VERBOSE)
				dlogframe(cs, skb, 0);
			spin_lock_irqsave(&cs->lock, flags);
			if (cs->tx_skb) {
				skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG		/* psa */
				if (cs->debug & L1_DEB_LAPD)
					Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
			} else {
				cs->tx_skb = skb;
				cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG		/* psa */
				if (cs->debug & L1_DEB_LAPD)
					Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
				if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
				        hfcsx_fill_dfifo(cs); 
					test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
				} else
					debugl1(cs, "hfcsx_fill_dfifo blocked");

			}
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		case (PH_PULL | INDICATION):
			spin_lock_irqsave(&cs->lock, flags);
			if (cs->tx_skb) {
				if (cs->debug & L1_DEB_WARN)
					debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
				skb_queue_tail(&cs->sq, skb);
				spin_unlock_irqrestore(&cs->lock, flags);
				break;
			}
			if (cs->debug & DEB_DLOG_HEX)
				LogFrame(cs, skb->data, skb->len);
			if (cs->debug & DEB_DLOG_VERBOSE)
				dlogframe(cs, skb, 0);
			cs->tx_skb = skb;
			cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG		/* psa */
			if (cs->debug & L1_DEB_LAPD)
				Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
			if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
				hfcsx_fill_dfifo(cs); 
				test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
			} else
				debugl1(cs, "hfcsx_fill_dfifo blocked");
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG		/* psa */
			if (cs->debug & L1_DEB_LAPD)
				debugl1(cs, "-> PH_REQUEST_PULL");
#endif
			if (!cs->tx_skb) {
				test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
				st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
			} else
				test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
			break;
		case (HW_RESET | REQUEST):
			spin_lock_irqsave(&cs->lock, flags);
			Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3);	/* HFC ST 3 */
			udelay(6);
			Write_hfc(cs, HFCSX_STATES, 3);	/* HFC ST 2 */
			cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
			Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
			Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
			spin_unlock_irqrestore(&cs->lock, flags);
			l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
			break;
		case (HW_ENABLE | REQUEST):
			spin_lock_irqsave(&cs->lock, flags);
			Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		case (HW_DEACTIVATE | REQUEST):
			spin_lock_irqsave(&cs->lock, flags);
			cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
			Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		case (HW_INFO3 | REQUEST):
			spin_lock_irqsave(&cs->lock, flags);
			cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
			Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		case (HW_TESTLOOP | REQUEST):
			spin_lock_irqsave(&cs->lock, flags);
			switch ((long) arg) {
				case (1):
					Write_hfc(cs, HFCSX_B1_SSL, 0x80);	/* tx slot */
					Write_hfc(cs, HFCSX_B1_RSL, 0x80);	/* rx slot */
					cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
					Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
					break;
				case (2):
					Write_hfc(cs, HFCSX_B2_SSL, 0x81);	/* tx slot */
					Write_hfc(cs, HFCSX_B2_RSL, 0x81);	/* rx slot */
					cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
					Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
					break;
				default:
					spin_unlock_irqrestore(&cs->lock, flags);
					if (cs->debug & L1_DEB_WARN)
						debugl1(cs, "hfcsx_l1hw loop invalid %4lx", arg);
					return;
			}
			cs->hw.hfcsx.trm |= 0x80;	/* enable IOM-loop */
			Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
			spin_unlock_irqrestore(&cs->lock, flags);
			break;
		default:
			if (cs->debug & L1_DEB_WARN)
				debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
			break;
	}
}

/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
static void
setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
{
	st->l1.l1hw = HFCSX_l1hw;
}

/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcsx_send_data(struct BCState *bcs)
{
	struct IsdnCardState *cs = bcs->cs;

	if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
	  hfcsx_fill_fifo(bcs);
		test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
	} else
		debugl1(cs, "send_data %d blocked", bcs->channel);
}

/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
static void
mode_hfcsx(struct BCState *bcs, int mode, int bc)
{
	struct IsdnCardState *cs = bcs->cs;
	int fifo2;

	if (cs->debug & L1_DEB_HSCX)
		debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
			mode, bc, bcs->channel);
	bcs->mode = mode;
	bcs->channel = bc;
	fifo2 = bc;
	if (cs->chanlimit > 1) {
		cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
		cs->hw.hfcsx.sctrl_e &= ~0x80;
	} else {
		if (bc) {
			if (mode != L1_MODE_NULL) {
				cs->hw.hfcsx.bswapped = 1;	/* B1 and B2 exchanged */
				cs->hw.hfcsx.sctrl_e |= 0x80;
			} else {
				cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
				cs->hw.hfcsx.sctrl_e &= ~0x80;
			}
			fifo2 = 0;
		} else {
			cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
			cs->hw.hfcsx.sctrl_e &= ~0x80;
		}
	}
	switch (mode) {
		case (L1_MODE_NULL):
			if (bc) {
				cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
				cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
			} else {
				cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
				cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
			}
			if (fifo2) {
				cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
			} else {
				cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
			}
			break;
		case (L1_MODE_TRANS):
			if (bc) {
				cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
			} else {
				cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
			}
			if (fifo2) {
				cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
				cs->hw.hfcsx.ctmt |= 2;
				cs->hw.hfcsx.conn &= ~0x18;
			} else {
				cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
				cs->hw.hfcsx.ctmt |= 1;
				cs->hw.hfcsx.conn &= ~0x03;
			}
			break;
		case (L1_MODE_HDLC):
			if (bc) {
				cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
			} else {
				cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
			}
			if (fifo2) {
				cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
				cs->hw.hfcsx.ctmt &= ~2;
				cs->hw.hfcsx.conn &= ~0x18;
			} else {
				cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
				cs->hw.hfcsx.ctmt &= ~1;
				cs->hw.hfcsx.conn &= ~0x03;
			}
			break;
		case (L1_MODE_EXTRN):
			if (bc) {
				cs->hw.hfcsx.conn |= 0x10;
				cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
				cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
			} else {
				cs->hw.hfcsx.conn |= 0x02;
				cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
				cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
				cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
			}
			break;
	}
	Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
	if (mode != L1_MODE_EXTRN) {
	  reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
	  reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
	}
}

/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcsx_l2l1(struct PStack *st, int pr, void *arg)
{
	struct BCState *bcs = st->l1.bcs;
	struct sk_buff *skb = arg;
	u_long flags;

	switch (pr) {
		case (PH_DATA | REQUEST):
			spin_lock_irqsave(&bcs->cs->lock, flags);
			if (bcs->tx_skb) {
				skb_queue_tail(&bcs->squeue, skb);
			} else {
				bcs->tx_skb = skb;
//                              test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
				bcs->cs->BC_Send_Data(bcs);
			}
			spin_unlock_irqrestore(&bcs->cs->lock, flags);
			break;
		case (PH_PULL | INDICATION):
			spin_lock_irqsave(&bcs->cs->lock, flags);
			if (bcs->tx_skb) {
				printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
			} else {
//				test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
				bcs->tx_skb = skb;
				bcs->cs->BC_Send_Data(bcs);
			}
			spin_unlock_irqrestore(&bcs->cs->lock, flags);
			break;
		case (PH_PULL | REQUEST):
			if (!bcs->tx_skb) {
				test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
				st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
			} else
				test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
			break;
		case (PH_ACTIVATE | REQUEST):
			spin_lock_irqsave(&bcs->cs->lock, flags);
			test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
			mode_hfcsx(bcs, st->l1.mode, st->l1.bc);
			spin_unlock_irqrestore(&bcs->cs->lock, flags);
			l1_msg_b(st, pr, arg);
			break;
		case (PH_DEACTIVATE | REQUEST):
			l1_msg_b(st, pr, arg);
			break;
		case (PH_DEACTIVATE | CONFIRM):
			spin_lock_irqsave(&bcs->cs->lock, flags);
			test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
			mode_hfcsx(bcs, 0, st->l1.bc);
			spin_unlock_irqrestore(&bcs->cs->lock, flags);
			st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
			break;
	}
}

/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcsx(struct BCState *bcs)
{
	mode_hfcsx(bcs, 0, bcs->channel);
	if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
		skb_queue_purge(&bcs->rqueue);
		skb_queue_purge(&bcs->squeue);
		if (bcs->tx_skb) {
			dev_kfree_skb_any(bcs->tx_skb);
			bcs->tx_skb = NULL;
			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
		}
	}
}

/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
{
	if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
		skb_queue_head_init(&bcs->rqueue);
		skb_queue_head_init(&bcs->squeue);
	}
	bcs->tx_skb = NULL;
	test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
	bcs->event = 0;
	bcs->tx_cnt = 0;
	return (0);
}

/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
	bcs->channel = st->l1.bc;
	if (open_hfcsxstate(st->l1.hardware, bcs))
		return (-1);
	st->l1.bcs = bcs;
	st->l2.l2l1 = hfcsx_l2l1;
	setstack_manager(st);
	bcs->st = st;
	setstack_l1_B(st);
	return (0);
}

/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcsx_bh(struct IsdnCardState *cs)
{
	u_long flags;

	if (!cs)
		return;
	if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
		if (!cs->hw.hfcsx.nt_mode)
			switch (cs->dc.hfcsx.ph_state) {
				case (0):
					l1_msg(cs, HW_RESET | INDICATION, NULL);
					break;
				case (3):
					l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
					break;
				case (8):
					l1_msg(cs, HW_RSYNC | INDICATION, NULL);
					break;
				case (6):
					l1_msg(cs, HW_INFO2 | INDICATION, NULL);
					break;
				case (7):
					l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
					break;
				default:
					break;
		} else {
			switch (cs->dc.hfcsx.ph_state) {
				case (2):
					spin_lock_irqsave(&cs->lock, flags);
					if (cs->hw.hfcsx.nt_timer < 0) {
						cs->hw.hfcsx.nt_timer = 0;
						cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
						Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
						/* Clear already pending ints */
						if (Read_hfc(cs, HFCSX_INT_S1));

						Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
						udelay(10);
						Write_hfc(cs, HFCSX_STATES, 4);
						cs->dc.hfcsx.ph_state = 4;
					} else {
						cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
						Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
						cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
						cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
						Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
						Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
						cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
						Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3);	/* allow G2 -> G3 transition */
					}
					spin_unlock_irqrestore(&cs->lock, flags);
					break;
				case (1):
				case (3):
				case (4):
					spin_lock_irqsave(&cs->lock, flags);
					cs->hw.hfcsx.nt_timer = 0;
					cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
					Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
					spin_unlock_irqrestore(&cs->lock, flags);
					break;
				default:
					break;
			}
		}
	}
	if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
		DChannel_proc_rcv(cs);
	if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
		DChannel_proc_xmt(cs);
}


/********************************/
/* called for card init message */
/********************************/
static void __devinit
inithfcsx(struct IsdnCardState *cs)
{
	cs->setstack_d = setstack_hfcsx;
	cs->BC_Send_Data = &hfcsx_send_data;
	cs->bcs[0].BC_SetStack = setstack_2b;
	cs->bcs[1].BC_SetStack = setstack_2b;
	cs->bcs[0].BC_Close = close_hfcsx;
	cs->bcs[1].BC_Close = close_hfcsx;
	mode_hfcsx(cs->bcs, 0, 0);
	mode_hfcsx(cs->bcs + 1, 0, 1);
}



/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
	u_long flags;

	if (cs->debug & L1_DEB_ISAC)
		debugl1(cs, "HFCSX: card_msg %x", mt);
	switch (mt) {
		case CARD_RESET:
			spin_lock_irqsave(&cs->lock, flags);
			reset_hfcsx(cs);
			spin_unlock_irqrestore(&cs->lock, flags);
			return (0);
		case CARD_RELEASE:
			release_io_hfcsx(cs);
			return (0);
		case CARD_INIT:
			spin_lock_irqsave(&cs->lock, flags);
			inithfcsx(cs);
			spin_unlock_irqrestore(&cs->lock, flags);
			msleep(80);				/* Timeout 80ms */
			/* now switch timer interrupt off */
			spin_lock_irqsave(&cs->lock, flags);
			cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
			Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
			/* reinit mode reg */
			Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
			spin_unlock_irqrestore(&cs->lock, flags);
			return (0);
		case CARD_TEST:
			return (0);
	}
	return (0);
}

#ifdef __ISAPNP__
static struct isapnp_device_id hfc_ids[] __devinitdata = {
	{ ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
	  ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620), 
	  (unsigned long) "Teles 16.3c2" },
	{ 0, }
};

static struct isapnp_device_id *ipid __devinitdata = &hfc_ids[0];
static struct pnp_card *pnp_c __devinitdata = NULL;
#endif

int __devinit
setup_hfcsx(struct IsdnCard *card)
{
	struct IsdnCardState *cs = card->cs;
	char tmp[64];

	strcpy(tmp, hfcsx_revision);
	printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
#ifdef __ISAPNP__
	if (!card->para[1] && isapnp_present()) {
		struct pnp_dev *pnp_d;
		while(ipid->card_vendor) {
			if ((pnp_c = pnp_find_card(ipid->card_vendor,
				ipid->card_device, pnp_c))) {
				pnp_d = NULL;
				if ((pnp_d = pnp_find_dev(pnp_c,
					ipid->vendor, ipid->function, pnp_d))) {
					int err;

					printk(KERN_INFO "HiSax: %s detected\n",
						(char *)ipid->driver_data);
					pnp_disable_dev(pnp_d);
					err = pnp_activate_dev(pnp_d);
					if (err<0) {
						printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
							__FUNCTION__, err);
						return(0);
					}
					card->para[1] = pnp_port_start(pnp_d, 0);
					card->para[0] = pnp_irq(pnp_d, 0);
					if (!card->para[0] || !card->para[1]) {
						printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n",
							card->para[0], card->para[1]);
						pnp_disable_dev(pnp_d);
						return(0);
					}
					break;
				} else {
					printk(KERN_ERR "HFC PnP: PnP error card found, no device\n");
				}
			}
			ipid++;
			pnp_c = NULL;
		} 
		if (!ipid->card_vendor) {
			printk(KERN_INFO "HFC PnP: no ISAPnP card found\n");
			return(0);
		}
	}
#endif
	cs->hw.hfcsx.base = card->para[1] & 0xfffe;
	cs->irq = card->para[0];
	cs->hw.hfcsx.int_s1 = 0;
	cs->dc.hfcsx.ph_state = 0;
	cs->hw.hfcsx.fifo = 255;
	if ((cs->typ == ISDN_CTYPE_HFC_SX) || 
	    (cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
	        if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) {
		  printk(KERN_WARNING
			 "HiSax: HFC-SX io-base %#lx already in use\n",
		          cs->hw.hfcsx.base);
		  return(0);
		}
		byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
		byteout(cs->hw.hfcsx.base + 1,
			((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
		udelay(10);
	        cs->hw.hfcsx.chip = Read_hfc(cs,HFCSX_CHIP_ID);
                switch (cs->hw.hfcsx.chip >> 4) {
		  case 1: 
		    tmp[0] ='+';
		    break;
		  case 9: 
		    tmp[0] ='P';
		    break;
		  default:
		    printk(KERN_WARNING
			   "HFC-SX: invalid chip id 0x%x\n",
			   cs->hw.hfcsx.chip >> 4);
		    release_region(cs->hw.hfcsx.base, 2);
		    return(0);
		}  
		if (!ccd_sp_irqtab[cs->irq & 0xF]) {
		  printk(KERN_WARNING 
			 "HFC_SX: invalid irq %d specified\n",cs->irq & 0xF);
		  release_region(cs->hw.hfcsx.base, 2);
		  return(0);
		}  
		if (!(cs->hw.hfcsx.extra = (void *)
		      kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
		  release_region(cs->hw.hfcsx.base, 2);
		  printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
		  return(0);
		}
		printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
			tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ);
		cs->hw.hfcsx.int_m2 = 0;	/* disable alle interrupts */
		cs->hw.hfcsx.int_m1 = 0;
		Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
		Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
	} else
		return (0);	/* no valid card type */

	cs->dbusytimer.function = (void *) hfcsx_dbusy_timer;
	cs->dbusytimer.data = (long) cs;
	init_timer(&cs->dbusytimer);
	INIT_WORK(&cs->tqueue, (void *)(void *) hfcsx_bh, cs);
	cs->readisac = NULL;
	cs->writeisac = NULL;
	cs->readisacfifo = NULL;
	cs->writeisacfifo = NULL;
	cs->BC_Read_Reg = NULL;
	cs->BC_Write_Reg = NULL;
	cs->irq_func = &hfcsx_interrupt;

	cs->hw.hfcsx.timer.function = (void *) hfcsx_Timer;
	cs->hw.hfcsx.timer.data = (long) cs;
	cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
	cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
	init_timer(&cs->hw.hfcsx.timer);

	reset_hfcsx(cs);
	cs->cardmsg = &hfcsx_card_msg;
	cs->auxcmd = &hfcsx_auxcmd;
	return (1);
}