/*
* linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
*
* Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2003 Red Hat <alan@redhat.com>
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/blkpg.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/bitops.h>
#include <linux/nmi.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/*
* Conventional PIO operations for ATA devices
*/
static u8 ide_inb (unsigned long port)
{
return (u8) inb(port);
}
static u16 ide_inw (unsigned long port)
{
return (u16) inw(port);
}
static void ide_insw (unsigned long port, void *addr, u32 count)
{
insw(port, addr, count);
}
static void ide_insl (unsigned long port, void *addr, u32 count)
{
insl(port, addr, count);
}
static void ide_outb (u8 val, unsigned long port)
{
outb(val, port);
}
static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
{
outb(addr, port);
}
static void ide_outw (u16 val, unsigned long port)
{
outw(val, port);
}
static void ide_outsw (unsigned long port, void *addr, u32 count)
{
outsw(port, addr, count);
}
static void ide_outsl (unsigned long port, void *addr, u32 count)
{
outsl(port, addr, count);
}
void default_hwif_iops (ide_hwif_t *hwif)
{
hwif->OUTB = ide_outb;
hwif->OUTBSYNC = ide_outbsync;
hwif->OUTW = ide_outw;
hwif->OUTSW = ide_outsw;
hwif->OUTSL = ide_outsl;
hwif->INB = ide_inb;
hwif->INW = ide_inw;
hwif->INSW = ide_insw;
hwif->INSL = ide_insl;
}
/*
* MMIO operations, typically used for SATA controllers
*/
static u8 ide_mm_inb (unsigned long port)
{
return (u8) readb((void __iomem *) port);
}
static u16 ide_mm_inw (unsigned long port)
{
return (u16) readw((void __iomem *) port);
}
static void ide_mm_insw (unsigned long port, void *addr, u32 count)
{
__ide_mm_insw((void __iomem *) port, addr, count);
}
static void ide_mm_insl (unsigned long port, void *addr, u32 count)
{
__ide_mm_insl((void __iomem *) port, addr, count);
}
static void ide_mm_outb (u8 value, unsigned long port)
{
writeb(value, (void __iomem *) port);
}
static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
{
writeb(value, (void __iomem *) port);
}
static void ide_mm_outw (u16 value, unsigned long port)
{
writew(value, (void __iomem *) port);
}
static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
{
__ide_mm_outsw((void __iomem *) port, addr, count);
}
static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
{
__ide_mm_outsl((void __iomem *) port, addr, count);
}
void default_hwif_mmiops (ide_hwif_t *hwif)
{
hwif->OUTB = ide_mm_outb;
/* Most systems will need to override OUTBSYNC, alas however
this one is controller specific! */
hwif->OUTBSYNC = ide_mm_outbsync;
hwif->OUTW = ide_mm_outw;
hwif->OUTSW = ide_mm_outsw;
hwif->OUTSL = ide_mm_outsl;
hwif->INB = ide_mm_inb;
hwif->INW = ide_mm_inw;
hwif->INSW = ide_mm_insw;
hwif->INSL = ide_mm_insl;
}
EXPORT_SYMBOL(default_hwif_mmiops);
u32 ide_read_24 (ide_drive_t *drive)
{
u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
return (hcyl<<16)|(lcyl<<8)|sect;
}
void SELECT_DRIVE (ide_drive_t *drive)
{
if (HWIF(drive)->selectproc)
HWIF(drive)->selectproc(drive);
HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
}
EXPORT_SYMBOL(SELECT_DRIVE);
void SELECT_MASK (ide_drive_t *drive, int mask)
{
if (HWIF(drive)->maskproc)
HWIF(drive)->maskproc(drive, mask);
}
/*
* Some localbus EIDE interfaces require a special access sequence
* when using 32-bit I/O instructions to transfer data. We call this
* the "vlb_sync" sequence, which consists of three successive reads
* of the sector count register location, with interrupts disabled
* to ensure that the reads all happen together.
*/
static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
{
(void) HWIF(drive)->INB(port);
(void) HWIF(drive)->INB(port);
(void) HWIF(drive)->INB(port);
}
/*
* This is used for most PIO data transfers *from* the IDE interface
*/
static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
{
ide_hwif_t *hwif = HWIF(drive);
u8 io_32bit = drive->io_32bit;
if (io_32bit) {
if (io_32bit & 2) {
unsigned long flags;
local_irq_save(flags);
ata_vlb_sync(drive, IDE_NSECTOR_REG);
hwif->INSL(IDE_DATA_REG, buffer, wcount);
local_irq_restore(flags);
} else
hwif->INSL(IDE_DATA_REG, buffer, wcount);
} else {
hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
}
}
/*
* This is used for most PIO data transfers *to* the IDE interface
*/
static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
{
ide_hwif_t *hwif = HWIF(drive);
u8 io_32bit = drive->io_32bit;
if (io_32bit) {
if (io_32bit & 2) {
unsigned long flags;
local_irq_save(flags);
ata_vlb_sync(drive, IDE_NSECTOR_REG);
hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
local_irq_restore(flags);
} else
hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
} else {
hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
}
}
/*
* The following routines are mainly used by the ATAPI drivers.
*
* These routines will round up any request for an odd number of bytes,
* so if an odd bytecount is specified, be sure that there's at least one
* extra byte allocated for the buffer.
*/
static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
{
ide_hwif_t *hwif = HWIF(drive);
++bytecount;
#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
if (MACH_IS_ATARI || MACH_IS_Q40) {
/* Atari has a byte-swapped IDE interface */
insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
return;
}
#endif /* CONFIG_ATARI || CONFIG_Q40 */
hwif->ata_input_data(drive, buffer, bytecount / 4);
if ((bytecount & 0x03) >= 2)
hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
}
static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
{
ide_hwif_t *hwif = HWIF(drive);
++bytecount;
#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
if (MACH_IS_ATARI || MACH_IS_Q40) {
/* Atari has a byte-swapped IDE interface */
outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
return;
}
#endif /* CONFIG_ATARI || CONFIG_Q40 */
hwif->ata_output_data(drive, buffer, bytecount / 4);
if ((bytecount & 0x03) >= 2)
hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
}
void default_hwif_transport(ide_hwif_t *hwif)
{
hwif->ata_input_data = ata_input_data;
hwif->ata_output_data = ata_output_data;
hwif->atapi_input_bytes = atapi_input_bytes;
hwif->atapi_output_bytes = atapi_output_bytes;
}
void ide_fix_driveid (struct hd_driveid *id)
{
#ifndef __LITTLE_ENDIAN
# ifdef __BIG_ENDIAN
int i;
u16 *stringcast;
id->config = __le16_to_cpu(id->config);
id->cyls = __le16_to_cpu(id->cyls);
id->reserved2 = __le16_to_cpu(id->reserved2);
id->heads = __le16_to_cpu(id->heads);
id->track_bytes = __le16_to_cpu(id->track_bytes);
id->sector_bytes = __le16_to_cpu(id->sector_bytes);
id->sectors = __le16_to_cpu(id->sectors);
id->vendor0 = __le16_to_cpu(id->vendor0);
id->vendor1 = __le16_to_cpu(id->vendor1);
id->vendor2 = __le16_to_cpu(id->vendor2);
stringcast = (u16 *)&id->serial_no[0];
for (i = 0; i < (20/2); i++)
stringcast[i] = __le16_to_cpu(stringcast[i]);
id->buf_type = __le16_to_cpu(id->buf_type);
id->buf_size = __le16_to_cpu(id->buf_size);
id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
stringcast = (u16 *)&id->fw_rev[0];
for (i = 0; i < (8/2); i++)
stringcast[i] = __le16_to_cpu(stringcast[i]);
stringcast = (u16 *)&id->model[0];
for (i = 0; i < (40/2); i++)
stringcast[i] = __le16_to_cpu(stringcast[i]);
id->dword_io = __le16_to_cpu(id->dword_io);
id->reserved50 = __le16_to_cpu(id->reserved50);
id->field_valid = __le16_to_cpu(id->field_valid);
id->cur_cyls = __le16_to_cpu(id->cur_cyls);
id->cur_heads = __le16_to_cpu(id->cur_heads);
id->cur_sectors = __le16_to_cpu(id->cur_sectors);
id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
id->lba_capacity = __le32_to_cpu(id->lba_capacity);
id->dma_1word = __le16_to_cpu(id->dma_1word);
id->dma_mword = __le16_to_cpu(id->dma_mword);
id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
id->eide_pio = __le16_to_cpu(id->eide_pio);
id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
for (i = 0; i < 2; ++i)
id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
for (i = 0; i < 4; ++i)
id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
id->queue_depth = __le16_to_cpu(id->queue_depth);
for (i = 0; i < 4; ++i)
id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
id->major_rev_num = __le16_to_cpu(id->major_rev_num);
id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
id->command_set_1 = __le16_to_cpu(id->command_set_1);
id->command_set_2 = __le16_to_cpu(id->command_set_2);
id->cfsse = __le16_to_cpu(id->cfsse);
id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
id->csf_default = __le16_to_cpu(id->csf_default);
id->dma_ultra = __le16_to_cpu(id->dma_ultra);
id->trseuc = __le16_to_cpu(id->trseuc);
id->trsEuc = __le16_to_cpu(id->trsEuc);
id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
id->mprc = __le16_to_cpu(id->mprc);
id->hw_config = __le16_to_cpu(id->hw_config);
id->acoustic = __le16_to_cpu(id->acoustic);
id->msrqs = __le16_to_cpu(id->msrqs);
id->sxfert = __le16_to_cpu(id->sxfert);
id->sal = __le16_to_cpu(id->sal);
id->spg = __le32_to_cpu(id->spg);
id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
for (i = 0; i < 22; i++)
id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
id->last_lun = __le16_to_cpu(id->last_lun);
id->word127 = __le16_to_cpu(id->word127);
id->dlf = __le16_to_cpu(id->dlf);
id->csfo = __le16_to_cpu(id->csfo);
for (i = 0; i < 26; i++)
id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
id->word156 = __le16_to_cpu(id->word156);
for (i = 0; i < 3; i++)
id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
id->cfa_power = __le16_to_cpu(id->cfa_power);
for (i = 0; i < 14; i++)
id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
for (i = 0; i < 31; i++)
id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
for (i = 0; i < 48; i++)
id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
id->integrity_word = __le16_to_cpu(id->integrity_word);
# else
# error "Please fix <asm/byteorder.h>"
# endif
#endif
}
/*
* ide_fixstring() cleans up and (optionally) byte-swaps a text string,
* removing leading/trailing blanks and compressing internal blanks.
* It is primarily used to tidy up the model name/number fields as
* returned by the WIN_[P]IDENTIFY commands.
*/
void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
{
u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
if (byteswap) {
/* convert from big-endian to host byte order */
for (p = end ; p != s;) {
unsigned short *pp = (unsigned short *) (p -= 2);
*pp = ntohs(*pp);
}
}
/* strip leading blanks */
while (s != end && *s == ' ')
++s;
/* compress internal blanks and strip trailing blanks */
while (s != end && *s) {
if (*s++ != ' ' || (s != end && *s && *s != ' '))
*p++ = *(s-1);
}
/* wipe out trailing garbage */
while (p != end)
*p++ = '\0';
}
EXPORT_SYMBOL(ide_fixstring);
/*
* Needed for PCI irq sharing
*/
int drive_is_ready (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 stat = 0;
if (drive->waiting_for_dma)
return hwif->ide_dma_test_irq(drive);
#if 0
/* need to guarantee 400ns since last command was issued */
udelay(1);
#endif
/*
* We do a passive status test under shared PCI interrupts on
* cards that truly share the ATA side interrupt, but may also share
* an interrupt with another pci card/device. We make no assumptions
* about possible isa-pnp and pci-pnp issues yet.
*/
if (IDE_CONTROL_REG)
stat = hwif->INB(IDE_ALTSTATUS_REG);
else
/* Note: this may clear a pending IRQ!! */
stat = hwif->INB(IDE_STATUS_REG);
if (stat & BUSY_STAT)
/* drive busy: definitely not interrupting */
return 0;
/* drive ready: *might* be interrupting */
return 1;
}
EXPORT_SYMBOL(drive_is_ready);
/*
* This routine busy-waits for the drive status to be not "busy".
* It then checks the status for all of the "good" bits and none
* of the "bad" bits, and if all is okay it returns 0. All other
* cases return error -- caller may then invoke ide_error().
*
* This routine should get fixed to not hog the cpu during extra long waits..
* That could be done by busy-waiting for the first jiffy or two, and then
* setting a timer to wake up at half second intervals thereafter,
* until timeout is achieved, before timing out.
*/
static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
{
ide_hwif_t *hwif = drive->hwif;
unsigned long flags;
int i;
u8 stat;
udelay(1); /* spec allows drive 400ns to assert "BUSY" */
if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
local_irq_set(flags);
timeout += jiffies;
while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
if (time_after(jiffies, timeout)) {
/*
* One last read after the timeout in case
* heavy interrupt load made us not make any
* progress during the timeout..
*/
stat = hwif->INB(IDE_STATUS_REG);
if (!(stat & BUSY_STAT))
break;
local_irq_restore(flags);
*rstat = stat;
return -EBUSY;
}
}
local_irq_restore(flags);
}
/*
* Allow status to settle, then read it again.
* A few rare drives vastly violate the 400ns spec here,
* so we'll wait up to 10usec for a "good" status
* rather than expensively fail things immediately.
* This fix courtesy of Matthew Faupel & Niccolo Rigacci.
*/
for (i = 0; i < 10; i++) {
udelay(1);
if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
*rstat = stat;
return 0;
}
}
*rstat = stat;
return -EFAULT;
}
/*
* In case of error returns error value after doing "*startstop = ide_error()".
* The caller should return the updated value of "startstop" in this case,
* "startstop" is unchanged when the function returns 0.
*/
int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
{
int err;
u8 stat;
/* bail early if we've exceeded max_failures */
if (drive->max_failures && (drive->failures > drive->max_failures)) {
*startstop = ide_stopped;
return 1;
}
err = __ide_wait_stat(drive, good, bad, timeout, &stat);
if (err) {
char *s = (err == -EBUSY) ? "status timeout" : "status error";
*startstop = ide_error(drive, s, stat);
}
return err;
}
EXPORT_SYMBOL(ide_wait_stat);
/**
* ide_in_drive_list - look for drive in black/white list
* @id: drive identifier
* @drive_table: list to inspect
*
* Look for a drive in the blacklist and the whitelist tables
* Returns 1 if the drive is found in the table.
*/
int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
{
for ( ; drive_table->id_model; drive_table++)
if ((!strcmp(drive_table->id_model, id->model)) &&
(!drive_table->id_firmware ||
strstr(id->fw_rev, drive_table->id_firmware)))
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(ide_in_drive_list);
/*
* Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
* We list them here and depend on the device side cable detection for them.
*
* Some optical devices with the buggy firmwares have the same problem.
*/
static const struct drive_list_entry ivb_list[] = {
{ "QUANTUM FIREBALLlct10 05" , "A03.0900" },
{ "TSSTcorp CDDVDW SH-S202J" , "SB00" },
{ "TSSTcorp CDDVDW SH-S202J" , "SB01" },
{ "TSSTcorp CDDVDW SH-S202N" , "SB00" },
{ "TSSTcorp CDDVDW SH-S202N" , "SB01" },
{ NULL , NULL }
};
/*
* All hosts that use the 80c ribbon must use!
* The name is derived from upper byte of word 93 and the 80c ribbon.
*/
u8 eighty_ninty_three (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct hd_driveid *id = drive->id;
int ivb = ide_in_drive_list(id, ivb_list);
if (hwif->cbl == ATA_CBL_PATA40_SHORT)
return 1;
if (ivb)
printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
drive->name);
if (ide_dev_is_sata(id) && !ivb)
return 1;
if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
goto no_80w;
/*
* FIXME:
* - force bit13 (80c cable present) check also for !ivb devices
* (unless the slave device is pre-ATA3)
*/
if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
return 1;
no_80w:
if (drive->udma33_warned == 1)
return 0;
printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
"limiting max speed to UDMA33\n",
drive->name,
hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
drive->udma33_warned = 1;
return 0;
}
int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
{
if (args->tf.command == WIN_SETFEATURES &&
args->tf.lbal > XFER_UDMA_2 &&
args->tf.feature == SETFEATURES_XFER) {
if (eighty_ninty_three(drive) == 0) {
printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
"be set\n", drive->name);
return 1;
}
}
return 0;
}
/*
* Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
* 1 : Safe to update drive->id DMA registers.
* 0 : OOPs not allowed.
*/
int set_transfer (ide_drive_t *drive, ide_task_t *args)
{
if (args->tf.command == WIN_SETFEATURES &&
args->tf.lbal >= XFER_SW_DMA_0 &&
args->tf.feature == SETFEATURES_XFER &&
(drive->id->dma_ultra ||
drive->id->dma_mword ||
drive->id->dma_1word))
return 1;
return 0;
}
#ifdef CONFIG_BLK_DEV_IDEDMA
static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
{
if (!drive->crc_count)
return drive->current_speed;
drive->crc_count = 0;
switch(drive->current_speed) {
case XFER_UDMA_7: return XFER_UDMA_6;
case XFER_UDMA_6: return XFER_UDMA_5;
case XFER_UDMA_5: return XFER_UDMA_4;
case XFER_UDMA_4: return XFER_UDMA_3;
case XFER_UDMA_3: return XFER_UDMA_2;
case XFER_UDMA_2: return XFER_UDMA_1;
case XFER_UDMA_1: return XFER_UDMA_0;
/*
* OOPS we do not goto non Ultra DMA modes
* without iCRC's available we force
* the system to PIO and make the user
* invoke the ATA-1 ATA-2 DMA modes.
*/
case XFER_UDMA_0:
default: return XFER_PIO_4;
}
}
#endif /* CONFIG_BLK_DEV_IDEDMA */
int ide_driveid_update(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct hd_driveid *id;
unsigned long timeout, flags;
/*
* Re-read drive->id for possible DMA mode
* change (copied from ide-probe.c)
*/
SELECT_MASK(drive, 1);
if (IDE_CONTROL_REG)
hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
msleep(50);
hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
timeout = jiffies + WAIT_WORSTCASE;
do {
if (time_after(jiffies, timeout)) {
SELECT_MASK(drive, 0);
return 0; /* drive timed-out */
}
msleep(50); /* give drive a breather */
} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
msleep(50); /* wait for IRQ and DRQ_STAT */
if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
SELECT_MASK(drive, 0);
printk("%s: CHECK for good STATUS\n", drive->name);
return 0;
}
local_irq_save(flags);
SELECT_MASK(drive, 0);
id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
if (!id) {
local_irq_restore(flags);
return 0;
}
ata_input_data(drive, id, SECTOR_WORDS);
(void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
local_irq_enable();
local_irq_restore(flags);
ide_fix_driveid(id);
if (id) {
drive->id->dma_ultra = id->dma_ultra;
drive->id->dma_mword = id->dma_mword;
drive->id->dma_1word = id->dma_1word;
/* anything more ? */
kfree(id);
if (drive->using_dma && ide_id_dma_bug(drive))
ide_dma_off(drive);
}
return 1;
}
int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
{
ide_hwif_t *hwif = drive->hwif;
int error = 0;
u8 stat;
// while (HWGROUP(drive)->busy)
// msleep(50);
#ifdef CONFIG_BLK_DEV_IDEDMA
if (hwif->ide_dma_on) /* check if host supports DMA */
hwif->dma_host_off(drive);
#endif
/* Skip setting PIO flow-control modes on pre-EIDE drives */
if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
goto skip;
/*
* Don't use ide_wait_cmd here - it will
* attempt to set_geometry and recalibrate,
* but for some reason these don't work at
* this point (lost interrupt).
*/
/*
* Select the drive, and issue the SETFEATURES command
*/
disable_irq_nosync(hwif->irq);
/*
* FIXME: we race against the running IRQ here if
* this is called from non IRQ context. If we use
* disable_irq() we hang on the error path. Work
* is needed.
*/
udelay(1);
SELECT_DRIVE(drive);
SELECT_MASK(drive, 0);
udelay(1);
if (IDE_CONTROL_REG)
hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
hwif->OUTB(speed, IDE_NSECTOR_REG);
hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
error = __ide_wait_stat(drive, drive->ready_stat,
BUSY_STAT|DRQ_STAT|ERR_STAT,
WAIT_CMD, &stat);
SELECT_MASK(drive, 0);
enable_irq(hwif->irq);
if (error) {
(void) ide_dump_status(drive, "set_drive_speed_status", stat);
return error;
}
drive->id->dma_ultra &= ~0xFF00;
drive->id->dma_mword &= ~0x0F00;
drive->id->dma_1word &= ~0x0F00;
skip:
#ifdef CONFIG_BLK_DEV_IDEDMA
if (speed >= XFER_SW_DMA_0)
hwif->dma_host_on(drive);
else if (hwif->ide_dma_on) /* check if host supports DMA */
hwif->dma_off_quietly(drive);
#endif
switch(speed) {
case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
default: break;
}
if (!drive->init_speed)
drive->init_speed = speed;
drive->current_speed = speed;
return error;
}
/*
* This should get invoked any time we exit the driver to
* wait for an interrupt response from a drive. handler() points
* at the appropriate code to handle the next interrupt, and a
* timer is started to prevent us from waiting forever in case
* something goes wrong (see the ide_timer_expiry() handler later on).
*
* See also ide_execute_command
*/
static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
unsigned int timeout, ide_expiry_t *expiry)
{
ide_hwgroup_t *hwgroup = HWGROUP(drive);
if (hwgroup->handler != NULL) {
printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
"old=%p, new=%p\n",
drive->name, hwgroup->handler, handler);
}
hwgroup->handler = handler;
hwgroup->expiry = expiry;
hwgroup->timer.expires = jiffies + timeout;
hwgroup->req_gen_timer = hwgroup->req_gen;
add_timer(&hwgroup->timer);
}
void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
unsigned int timeout, ide_expiry_t *expiry)
{
unsigned long flags;
spin_lock_irqsave(&ide_lock, flags);
__ide_set_handler(drive, handler, timeout, expiry);
spin_unlock_irqrestore(&ide_lock, flags);
}
EXPORT_SYMBOL(ide_set_handler);
/**
* ide_execute_command - execute an IDE command
* @drive: IDE drive to issue the command against
* @command: command byte to write
* @handler: handler for next phase
* @timeout: timeout for command
* @expiry: handler to run on timeout
*
* Helper function to issue an IDE command. This handles the
* atomicity requirements, command timing and ensures that the
* handler and IRQ setup do not race. All IDE command kick off
* should go via this function or do equivalent locking.
*/
void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
unsigned timeout, ide_expiry_t *expiry)
{
unsigned long flags;
ide_hwgroup_t *hwgroup = HWGROUP(drive);
ide_hwif_t *hwif = HWIF(drive);
spin_lock_irqsave(&ide_lock, flags);
BUG_ON(hwgroup->handler);
hwgroup->handler = handler;
hwgroup->expiry = expiry;
hwgroup->timer.expires = jiffies + timeout;
hwgroup->req_gen_timer = hwgroup->req_gen;
add_timer(&hwgroup->timer);
hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
/* Drive takes 400nS to respond, we must avoid the IRQ being
serviced before that.
FIXME: we could skip this delay with care on non shared
devices
*/
ndelay(400);
spin_unlock_irqrestore(&ide_lock, flags);
}
EXPORT_SYMBOL(ide_execute_command);
/* needed below */
static ide_startstop_t do_reset1 (ide_drive_t *, int);
/*
* atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
* during an atapi drive reset operation. If the drive has not yet responded,
* and we have not yet hit our maximum waiting time, then the timer is restarted
* for another 50ms.
*/
static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
{
ide_hwgroup_t *hwgroup = HWGROUP(drive);
ide_hwif_t *hwif = HWIF(drive);
u8 stat;
SELECT_DRIVE(drive);
udelay (10);
if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
printk("%s: ATAPI reset complete\n", drive->name);
} else {
if (time_before(jiffies, hwgroup->poll_timeout)) {
BUG_ON(HWGROUP(drive)->handler != NULL);
ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
/* continue polling */
return ide_started;
}
/* end of polling */
hwgroup->polling = 0;
printk("%s: ATAPI reset timed-out, status=0x%02x\n",
drive->name, stat);
/* do it the old fashioned way */
return do_reset1(drive, 1);
}
/* done polling */
hwgroup->polling = 0;
hwgroup->resetting = 0;
return ide_stopped;
}
/*
* reset_pollfunc() gets invoked to poll the interface for completion every 50ms
* during an ide reset operation. If the drives have not yet responded,
* and we have not yet hit our maximum waiting time, then the timer is restarted
* for another 50ms.
*/
static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
{
ide_hwgroup_t *hwgroup = HWGROUP(drive);
ide_hwif_t *hwif = HWIF(drive);
u8 tmp;
if (hwif->reset_poll != NULL) {
if (hwif->reset_poll(drive)) {
printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
hwif->name, drive->name);
return ide_stopped;
}
}
if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
if (time_before(jiffies, hwgroup->poll_timeout)) {
BUG_ON(HWGROUP(drive)->handler != NULL);
ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
/* continue polling */
return ide_started;
}
printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
drive->failures++;
} else {
printk("%s: reset: ", hwif->name);
if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
printk("success\n");
drive->failures = 0;
} else {
drive->failures++;
printk("master: ");
switch (tmp & 0x7f) {
case 1: printk("passed");
break;
case 2: printk("formatter device error");
break;
case 3: printk("sector buffer error");
break;
case 4: printk("ECC circuitry error");
break;
case 5: printk("controlling MPU error");
break;
default:printk("error (0x%02x?)", tmp);
}
if (tmp & 0x80)
printk("; slave: failed");
printk("\n");
}
}
hwgroup->polling = 0; /* done polling */
hwgroup->resetting = 0; /* done reset attempt */
return ide_stopped;
}
static void check_dma_crc(ide_drive_t *drive)
{
#ifdef CONFIG_BLK_DEV_IDEDMA
if (drive->crc_count) {
drive->hwif->dma_off_quietly(drive);
ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
if (drive->current_speed >= XFER_SW_DMA_0)
(void) HWIF(drive)->ide_dma_on(drive);
} else
ide_dma_off(drive);
#endif
}
static void ide_disk_pre_reset(ide_drive_t *drive)
{
int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
drive->special.all = 0;
drive->special.b.set_geometry = legacy;
drive->special.b.recalibrate = legacy;
drive->mult_count = 0;
if (!drive->keep_settings && !drive->using_dma)
drive->mult_req = 0;
if (drive->mult_req != drive->mult_count)
drive->special.b.set_multmode = 1;
}
static void pre_reset(ide_drive_t *drive)
{
if (drive->media == ide_disk)
ide_disk_pre_reset(drive);
else
drive->post_reset = 1;
if (!drive->keep_settings) {
if (drive->using_dma) {
check_dma_crc(drive);
} else {
drive->unmask = 0;
drive->io_32bit = 0;
}
return;
}
if (drive->using_dma)
check_dma_crc(drive);
if (HWIF(drive)->pre_reset != NULL)
HWIF(drive)->pre_reset(drive);
if (drive->current_speed != 0xff)
drive->desired_speed = drive->current_speed;
drive->current_speed = 0xff;
}
/*
* do_reset1() attempts to recover a confused drive by resetting it.
* Unfortunately, resetting a disk drive actually resets all devices on
* the same interface, so it can really be thought of as resetting the
* interface rather than resetting the drive.
*
* ATAPI devices have their own reset mechanism which allows them to be
* individually reset without clobbering other devices on the same interface.
*
* Unfortunately, the IDE interface does not generate an interrupt to let
* us know when the reset operation has finished, so we must poll for this.
* Equally poor, though, is the fact that this may a very long time to complete,
* (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
* we set a timer to poll at 50ms intervals.
*/
static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
{
unsigned int unit;
unsigned long flags;
ide_hwif_t *hwif;
ide_hwgroup_t *hwgroup;
spin_lock_irqsave(&ide_lock, flags);
hwif = HWIF(drive);
hwgroup = HWGROUP(drive);
/* We must not reset with running handlers */
BUG_ON(hwgroup->handler != NULL);
/* For an ATAPI device, first try an ATAPI SRST. */
if (drive->media != ide_disk && !do_not_try_atapi) {
hwgroup->resetting = 1;
pre_reset(drive);
SELECT_DRIVE(drive);
udelay (20);
hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
ndelay(400);
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
hwgroup->polling = 1;
__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
spin_unlock_irqrestore(&ide_lock, flags);
return ide_started;
}
/*
* First, reset any device state data we were maintaining
* for any of the drives on this interface.
*/
for (unit = 0; unit < MAX_DRIVES; ++unit)
pre_reset(&hwif->drives[unit]);
if (!IDE_CONTROL_REG) {
spin_unlock_irqrestore(&ide_lock, flags);
return ide_stopped;
}
hwgroup->resetting = 1;
/*
* Note that we also set nIEN while resetting the device,
* to mask unwanted interrupts from the interface during the reset.
* However, due to the design of PC hardware, this will cause an
* immediate interrupt due to the edge transition it produces.
* This single interrupt gives us a "fast poll" for drives that
* recover from reset very quickly, saving us the first 50ms wait time.
*/
/* set SRST and nIEN */
hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
/* more than enough time */
udelay(10);
if (drive->quirk_list == 2) {
/* clear SRST and nIEN */
hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
} else {
/* clear SRST, leave nIEN */
hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
}
/* more than enough time */
udelay(10);
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
hwgroup->polling = 1;
__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
/*
* Some weird controller like resetting themselves to a strange
* state when the disks are reset this way. At least, the Winbond
* 553 documentation says that
*/
if (hwif->resetproc)
hwif->resetproc(drive);
spin_unlock_irqrestore(&ide_lock, flags);
return ide_started;
}
/*
* ide_do_reset() is the entry point to the drive/interface reset code.
*/
ide_startstop_t ide_do_reset (ide_drive_t *drive)
{
return do_reset1(drive, 0);
}
EXPORT_SYMBOL(ide_do_reset);
/*
* ide_wait_not_busy() waits for the currently selected device on the hwif
* to report a non-busy status, see comments in probe_hwif().
*/
int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
{
u8 stat = 0;
while(timeout--) {
/*
* Turn this into a schedule() sleep once I'm sure
* about locking issues (2.5 work ?).
*/
mdelay(1);
stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
if ((stat & BUSY_STAT) == 0)
return 0;
/*
* Assume a value of 0xff means nothing is connected to
* the interface and it doesn't implement the pull-down
* resistor on D7.
*/
if (stat == 0xff)
return -ENODEV;
touch_softlockup_watchdog();
touch_nmi_watchdog();
}
return -EBUSY;
}
EXPORT_SYMBOL_GPL(ide_wait_not_busy);