/*
* linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000
*
* Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org>
* May be copied or modified under the terms of the GNU General Public License
*/
/*
* Special Thanks to Mark for his Six years of work.
*
* Copyright (c) 1995-1998 Mark Lord
* May be copied or modified under the terms of the GNU General Public License
*/
/*
* This module provides support for the bus-master IDE DMA functions
* of various PCI chipsets, including the Intel PIIX (i82371FB for
* the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and
* 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset)
* ("PIIX" stands for "PCI ISA IDE Xcellerator").
*
* Pretty much the same code works for other IDE PCI bus-mastering chipsets.
*
* DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
*
* By default, DMA support is prepared for use, but is currently enabled only
* for drives which already have DMA enabled (UltraDMA or mode 2 multi/single),
* or which are recognized as "good" (see table below). Drives with only mode0
* or mode1 (multi/single) DMA should also work with this chipset/driver
* (eg. MC2112A) but are not enabled by default.
*
* Use "hdparm -i" to view modes supported by a given drive.
*
* The hdparm-3.5 (or later) utility can be used for manually enabling/disabling
* DMA support, but must be (re-)compiled against this kernel version or later.
*
* To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
* If problems arise, ide.c will disable DMA operation after a few retries.
* This error recovery mechanism works and has been extremely well exercised.
*
* IDE drives, depending on their vintage, may support several different modes
* of DMA operation. The boot-time modes are indicated with a "*" in
* the "hdparm -i" listing, and can be changed with *knowledgeable* use of
* the "hdparm -X" feature. There is seldom a need to do this, as drives
* normally power-up with their "best" PIO/DMA modes enabled.
*
* Testing has been done with a rather extensive number of drives,
* with Quantum & Western Digital models generally outperforming the pack,
* and Fujitsu & Conner (and some Seagate which are really Conner) drives
* showing more lackluster throughput.
*
* Keep an eye on /var/adm/messages for "DMA disabled" messages.
*
* Some people have reported trouble with Intel Zappa motherboards.
* This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
* available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
* (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
*
* Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
* fixing the problem with the BIOS on some Acer motherboards.
*
* Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
* "TX" chipset compatibility and for providing patches for the "TX" chipset.
*
* Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
* at generic DMA -- his patches were referred to when preparing this code.
*
* Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
* for supplying a Promise UDMA board & WD UDMA drive for this work!
*
* And, yes, Intel Zappa boards really *do* use both PIIX IDE ports.
*
* ATA-66/100 and recovery functions, I forgot the rest......
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <asm/io.h>
#include <asm/irq.h>
struct drive_list_entry {
const char *id_model;
const char *id_firmware;
};
static const struct drive_list_entry drive_whitelist [] = {
{ "Micropolis 2112A" , "ALL" },
{ "CONNER CTMA 4000" , "ALL" },
{ "CONNER CTT8000-A" , "ALL" },
{ "ST34342A" , "ALL" },
{ NULL , NULL }
};
static const struct drive_list_entry drive_blacklist [] = {
{ "WDC AC11000H" , "ALL" },
{ "WDC AC22100H" , "ALL" },
{ "WDC AC32500H" , "ALL" },
{ "WDC AC33100H" , "ALL" },
{ "WDC AC31600H" , "ALL" },
{ "WDC AC32100H" , "24.09P07" },
{ "WDC AC23200L" , "21.10N21" },
{ "Compaq CRD-8241B" , "ALL" },
{ "CRD-8400B" , "ALL" },
{ "CRD-8480B", "ALL" },
{ "CRD-8482B", "ALL" },
{ "CRD-84" , "ALL" },
{ "SanDisk SDP3B" , "ALL" },
{ "SanDisk SDP3B-64" , "ALL" },
{ "SANYO CD-ROM CRD" , "ALL" },
{ "HITACHI CDR-8" , "ALL" },
{ "HITACHI CDR-8335" , "ALL" },
{ "HITACHI CDR-8435" , "ALL" },
{ "Toshiba CD-ROM XM-6202B" , "ALL" },
{ "CD-532E-A" , "ALL" },
{ "E-IDE CD-ROM CR-840", "ALL" },
{ "CD-ROM Drive/F5A", "ALL" },
{ "WPI CDD-820", "ALL" },
{ "SAMSUNG CD-ROM SC-148C", "ALL" },
{ "SAMSUNG CD-ROM SC", "ALL" },
{ "SanDisk SDP3B-64" , "ALL" },
{ "SAMSUNG CD-ROM SN-124", "ALL" },
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" },
{ "_NEC DV5800A", "ALL" },
{ NULL , NULL }
};
/**
* in_drive_list - look for drive in black/white list
* @id: drive identifier
* @drive_table: list to inspect
*
* Look for a drive in the blacklist and the whitelist tables
* Returns 1 if the drive is found in the table.
*/
static int in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
{
for ( ; drive_table->id_model ; drive_table++)
if ((!strcmp(drive_table->id_model, id->model)) &&
((strstr(drive_table->id_firmware, id->fw_rev)) ||
(!strcmp(drive_table->id_firmware, "ALL"))))
return 1;
return 0;
}
/**
* ide_dma_intr - IDE DMA interrupt handler
* @drive: the drive the interrupt is for
*
* Handle an interrupt completing a read/write DMA transfer on an
* IDE device
*/
ide_startstop_t ide_dma_intr (ide_drive_t *drive)
{
u8 stat = 0, dma_stat = 0;
dma_stat = HWIF(drive)->ide_dma_end(drive);
stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */
if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
if (!dma_stat) {
struct request *rq = HWGROUP(drive)->rq;
if (rq->rq_disk) {
ide_driver_t *drv;
drv = *(ide_driver_t **)rq->rq_disk->private_data;;
drv->end_request(drive, 1, rq->nr_sectors);
} else
ide_end_request(drive, 1, rq->nr_sectors);
return ide_stopped;
}
printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
drive->name, dma_stat);
}
return ide_error(drive, "dma_intr", stat);
}
EXPORT_SYMBOL_GPL(ide_dma_intr);
#ifdef CONFIG_BLK_DEV_IDEDMA_PCI
/**
* ide_build_sglist - map IDE scatter gather for DMA I/O
* @drive: the drive to build the DMA table for
* @rq: the request holding the sg list
*
* Perform the PCI mapping magic necessary to access the source or
* target buffers of a request via PCI DMA. The lower layers of the
* kernel provide the necessary cache management so that we can
* operate in a portable fashion
*/
int ide_build_sglist(ide_drive_t *drive, struct request *rq)
{
ide_hwif_t *hwif = HWIF(drive);
struct scatterlist *sg = hwif->sg_table;
if ((rq->flags & REQ_DRIVE_TASKFILE) && rq->nr_sectors > 256)
BUG();
ide_map_sg(drive, rq);
if (rq_data_dir(rq) == READ)
hwif->sg_dma_direction = PCI_DMA_FROMDEVICE;
else
hwif->sg_dma_direction = PCI_DMA_TODEVICE;
return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction);
}
EXPORT_SYMBOL_GPL(ide_build_sglist);
/**
* ide_build_dmatable - build IDE DMA table
*
* ide_build_dmatable() prepares a dma request. We map the command
* to get the pci bus addresses of the buffers and then build up
* the PRD table that the IDE layer wants to be fed. The code
* knows about the 64K wrap bug in the CS5530.
*
* Returns the number of built PRD entries if all went okay,
* returns 0 otherwise.
*
* May also be invoked from trm290.c
*/
int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
{
ide_hwif_t *hwif = HWIF(drive);
unsigned int *table = hwif->dmatable_cpu;
unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
unsigned int count = 0;
int i;
struct scatterlist *sg;
hwif->sg_nents = i = ide_build_sglist(drive, rq);
if (!i)
return 0;
sg = hwif->sg_table;
while (i) {
u32 cur_addr;
u32 cur_len;
cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg);
/*
* Fill in the dma table, without crossing any 64kB boundaries.
* Most hardware requires 16-bit alignment of all blocks,
* but the trm290 requires 32-bit alignment.
*/
while (cur_len) {
if (count++ >= PRD_ENTRIES) {
printk(KERN_ERR "%s: DMA table too small\n", drive->name);
goto use_pio_instead;
} else {
u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
if (bcount > cur_len)
bcount = cur_len;
*table++ = cpu_to_le32(cur_addr);
xcount = bcount & 0xffff;
if (is_trm290)
xcount = ((xcount >> 2) - 1) << 16;
if (xcount == 0x0000) {
/*
* Most chipsets correctly interpret a length of 0x0000 as 64KB,
* but at least one (e.g. CS5530) misinterprets it as zero (!).
* So here we break the 64KB entry into two 32KB entries instead.
*/
if (count++ >= PRD_ENTRIES) {
printk(KERN_ERR "%s: DMA table too small\n", drive->name);
goto use_pio_instead;
}
*table++ = cpu_to_le32(0x8000);
*table++ = cpu_to_le32(cur_addr + 0x8000);
xcount = 0x8000;
}
*table++ = cpu_to_le32(xcount);
cur_addr += bcount;
cur_len -= bcount;
}
}
sg++;
i--;
}
if (count) {
if (!is_trm290)
*--table |= cpu_to_le32(0x80000000);
return count;
}
printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
use_pio_instead:
pci_unmap_sg(hwif->pci_dev,
hwif->sg_table,
hwif->sg_nents,
hwif->sg_dma_direction);
return 0; /* revert to PIO for this request */
}
EXPORT_SYMBOL_GPL(ide_build_dmatable);
/**
* ide_destroy_dmatable - clean up DMA mapping
* @drive: The drive to unmap
*
* Teardown mappings after DMA has completed. This must be called
* after the completion of each use of ide_build_dmatable and before
* the next use of ide_build_dmatable. Failure to do so will cause
* an oops as only one mapping can be live for each target at a given
* time.
*/
void ide_destroy_dmatable (ide_drive_t *drive)
{
struct pci_dev *dev = HWIF(drive)->pci_dev;
struct scatterlist *sg = HWIF(drive)->sg_table;
int nents = HWIF(drive)->sg_nents;
pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction);
}
EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
/**
* config_drive_for_dma - attempt to activate IDE DMA
* @drive: the drive to place in DMA mode
*
* If the drive supports at least mode 2 DMA or UDMA of any kind
* then attempt to place it into DMA mode. Drives that are known to
* support DMA but predate the DMA properties or that are known
* to have DMA handling bugs are also set up appropriately based
* on the good/bad drive lists.
*/
static int config_drive_for_dma (ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive);
if ((id->capability & 1) && hwif->autodma) {
/*
* Enable DMA on any drive that has
* UltraDMA (mode 0/1/2/3/4/5/6) enabled
*/
if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
return hwif->ide_dma_on(drive);
/*
* Enable DMA on any drive that has mode2 DMA
* (multi or single) enabled
*/
if (id->field_valid & 2) /* regular DMA */
if ((id->dma_mword & 0x404) == 0x404 ||
(id->dma_1word & 0x404) == 0x404)
return hwif->ide_dma_on(drive);
/* Consult the list of known "good" drives */
if (__ide_dma_good_drive(drive))
return hwif->ide_dma_on(drive);
}
// if (hwif->tuneproc != NULL) hwif->tuneproc(drive, 255);
return hwif->ide_dma_off_quietly(drive);
}
/**
* dma_timer_expiry - handle a DMA timeout
* @drive: Drive that timed out
*
* An IDE DMA transfer timed out. In the event of an error we ask
* the driver to resolve the problem, if a DMA transfer is still
* in progress we continue to wait (arguably we need to add a
* secondary 'I don't care what the drive thinks' timeout here)
* Finally if we have an interrupt we let it complete the I/O.
* But only one time - we clear expiry and if it's still not
* completed after WAIT_CMD, we error and retry in PIO.
* This can occur if an interrupt is lost or due to hang or bugs.
*/
static int dma_timer_expiry (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_stat = hwif->INB(hwif->dma_status);
printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
drive->name, dma_stat);
if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
return WAIT_CMD;
HWGROUP(drive)->expiry = NULL; /* one free ride for now */
/* 1 dmaing, 2 error, 4 intr */
if (dma_stat & 2) /* ERROR */
return -1;
if (dma_stat & 1) /* DMAing */
return WAIT_CMD;
if (dma_stat & 4) /* Got an Interrupt */
return WAIT_CMD;
return 0; /* Status is unknown -- reset the bus */
}
/**
* __ide_dma_host_off - Generic DMA kill
* @drive: drive to control
*
* Perform the generic IDE controller DMA off operation. This
* works for most IDE bus mastering controllers
*/
int __ide_dma_host_off (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 unit = (drive->select.b.unit & 0x01);
u8 dma_stat = hwif->INB(hwif->dma_status);
hwif->OUTB((dma_stat & ~(1<<(5+unit))), hwif->dma_status);
return 0;
}
EXPORT_SYMBOL(__ide_dma_host_off);
/**
* __ide_dma_host_off_quietly - Generic DMA kill
* @drive: drive to control
*
* Turn off the current DMA on this IDE controller.
*/
int __ide_dma_off_quietly (ide_drive_t *drive)
{
drive->using_dma = 0;
ide_toggle_bounce(drive, 0);
if (HWIF(drive)->ide_dma_host_off(drive))
return 1;
return 0;
}
EXPORT_SYMBOL(__ide_dma_off_quietly);
#endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
/**
* __ide_dma_off - disable DMA on a device
* @drive: drive to disable DMA on
*
* Disable IDE DMA for a device on this IDE controller.
* Inform the user that DMA has been disabled.
*/
int __ide_dma_off (ide_drive_t *drive)
{
printk(KERN_INFO "%s: DMA disabled\n", drive->name);
return HWIF(drive)->ide_dma_off_quietly(drive);
}
EXPORT_SYMBOL(__ide_dma_off);
#ifdef CONFIG_BLK_DEV_IDEDMA_PCI
/**
* __ide_dma_host_on - Enable DMA on a host
* @drive: drive to enable for DMA
*
* Enable DMA on an IDE controller following generic bus mastering
* IDE controller behaviour
*/
int __ide_dma_host_on (ide_drive_t *drive)
{
if (drive->using_dma) {
ide_hwif_t *hwif = HWIF(drive);
u8 unit = (drive->select.b.unit & 0x01);
u8 dma_stat = hwif->INB(hwif->dma_status);
hwif->OUTB((dma_stat|(1<<(5+unit))), hwif->dma_status);
return 0;
}
return 1;
}
EXPORT_SYMBOL(__ide_dma_host_on);
/**
* __ide_dma_on - Enable DMA on a device
* @drive: drive to enable DMA on
*
* Enable IDE DMA for a device on this IDE controller.
*/
int __ide_dma_on (ide_drive_t *drive)
{
/* consult the list of known "bad" drives */
if (__ide_dma_bad_drive(drive))
return 1;
drive->using_dma = 1;
ide_toggle_bounce(drive, 1);
if (HWIF(drive)->ide_dma_host_on(drive))
return 1;
return 0;
}
EXPORT_SYMBOL(__ide_dma_on);
/**
* __ide_dma_check - check DMA setup
* @drive: drive to check
*
* Don't use - due for extermination
*/
int __ide_dma_check (ide_drive_t *drive)
{
return config_drive_for_dma(drive);
}
EXPORT_SYMBOL(__ide_dma_check);
/**
* ide_dma_setup - begin a DMA phase
* @drive: target device
*
* Build an IDE DMA PRD (IDE speak for scatter gather table)
* and then set up the DMA transfer registers for a device
* that follows generic IDE PCI DMA behaviour. Controllers can
* override this function if they need to
*
* Returns 0 on success. If a PIO fallback is required then 1
* is returned.
*/
int ide_dma_setup(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct request *rq = HWGROUP(drive)->rq;
unsigned int reading;
u8 dma_stat;
if (rq_data_dir(rq))
reading = 0;
else
reading = 1 << 3;
/* fall back to pio! */
if (!ide_build_dmatable(drive, rq)) {
ide_map_sg(drive, rq);
return 1;
}
/* PRD table */
hwif->OUTL(hwif->dmatable_dma, hwif->dma_prdtable);
/* specify r/w */
hwif->OUTB(reading, hwif->dma_command);
/* read dma_status for INTR & ERROR flags */
dma_stat = hwif->INB(hwif->dma_status);
/* clear INTR & ERROR flags */
hwif->OUTB(dma_stat|6, hwif->dma_status);
drive->waiting_for_dma = 1;
return 0;
}
EXPORT_SYMBOL_GPL(ide_dma_setup);
static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
{
/* issue cmd to drive */
ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
}
void ide_dma_start(ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_cmd = hwif->INB(hwif->dma_command);
/* Note that this is done *after* the cmd has
* been issued to the drive, as per the BM-IDE spec.
* The Promise Ultra33 doesn't work correctly when
* we do this part before issuing the drive cmd.
*/
/* start DMA */
hwif->OUTB(dma_cmd|1, hwif->dma_command);
hwif->dma = 1;
wmb();
}
EXPORT_SYMBOL_GPL(ide_dma_start);
/* returns 1 on error, 0 otherwise */
int __ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_stat = 0, dma_cmd = 0;
drive->waiting_for_dma = 0;
/* get dma_command mode */
dma_cmd = hwif->INB(hwif->dma_command);
/* stop DMA */
hwif->OUTB(dma_cmd&~1, hwif->dma_command);
/* get DMA status */
dma_stat = hwif->INB(hwif->dma_status);
/* clear the INTR & ERROR bits */
hwif->OUTB(dma_stat|6, hwif->dma_status);
/* purge DMA mappings */
ide_destroy_dmatable(drive);
/* verify good DMA status */
hwif->dma = 0;
wmb();
return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
}
EXPORT_SYMBOL(__ide_dma_end);
/* returns 1 if dma irq issued, 0 otherwise */
static int __ide_dma_test_irq(ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_stat = hwif->INB(hwif->dma_status);
#if 0 /* do not set unless you know what you are doing */
if (dma_stat & 4) {
u8 stat = hwif->INB(IDE_STATUS_REG);
hwif->OUTB(hwif->dma_status, dma_stat & 0xE4);
}
#endif
/* return 1 if INTR asserted */
if ((dma_stat & 4) == 4)
return 1;
if (!drive->waiting_for_dma)
printk(KERN_WARNING "%s: (%s) called while not waiting\n",
drive->name, __FUNCTION__);
return 0;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
int __ide_dma_bad_drive (ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
int blacklist = in_drive_list(id, drive_blacklist);
if (blacklist) {
printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
drive->name, id->model);
return blacklist;
}
return 0;
}
EXPORT_SYMBOL(__ide_dma_bad_drive);
int __ide_dma_good_drive (ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
return in_drive_list(id, drive_whitelist);
}
EXPORT_SYMBOL(__ide_dma_good_drive);
int ide_use_dma(ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = drive->hwif;
/* consult the list of known "bad" drives */
if (__ide_dma_bad_drive(drive))
return 0;
/* capable of UltraDMA modes */
if (id->field_valid & 4) {
if (hwif->ultra_mask & id->dma_ultra)
return 1;
}
/* capable of regular DMA modes */
if (id->field_valid & 2) {
if (hwif->mwdma_mask & id->dma_mword)
return 1;
if (hwif->swdma_mask & id->dma_1word)
return 1;
}
/* consult the list of known "good" drives */
if (__ide_dma_good_drive(drive) && id->eide_dma_time < 150)
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(ide_use_dma);
void ide_dma_verbose(ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive);
if (id->field_valid & 4) {
if ((id->dma_ultra >> 8) && (id->dma_mword >> 8))
goto bug_dma_off;
if (id->dma_ultra & ((id->dma_ultra >> 8) & hwif->ultra_mask)) {
if (((id->dma_ultra >> 11) & 0x1F) &&
eighty_ninty_three(drive)) {
if ((id->dma_ultra >> 15) & 1) {
printk(", UDMA(mode 7)");
} else if ((id->dma_ultra >> 14) & 1) {
printk(", UDMA(133)");
} else if ((id->dma_ultra >> 13) & 1) {
printk(", UDMA(100)");
} else if ((id->dma_ultra >> 12) & 1) {
printk(", UDMA(66)");
} else if ((id->dma_ultra >> 11) & 1) {
printk(", UDMA(44)");
} else
goto mode_two;
} else {
mode_two:
if ((id->dma_ultra >> 10) & 1) {
printk(", UDMA(33)");
} else if ((id->dma_ultra >> 9) & 1) {
printk(", UDMA(25)");
} else if ((id->dma_ultra >> 8) & 1) {
printk(", UDMA(16)");
}
}
} else {
printk(", (U)DMA"); /* Can be BIOS-enabled! */
}
} else if (id->field_valid & 2) {
if ((id->dma_mword >> 8) && (id->dma_1word >> 8))
goto bug_dma_off;
printk(", DMA");
} else if (id->field_valid & 1) {
printk(", BUG");
}
return;
bug_dma_off:
printk(", BUG DMA OFF");
hwif->ide_dma_off_quietly(drive);
return;
}
EXPORT_SYMBOL(ide_dma_verbose);
#ifdef CONFIG_BLK_DEV_IDEDMA_PCI
int __ide_dma_lostirq (ide_drive_t *drive)
{
printk("%s: DMA interrupt recovery\n", drive->name);
return 1;
}
EXPORT_SYMBOL(__ide_dma_lostirq);
int __ide_dma_timeout (ide_drive_t *drive)
{
printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
if (HWIF(drive)->ide_dma_test_irq(drive))
return 0;
return HWIF(drive)->ide_dma_end(drive);
}
EXPORT_SYMBOL(__ide_dma_timeout);
/*
* Needed for allowing full modular support of ide-driver
*/
static int ide_release_dma_engine(ide_hwif_t *hwif)
{
if (hwif->dmatable_cpu) {
pci_free_consistent(hwif->pci_dev,
PRD_ENTRIES * PRD_BYTES,
hwif->dmatable_cpu,
hwif->dmatable_dma);
hwif->dmatable_cpu = NULL;
}
return 1;
}
static int ide_release_iomio_dma(ide_hwif_t *hwif)
{
if ((hwif->dma_extra) && (hwif->channel == 0))
release_region((hwif->dma_base + 16), hwif->dma_extra);
release_region(hwif->dma_base, 8);
if (hwif->dma_base2)
release_region(hwif->dma_base, 8);
return 1;
}
/*
* Needed for allowing full modular support of ide-driver
*/
int ide_release_dma (ide_hwif_t *hwif)
{
if (hwif->mmio == 2)
return 1;
if (hwif->chipset == ide_etrax100)
return 1;
ide_release_dma_engine(hwif);
return ide_release_iomio_dma(hwif);
}
static int ide_allocate_dma_engine(ide_hwif_t *hwif)
{
hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev,
PRD_ENTRIES * PRD_BYTES,
&hwif->dmatable_dma);
if (hwif->dmatable_cpu)
return 0;
printk(KERN_ERR "%s: -- Error, unable to allocate%s DMA table(s).\n",
hwif->cds->name, !hwif->dmatable_cpu ? " CPU" : "");
ide_release_dma_engine(hwif);
return 1;
}
static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
{
printk(KERN_INFO " %s: MMIO-DMA ", hwif->name);
hwif->dma_base = base;
if (hwif->cds->extra && hwif->channel == 0)
hwif->dma_extra = hwif->cds->extra;
if(hwif->mate)
hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base;
else
hwif->dma_master = base;
return 0;
}
static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
{
printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx",
hwif->name, base, base + ports - 1);
if (!request_region(base, ports, hwif->name)) {
printk(" -- Error, ports in use.\n");
return 1;
}
hwif->dma_base = base;
if ((hwif->cds->extra) && (hwif->channel == 0)) {
request_region(base+16, hwif->cds->extra, hwif->cds->name);
hwif->dma_extra = hwif->cds->extra;
}
if(hwif->mate)
hwif->dma_master = (hwif->channel) ? hwif->mate->dma_base : base;
else
hwif->dma_master = base;
if (hwif->dma_base2) {
if (!request_region(hwif->dma_base2, ports, hwif->name))
{
printk(" -- Error, secondary ports in use.\n");
release_region(base, ports);
return 1;
}
}
return 0;
}
static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base, unsigned int ports)
{
if (hwif->mmio == 2)
return ide_mapped_mmio_dma(hwif, base,ports);
BUG_ON(hwif->mmio == 1);
return ide_iomio_dma(hwif, base, ports);
}
/*
* This can be called for a dynamically installed interface. Don't __init it
*/
void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports)
{
if (ide_dma_iobase(hwif, dma_base, num_ports))
return;
if (ide_allocate_dma_engine(hwif)) {
ide_release_dma(hwif);
return;
}
if (!(hwif->dma_command))
hwif->dma_command = hwif->dma_base;
if (!(hwif->dma_vendor1))
hwif->dma_vendor1 = (hwif->dma_base + 1);
if (!(hwif->dma_status))
hwif->dma_status = (hwif->dma_base + 2);
if (!(hwif->dma_vendor3))
hwif->dma_vendor3 = (hwif->dma_base + 3);
if (!(hwif->dma_prdtable))
hwif->dma_prdtable = (hwif->dma_base + 4);
if (!hwif->ide_dma_off_quietly)
hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
if (!hwif->ide_dma_host_off)
hwif->ide_dma_host_off = &__ide_dma_host_off;
if (!hwif->ide_dma_on)
hwif->ide_dma_on = &__ide_dma_on;
if (!hwif->ide_dma_host_on)
hwif->ide_dma_host_on = &__ide_dma_host_on;
if (!hwif->ide_dma_check)
hwif->ide_dma_check = &__ide_dma_check;
if (!hwif->dma_setup)
hwif->dma_setup = &ide_dma_setup;
if (!hwif->dma_exec_cmd)
hwif->dma_exec_cmd = &ide_dma_exec_cmd;
if (!hwif->dma_start)
hwif->dma_start = &ide_dma_start;
if (!hwif->ide_dma_end)
hwif->ide_dma_end = &__ide_dma_end;
if (!hwif->ide_dma_test_irq)
hwif->ide_dma_test_irq = &__ide_dma_test_irq;
if (!hwif->ide_dma_timeout)
hwif->ide_dma_timeout = &__ide_dma_timeout;
if (!hwif->ide_dma_lostirq)
hwif->ide_dma_lostirq = &__ide_dma_lostirq;
if (hwif->chipset != ide_trm290) {
u8 dma_stat = hwif->INB(hwif->dma_status);
printk(", BIOS settings: %s:%s, %s:%s",
hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio",
hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio");
}
printk("\n");
if (!(hwif->dma_master))
BUG();
}
EXPORT_SYMBOL_GPL(ide_setup_dma);
#endif /* CONFIG_BLK_DEV_IDEDMA_PCI */