/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/circ_buf.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
static const u32 hpd_ibx[] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG
};
static const u32 hpd_cpt[] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
};
static const u32 hpd_mask_i915[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
};
static const u32 hpd_status_g4x[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
/* For display hotplug interrupt */
static void
ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
{
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->pm.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pm.regsave.deimr &= ~mask;
return;
}
if ((dev_priv->irq_mask & mask) != 0) {
dev_priv->irq_mask &= ~mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
static void
ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
{
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->pm.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pm.regsave.deimr |= mask;
return;
}
if ((dev_priv->irq_mask & mask) != mask) {
dev_priv->irq_mask |= mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
/**
* ilk_update_gt_irq - update GTIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->pm.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
dev_priv->gt_irq_mask &= ~interrupt_mask;
dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
POSTING_READ(GTIMR);
}
void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, mask);
}
void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, 0);
}
/**
* snb_update_pm_irq - update GEN6_PMIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->pm.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
new_val = dev_priv->pm_irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->pm_irq_mask) {
dev_priv->pm_irq_mask = new_val;
I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
POSTING_READ(GEN6_PMIMR);
}
}
void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
snb_update_pm_irq(dev_priv, mask, mask);
}
void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
snb_update_pm_irq(dev_priv, mask, 0);
}
static bool ivb_can_enable_err_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
enum pipe pipe;
assert_spin_locked(&dev_priv->irq_lock);
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
if (crtc->cpu_fifo_underrun_disabled)
return false;
}
return true;
}
static bool cpt_can_enable_serr_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
assert_spin_locked(&dev_priv->irq_lock);
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
if (crtc->pch_fifo_underrun_disabled)
return false;
}
return true;
}
static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & 0x7fff0000;
assert_spin_locked(&dev_priv->irq_lock);
I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
POSTING_READ(reg);
}
static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
DE_PIPEB_FIFO_UNDERRUN;
if (enable)
ironlake_enable_display_irq(dev_priv, bit);
else
ironlake_disable_display_irq(dev_priv, bit);
}
static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (enable) {
I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
if (!ivb_can_enable_err_int(dev))
return;
ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
} else {
bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
/* Change the state _after_ we've read out the current one. */
ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
if (!was_enabled &&
(I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
pipe_name(pipe));
}
}
}
static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
assert_spin_locked(&dev_priv->irq_lock);
if (enable)
dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
else
dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
}
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t sdeimr = I915_READ(SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->pm.irqs_disabled &&
(interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
WARN(1, "IRQs disabled\n");
dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
I915_WRITE(SDEIMR, sdeimr);
POSTING_READ(SDEIMR);
}
#define ibx_enable_display_interrupt(dev_priv, bits) \
ibx_display_interrupt_update((dev_priv), (bits), (bits))
#define ibx_disable_display_interrupt(dev_priv, bits) \
ibx_display_interrupt_update((dev_priv), (bits), 0)
static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
if (enable)
ibx_enable_display_interrupt(dev_priv, bit);
else
ibx_disable_display_interrupt(dev_priv, bit);
}
static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (enable) {
I915_WRITE(SERR_INT,
SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
if (!cpt_can_enable_serr_int(dev))
return;
ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
} else {
uint32_t tmp = I915_READ(SERR_INT);
bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
/* Change the state _after_ we've read out the current one. */
ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
if (!was_enabled &&
(tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
transcoder_name(pch_transcoder));
}
}
}
/**
* intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pipe: pipe
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable CPU fifo underruns for a specific
* pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
* reporting for one pipe may also disable all the other CPU error interruts for
* the other pipes, due to the fact that there's just one interrupt mask/enable
* bit for all the pipes.
*
* Returns the previous state of underrun reporting.
*/
bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool ret;
assert_spin_locked(&dev_priv->irq_lock);
ret = !intel_crtc->cpu_fifo_underrun_disabled;
if (enable == ret)
goto done;
intel_crtc->cpu_fifo_underrun_disabled = !enable;
if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
i9xx_clear_fifo_underrun(dev, pipe);
else if (IS_GEN5(dev) || IS_GEN6(dev))
ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
else if (IS_GEN7(dev))
ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
else if (IS_GEN8(dev))
broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
done:
return ret;
}
bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
bool ret;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
return !intel_crtc->cpu_fifo_underrun_disabled;
}
/**
* intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable PCH fifo underruns for a specific
* PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
* underrun reporting for one transcoder may also disable all the other PCH
* error interruts for the other transcoders, due to the fact that there's just
* one interrupt mask/enable bit for all the transcoders.
*
* Returns the previous state of underrun reporting.
*/
bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long flags;
bool ret;
/*
* NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
* has only one pch transcoder A that all pipes can use. To avoid racy
* pch transcoder -> pipe lookups from interrupt code simply store the
* underrun statistics in crtc A. Since we never expose this anywhere
* nor use it outside of the fifo underrun code here using the "wrong"
* crtc on LPT won't cause issues.
*/
spin_lock_irqsave(&dev_priv->irq_lock, flags);
ret = !intel_crtc->pch_fifo_underrun_disabled;
if (enable == ret)
goto done;
intel_crtc->pch_fifo_underrun_disabled = !enable;
if (HAS_PCH_IBX(dev))
ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
else
cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
done:
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
static void
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 enable_mask, u32 status_mask)
{
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
assert_spin_locked(&dev_priv->irq_lock);
if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK))
return;
if ((pipestat & enable_mask) == enable_mask)
return;
dev_priv->pipestat_irq_mask[pipe] |= status_mask;
/* Enable the interrupt, clear any pending status */
pipestat |= enable_mask | status_mask;
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
static void
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 enable_mask, u32 status_mask)
{
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
assert_spin_locked(&dev_priv->irq_lock);
if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK))
return;
if ((pipestat & enable_mask) == 0)
return;
dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
pipestat &= ~enable_mask;
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
{
u32 enable_mask = status_mask << 16;
/*
* On pipe A we don't support the PSR interrupt yet, on pipe B the
* same bit MBZ.
*/
if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
return 0;
enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
SPRITE0_FLIP_DONE_INT_EN_VLV |
SPRITE1_FLIP_DONE_INT_EN_VLV);
if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
return enable_mask;
}
void
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask)
{
u32 enable_mask;
if (IS_VALLEYVIEW(dev_priv->dev))
enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
status_mask);
else
enable_mask = status_mask << 16;
__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
}
void
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask)
{
u32 enable_mask;
if (IS_VALLEYVIEW(dev_priv->dev))
enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
status_mask);
else
enable_mask = status_mask << 16;
__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
*/
static void i915_enable_asle_pipestat(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
return;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
if (INTEL_INFO(dev)->gen >= 4)
i915_enable_pipestat(dev_priv, PIPE_A,
PIPE_LEGACY_BLC_EVENT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
/**
* i915_pipe_enabled - check if a pipe is enabled
* @dev: DRM device
* @pipe: pipe to check
*
* Reading certain registers when the pipe is disabled can hang the chip.
* Use this routine to make sure the PLL is running and the pipe is active
* before reading such registers if unsure.
*/
static int
i915_pipe_enabled(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
/* Locking is horribly broken here, but whatever. */
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
return intel_crtc->active;
} else {
return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
}
}
static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
{
/* Gen2 doesn't have a hardware frame counter */
return 0;
}
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long high_frame;
unsigned long low_frame;
u32 high1, high2, low, pixel, vbl_start;
if (!i915_pipe_enabled(dev, pipe)) {
DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
const struct drm_display_mode *mode =
&intel_crtc->config.adjusted_mode;
vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
} else {
enum transcoder cpu_transcoder = (enum transcoder) pipe;
u32 htotal;
htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
vbl_start *= htotal;
}
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
low = I915_READ(low_frame);
high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
pixel = low & PIPE_PIXEL_MASK;
low >>= PIPE_FRAME_LOW_SHIFT;
/*
* The frame counter increments at beginning of active.
* Cook up a vblank counter by also checking the pixel
* counter against vblank start.
*/
return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
}
static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = PIPE_FRMCOUNT_GM45(pipe);
if (!i915_pipe_enabled(dev, pipe)) {
DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
return I915_READ(reg);
}
/* raw reads, only for fast reads of display block, no need for forcewake etc. */
#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t status;
int reg;
if (INTEL_INFO(dev)->gen >= 8) {
status = GEN8_PIPE_VBLANK;
reg = GEN8_DE_PIPE_ISR(pipe);
} else if (INTEL_INFO(dev)->gen >= 7) {
status = DE_PIPE_VBLANK_IVB(pipe);
reg = DEISR;
} else {
status = DE_PIPE_VBLANK(pipe);
reg = DEISR;
}
return __raw_i915_read32(dev_priv, reg) & status;
}
static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
unsigned int flags, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
int position;
int vbl_start, vbl_end, htotal, vtotal;
bool in_vbl = true;
int ret = 0;
unsigned long irqflags;
if (!intel_crtc->active) {
DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
htotal = mode->crtc_htotal;
vtotal = mode->crtc_vtotal;
vbl_start = mode->crtc_vblank_start;
vbl_end = mode->crtc_vblank_end;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vbl_start = DIV_ROUND_UP(vbl_start, 2);
vbl_end /= 2;
vtotal /= 2;
}
ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
/*
* Lock uncore.lock, as we will do multiple timing critical raw
* register reads, potentially with preemption disabled, so the
* following code must not block on uncore.lock.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
if (IS_GEN2(dev))
position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
else
position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
if (HAS_DDI(dev)) {
/*
* On HSW HDMI outputs there seems to be a 2 line
* difference, whereas eDP has the normal 1 line
* difference that earlier platforms have. External
* DP is unknown. For now just check for the 2 line
* difference case on all output types on HSW+.
*
* This might misinterpret the scanline counter being
* one line too far along on eDP, but that's less
* dangerous than the alternative since that would lead
* the vblank timestamp code astray when it sees a
* scanline count before vblank_start during a vblank
* interrupt.
*/
in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
if ((in_vbl && (position == vbl_start - 2 ||
position == vbl_start - 1)) ||
(!in_vbl && (position == vbl_end - 2 ||
position == vbl_end - 1)))
position = (position + 2) % vtotal;
} else if (HAS_PCH_SPLIT(dev)) {
/*
* The scanline counter increments at the leading edge
* of hsync, ie. it completely misses the active portion
* of the line. Fix up the counter at both edges of vblank
* to get a more accurate picture whether we're in vblank
* or not.
*/
in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
if ((in_vbl && position == vbl_start - 1) ||
(!in_vbl && position == vbl_end - 1))
position = (position + 1) % vtotal;
} else {
/*
* ISR vblank status bits don't work the way we'd want
* them to work on non-PCH platforms (for
* ilk_pipe_in_vblank_locked()), and there doesn't
* appear any other way to determine if we're currently
* in vblank.
*
* Instead let's assume that we're already in vblank if
* we got called from the vblank interrupt and the
* scanline counter value indicates that we're on the
* line just prior to vblank start. This should result
* in the correct answer, unless the vblank interrupt
* delivery really got delayed for almost exactly one
* full frame/field.
*/
if (flags & DRM_CALLED_FROM_VBLIRQ &&
position == vbl_start - 1) {
position = (position + 1) % vtotal;
/* Signal this correction as "applied". */
ret |= 0x8;
}
}
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
/* convert to pixel counts */
vbl_start *= htotal;
vbl_end *= htotal;
vtotal *= htotal;
}
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
in_vbl = position >= vbl_start && position < vbl_end;
/*
* While in vblank, position will be negative
* counting up towards 0 at vbl_end. And outside
* vblank, position will be positive counting
* up since vbl_end.
*/
if (position >= vbl_start)
position -= vbl_end;
else
position += vtotal - vbl_end;
if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
*vpos = position;
*hpos = 0;
} else {
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
/* In vblank? */
if (in_vbl)
ret |= DRM_SCANOUTPOS_INVBL;
return ret;
}
static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
int *max_error,
struct timeval *vblank_time,
unsigned flags)
{
struct drm_crtc *crtc;
if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
DRM_ERROR("Invalid crtc %d\n", pipe);
return -EINVAL;
}
/* Get drm_crtc to timestamp: */
crtc = intel_get_crtc_for_pipe(dev, pipe);
if (crtc == NULL) {
DRM_ERROR("Invalid crtc %d\n", pipe);
return -EINVAL;
}
if (!crtc->enabled) {
DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
return -EBUSY;
}
/* Helper routine in DRM core does all the work: */
return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
vblank_time, flags,
crtc,
&to_intel_crtc(crtc)->config.adjusted_mode);
}
static bool intel_hpd_irq_event(struct drm_device *dev,
struct drm_connector *connector)
{
enum drm_connector_status old_status;
WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
old_status = connector->status;
connector->status = connector->funcs->detect(connector, false);
if (old_status == connector->status)
return false;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
connector->base.id,
drm_get_connector_name(connector),
drm_get_connector_status_name(old_status),
drm_get_connector_status_name(connector->status));
return true;
}
/*
* Handle hotplug events outside the interrupt handler proper.
*/
#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
static void i915_hotplug_work_func(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, hotplug_work);
struct drm_device *dev = dev_priv->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_connector *intel_connector;
struct intel_encoder *intel_encoder;
struct drm_connector *connector;
unsigned long irqflags;
bool hpd_disabled = false;
bool changed = false;
u32 hpd_event_bits;
/* HPD irq before everything is fully set up. */
if (!dev_priv->enable_hotplug_processing)
return;
mutex_lock(&mode_config->mutex);
DRM_DEBUG_KMS("running encoder hotplug functions\n");
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
hpd_event_bits = dev_priv->hpd_event_bits;
dev_priv->hpd_event_bits = 0;
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
if (intel_encoder->hpd_pin > HPD_NONE &&
dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
connector->polled == DRM_CONNECTOR_POLL_HPD) {
DRM_INFO("HPD interrupt storm detected on connector %s: "
"switching from hotplug detection to polling\n",
drm_get_connector_name(connector));
dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
connector->polled = DRM_CONNECTOR_POLL_CONNECT
| DRM_CONNECTOR_POLL_DISCONNECT;
hpd_disabled = true;
}
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
drm_get_connector_name(connector), intel_encoder->hpd_pin);
}
}
/* if there were no outputs to poll, poll was disabled,
* therefore make sure it's enabled when disabling HPD on
* some connectors */
if (hpd_disabled) {
drm_kms_helper_poll_enable(dev);
mod_timer(&dev_priv->hotplug_reenable_timer,
jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
if (intel_encoder->hot_plug)
intel_encoder->hot_plug(intel_encoder);
if (intel_hpd_irq_event(dev, connector))
changed = true;
}
}
mutex_unlock(&mode_config->mutex);
if (changed)
drm_kms_helper_hotplug_event(dev);
}
static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
{
del_timer_sync(&dev_priv->hotplug_reenable_timer);
}
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_delay;
spin_lock(&mchdev_lock);
I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
new_delay = dev_priv->ips.cur_delay;
I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
busy_up = I915_READ(RCPREVBSYTUPAVG);
busy_down = I915_READ(RCPREVBSYTDNAVG);
max_avg = I915_READ(RCBMAXAVG);
min_avg = I915_READ(RCBMINAVG);
/* Handle RCS change request from hw */
if (busy_up > max_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
new_delay = dev_priv->ips.cur_delay - 1;
if (new_delay < dev_priv->ips.max_delay)
new_delay = dev_priv->ips.max_delay;
} else if (busy_down < min_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
new_delay = dev_priv->ips.cur_delay + 1;
if (new_delay > dev_priv->ips.min_delay)
new_delay = dev_priv->ips.min_delay;
}
if (ironlake_set_drps(dev, new_delay))
dev_priv->ips.cur_delay = new_delay;
spin_unlock(&mchdev_lock);
return;
}
static void notify_ring(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
if (ring->obj == NULL)
return;
trace_i915_gem_request_complete(ring);
wake_up_all(&ring->irq_queue);
i915_queue_hangcheck(dev);
}
static void gen6_pm_rps_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, rps.work);
u32 pm_iir;
int new_delay, adj;
spin_lock_irq(&dev_priv->irq_lock);
pm_iir = dev_priv->rps.pm_iir;
dev_priv->rps.pm_iir = 0;
/* Make sure not to corrupt PMIMR state used by ringbuffer code */
snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
/* Make sure we didn't queue anything we're not going to process. */
WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
if ((pm_iir & dev_priv->pm_rps_events) == 0)
return;
mutex_lock(&dev_priv->rps.hw_lock);
adj = dev_priv->rps.last_adj;
if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
if (adj > 0)
adj *= 2;
else
adj = 1;
new_delay = dev_priv->rps.cur_freq + adj;
/*
* For better performance, jump directly
* to RPe if we're below it.
*/
if (new_delay < dev_priv->rps.efficient_freq)
new_delay = dev_priv->rps.efficient_freq;
} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
new_delay = dev_priv->rps.efficient_freq;
else
new_delay = dev_priv->rps.min_freq_softlimit;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
if (adj < 0)
adj *= 2;
else
adj = -1;
new_delay = dev_priv->rps.cur_freq + adj;
} else { /* unknown event */
new_delay = dev_priv->rps.cur_freq;
}
/* sysfs frequency interfaces may have snuck in while servicing the
* interrupt
*/
new_delay = clamp_t(int, new_delay,
dev_priv->rps.min_freq_softlimit,
dev_priv->rps.max_freq_softlimit);
dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
if (IS_VALLEYVIEW(dev_priv->dev))
valleyview_set_rps(dev_priv->dev, new_delay);
else
gen6_set_rps(dev_priv->dev, new_delay);
mutex_unlock(&dev_priv->rps.hw_lock);
}
/**
* ivybridge_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivybridge_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, l3_parity.error_work);
u32 error_status, row, bank, subbank;
char *parity_event[6];
uint32_t misccpctl;
unsigned long flags;
uint8_t slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->dev->struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (WARN_ON(!dev_priv->l3_parity.which_slice))
goto out;
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
u32 reg;
slice--;
if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1 + (slice * 0x200);
error_status = I915_READ(reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
POSTING_READ(reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
out:
WARN_ON(dev_priv->l3_parity.which_slice);
spin_lock_irqsave(&dev_priv->irq_lock, flags);
ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
mutex_unlock(&dev_priv->dev->struct_mutex);
}
static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_L3_DPF(dev))
return;
spin_lock(&dev_priv->irq_lock);
ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
spin_unlock(&dev_priv->irq_lock);
iir &= GT_PARITY_ERROR(dev);
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
dev_priv->l3_parity.which_slice |= 1 << 1;
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
dev_priv->l3_parity.which_slice |= 1 << 0;
queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
}
static void ilk_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
}
static void snb_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[BCS]);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
i915_handle_error(dev, false, "GT error interrupt 0x%08x",
gt_iir);
}
if (gt_iir & GT_PARITY_ERROR(dev))
ivybridge_parity_error_irq_handler(dev, gt_iir);
}
static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 master_ctl)
{
u32 rcs, bcs, vcs;
uint32_t tmp = 0;
irqreturn_t ret = IRQ_NONE;
if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
tmp = I915_READ(GEN8_GT_IIR(0));
if (tmp) {
ret = IRQ_HANDLED;
rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
if (rcs & GT_RENDER_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
if (bcs & GT_RENDER_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[BCS]);
I915_WRITE(GEN8_GT_IIR(0), tmp);
} else
DRM_ERROR("The master control interrupt lied (GT0)!\n");
}
if (master_ctl & GEN8_GT_VCS1_IRQ) {
tmp = I915_READ(GEN8_GT_IIR(1));
if (tmp) {
ret = IRQ_HANDLED;
vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
if (vcs & GT_RENDER_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
I915_WRITE(GEN8_GT_IIR(1), tmp);
} else
DRM_ERROR("The master control interrupt lied (GT1)!\n");
}
if (master_ctl & GEN8_GT_VECS_IRQ) {
tmp = I915_READ(GEN8_GT_IIR(3));
if (tmp) {
ret = IRQ_HANDLED;
vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
if (vcs & GT_RENDER_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VECS]);
I915_WRITE(GEN8_GT_IIR(3), tmp);
} else
DRM_ERROR("The master control interrupt lied (GT3)!\n");
}
return ret;
}
#define HPD_STORM_DETECT_PERIOD 1000
#define HPD_STORM_THRESHOLD 5
static inline void intel_hpd_irq_handler(struct drm_device *dev,
u32 hotplug_trigger,
const u32 *hpd)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
bool storm_detected = false;
if (!hotplug_trigger)
return;
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_trigger);
spin_lock(&dev_priv->irq_lock);
for (i = 1; i < HPD_NUM_PINS; i++) {
if (hpd[i] & hotplug_trigger &&
dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
/*
* On GMCH platforms the interrupt mask bits only
* prevent irq generation, not the setting of the
* hotplug bits itself. So only WARN about unexpected
* interrupts on saner platforms.
*/
WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
"Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
hotplug_trigger, i, hpd[i]);
continue;
}
if (!(hpd[i] & hotplug_trigger) ||
dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
continue;
dev_priv->hpd_event_bits |= (1 << i);
if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
dev_priv->hpd_stats[i].hpd_last_jiffies
+ msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
dev_priv->hpd_stats[i].hpd_cnt = 0;
DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
dev_priv->hpd_event_bits &= ~(1 << i);
DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
storm_detected = true;
} else {
dev_priv->hpd_stats[i].hpd_cnt++;
DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
dev_priv->hpd_stats[i].hpd_cnt);
}
}
if (storm_detected)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock(&dev_priv->irq_lock);
/*
* Our hotplug handler can grab modeset locks (by calling down into the
* fb helpers). Hence it must not be run on our own dev-priv->wq work
* queue for otherwise the flush_work in the pageflip code will
* deadlock.
*/
schedule_work(&dev_priv->hotplug_work);
}
static void gmbus_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
wake_up_all(&dev_priv->gmbus_wait_queue);
}
#if defined(CONFIG_DEBUG_FS)
static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
struct intel_pipe_crc_entry *entry;
int head, tail;
spin_lock(&pipe_crc->lock);
if (!pipe_crc->entries) {
spin_unlock(&pipe_crc->lock);
DRM_ERROR("spurious interrupt\n");
return;
}
head = pipe_crc->head;
tail = pipe_crc->tail;
if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
spin_unlock(&pipe_crc->lock);
DRM_ERROR("CRC buffer overflowing\n");
return;
}
entry = &pipe_crc->entries[head];
entry->frame = dev->driver->get_vblank_counter(dev, pipe);
entry->crc[0] = crc0;
entry->crc[1] = crc1;
entry->crc[2] = crc2;
entry->crc[3] = crc3;
entry->crc[4] = crc4;
head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
pipe_crc->head = head;
spin_unlock(&pipe_crc->lock);
wake_up_interruptible(&pipe_crc->wq);
}
#else
static inline void
display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4) {}
#endif
static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
display_pipe_crc_irq_handler(dev, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
0, 0, 0, 0);
}
static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
display_pipe_crc_irq_handler(dev, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
}
static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t res1, res2;
if (INTEL_INFO(dev)->gen >= 3)
res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
else
res1 = 0;
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
else
res2 = 0;
display_pipe_crc_irq_handler(dev, pipe,
I915_READ(PIPE_CRC_RES_RED(pipe)),
I915_READ(PIPE_CRC_RES_GREEN(pipe)),
I915_READ(PIPE_CRC_RES_BLUE(pipe)),
res1, res2);
}
/* The RPS events need forcewake, so we add them to a work queue and mask their
* IMR bits until the work is done. Other interrupts can be processed without
* the work queue. */
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
{
if (pm_iir & dev_priv->pm_rps_events) {
spin_lock(&dev_priv->irq_lock);
dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
spin_unlock(&dev_priv->irq_lock);
queue_work(dev_priv->wq, &dev_priv->rps.work);
}
if (HAS_VEBOX(dev_priv->dev)) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
i915_handle_error(dev_priv->dev, false,
"VEBOX CS error interrupt 0x%08x",
pm_iir);
}
}
}
static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pipe_stats[I915_MAX_PIPES] = { };
int pipe;
spin_lock(&dev_priv->irq_lock);
for_each_pipe(pipe) {
int reg;
u32 mask, iir_bit = 0;
/*
* PIPESTAT bits get signalled even when the interrupt is
* disabled with the mask bits, and some of the status bits do
* not generate interrupts at all (like the underrun bit). Hence
* we need to be careful that we only handle what we want to
* handle.
*/
mask = 0;
if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
mask |= PIPE_FIFO_UNDERRUN_STATUS;
switch (pipe) {
case PIPE_A:
iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
break;
case PIPE_B:
iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
break;
}
if (iir & iir_bit)
mask |= dev_priv->pipestat_irq_mask[pipe];
if (!mask)
continue;
reg = PIPESTAT(pipe);
mask |= PIPESTAT_INT_ENABLE_MASK;
pipe_stats[pipe] = I915_READ(reg) & mask;
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
PIPESTAT_INT_STATUS_MASK))
I915_WRITE(reg, pipe_stats[pipe]);
}
spin_unlock(&dev_priv->irq_lock);
for_each_pipe(pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(dev, pipe);
if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
intel_prepare_page_flip(dev, pipe);
intel_finish_page_flip(dev, pipe);
}
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev);
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 iir, gt_iir, pm_iir;
irqreturn_t ret = IRQ_NONE;
while (true) {
iir = I915_READ(VLV_IIR);
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
goto out;
ret = IRQ_HANDLED;
snb_gt_irq_handler(dev, dev_priv, gt_iir);
valleyview_pipestat_irq_handler(dev, iir);
/* Consume port. Then clear IIR or we'll miss events */
if (iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
dp_aux_irq_handler(dev);
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
if (pm_iir)
gen6_rps_irq_handler(dev_priv, pm_iir);
I915_WRITE(GTIIR, gt_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
I915_WRITE(VLV_IIR, iir);
}
out:
return ret;
}
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK)
for_each_pipe(pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_ERROR("PCH transcoder A FIFO underrun\n");
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_ERROR("PCH transcoder B FIFO underrun\n");
}
static void ivb_err_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 err_int = I915_READ(GEN7_ERR_INT);
enum pipe pipe;
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(pipe) {
if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
false))
DRM_ERROR("Pipe %c FIFO underrun\n",
pipe_name(pipe));
}
if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
if (IS_IVYBRIDGE(dev))
ivb_pipe_crc_irq_handler(dev, pipe);
else
hsw_pipe_crc_irq_handler(dev, pipe);
}
}
I915_WRITE(GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 serr_int = I915_READ(SERR_INT);
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_ERROR("PCH transcoder A FIFO underrun\n");
if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_ERROR("PCH transcoder B FIFO underrun\n");
if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
false))
DRM_ERROR("PCH transcoder C FIFO underrun\n");
I915_WRITE(SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT)
for_each_pipe(pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev);
}
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev);
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(pipe) {
if (de_iir & DE_PIPE_VBLANK(pipe))
drm_handle_vblank(dev, pipe);
if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
DRM_ERROR("Pipe %c FIFO underrun\n",
pipe_name(pipe));
if (de_iir & DE_PIPE_CRC_DONE(pipe))
i9xx_pipe_crc_irq_handler(dev, pipe);
/* plane/pipes map 1:1 on ilk+ */
if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
intel_prepare_page_flip(dev, pipe);
intel_finish_page_flip_plane(dev, pipe);
}
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = I915_READ(SDEIIR);
if (HAS_PCH_CPT(dev))
cpt_irq_handler(dev, pch_iir);
else
ibx_irq_handler(dev, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
ironlake_rps_change_irq_handler(dev);
}
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev);
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev);
for_each_pipe(pipe) {
if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
drm_handle_vblank(dev, pipe);
/* plane/pipes map 1:1 on ilk+ */
if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
intel_prepare_page_flip(dev, pipe);
intel_finish_page_flip_plane(dev, pipe);
}
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
}
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
/* We get interrupts on unclaimed registers, so check for this before we
* do any I915_{READ,WRITE}. */
intel_uncore_check_errors(dev);
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
}
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
if (INTEL_INFO(dev)->gen >= 6)
snb_gt_irq_handler(dev, dev_priv, gt_iir);
else
ilk_gt_irq_handler(dev, dev_priv, gt_iir);
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
}
de_iir = I915_READ(DEIIR);
if (de_iir) {
if (INTEL_INFO(dev)->gen >= 7)
ivb_display_irq_handler(dev, de_iir);
else
ilk_display_irq_handler(dev, de_iir);
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
}
if (INTEL_INFO(dev)->gen >= 6) {
u32 pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
gen6_rps_irq_handler(dev_priv, pm_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
}
}
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
return ret;
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 master_ctl;
irqreturn_t ret = IRQ_NONE;
uint32_t tmp = 0;
enum pipe pipe;
master_ctl = I915_READ(GEN8_MASTER_IRQ);
master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
if (!master_ctl)
return IRQ_NONE;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
if (master_ctl & GEN8_DE_MISC_IRQ) {
tmp = I915_READ(GEN8_DE_MISC_IIR);
if (tmp & GEN8_DE_MISC_GSE)
intel_opregion_asle_intr(dev);
else if (tmp)
DRM_ERROR("Unexpected DE Misc interrupt\n");
else
DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
if (tmp) {
I915_WRITE(GEN8_DE_MISC_IIR, tmp);
ret = IRQ_HANDLED;
}
}
if (master_ctl & GEN8_DE_PORT_IRQ) {
tmp = I915_READ(GEN8_DE_PORT_IIR);
if (tmp & GEN8_AUX_CHANNEL_A)
dp_aux_irq_handler(dev);
else if (tmp)
DRM_ERROR("Unexpected DE Port interrupt\n");
else
DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
if (tmp) {
I915_WRITE(GEN8_DE_PORT_IIR, tmp);
ret = IRQ_HANDLED;
}
}
for_each_pipe(pipe) {
uint32_t pipe_iir;
if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
continue;
pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
if (pipe_iir & GEN8_PIPE_VBLANK)
drm_handle_vblank(dev, pipe);
if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
intel_prepare_page_flip(dev, pipe);
intel_finish_page_flip_plane(dev, pipe);
}
if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
hsw_pipe_crc_irq_handler(dev, pipe);
if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
false))
DRM_ERROR("Pipe %c FIFO underrun\n",
pipe_name(pipe));
}
if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
pipe_name(pipe),
pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
}
if (pipe_iir) {
ret = IRQ_HANDLED;
I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
} else
DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
}
if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
/*
* FIXME(BDW): Assume for now that the new interrupt handling
* scheme also closed the SDE interrupt handling race we've seen
* on older pch-split platforms. But this needs testing.
*/
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev, pch_iir);
if (pch_iir) {
I915_WRITE(SDEIIR, pch_iir);
ret = IRQ_HANDLED;
}
}
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return ret;
}
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
bool reset_completed)
{
struct intel_ring_buffer *ring;
int i;
/*
* Notify all waiters for GPU completion events that reset state has
* been changed, and that they need to restart their wait after
* checking for potential errors (and bail out to drop locks if there is
* a gpu reset pending so that i915_error_work_func can acquire them).
*/
/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
wake_up_all(&dev_priv->pending_flip_queue);
/*
* Signal tasks blocked in i915_gem_wait_for_error that the pending
* reset state is cleared.
*/
if (reset_completed)
wake_up_all(&dev_priv->gpu_error.reset_queue);
}
/**
* i915_error_work_func - do process context error handling work
* @work: work struct
*
* Fire an error uevent so userspace can see that a hang or error
* was detected.
*/
static void i915_error_work_func(struct work_struct *work)
{
struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
work);
struct drm_i915_private *dev_priv =
container_of(error, struct drm_i915_private, gpu_error);
struct drm_device *dev = dev_priv->dev;
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
int ret;
kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
/*
* Note that there's only one work item which does gpu resets, so we
* need not worry about concurrent gpu resets potentially incrementing
* error->reset_counter twice. We only need to take care of another
* racing irq/hangcheck declaring the gpu dead for a second time. A
* quick check for that is good enough: schedule_work ensures the
* correct ordering between hang detection and this work item, and since
* the reset in-progress bit is only ever set by code outside of this
* work we don't need to worry about any other races.
*/
if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
reset_event);
/*
* All state reset _must_ be completed before we update the
* reset counter, for otherwise waiters might miss the reset
* pending state and not properly drop locks, resulting in
* deadlocks with the reset work.
*/
ret = i915_reset(dev);
intel_display_handle_reset(dev);
if (ret == 0) {
/*
* After all the gem state is reset, increment the reset
* counter and wake up everyone waiting for the reset to
* complete.
*
* Since unlock operations are a one-sided barrier only,
* we need to insert a barrier here to order any seqno
* updates before
* the counter increment.
*/
smp_mb__before_atomic();
atomic_inc(&dev_priv->gpu_error.reset_counter);
kobject_uevent_env(&dev->primary->kdev->kobj,
KOBJ_CHANGE, reset_done_event);
} else {
atomic_set_mask(I915_WEDGED, &error->reset_counter);
}
/*
* Note: The wake_up also serves as a memory barrier so that
* waiters see the update value of the reset counter atomic_t.
*/
i915_error_wake_up(dev_priv, true);
}
}
static void i915_report_and_clear_eir(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t instdone[I915_NUM_INSTDONE_REG];
u32 eir = I915_READ(EIR);
int pipe, i;
if (!eir)
return;
pr_err("render error detected, EIR: 0x%08x\n", eir);
i915_get_extra_instdone(dev, instdone);
if (IS_G4X(dev)) {
if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
u32 ipeir = I915_READ(IPEIR_I965);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
for (i = 0; i < ARRAY_SIZE(instdone); i++)
pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
I915_WRITE(IPEIR_I965, ipeir);
POSTING_READ(IPEIR_I965);
}
if (eir & GM45_ERROR_PAGE_TABLE) {
u32 pgtbl_err = I915_READ(PGTBL_ER);
pr_err("page table error\n");
pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
I915_WRITE(PGTBL_ER, pgtbl_err);
POSTING_READ(PGTBL_ER);
}
}
if (!IS_GEN2(dev)) {
if (eir & I915_ERROR_PAGE_TABLE) {
u32 pgtbl_err = I915_READ(PGTBL_ER);
pr_err("page table error\n");
pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
I915_WRITE(PGTBL_ER, pgtbl_err);
POSTING_READ(PGTBL_ER);
}
}
if (eir & I915_ERROR_MEMORY_REFRESH) {
pr_err("memory refresh error:\n");
for_each_pipe(pipe)
pr_err("pipe %c stat: 0x%08x\n",
pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
/* pipestat has already been acked */
}
if (eir & I915_ERROR_INSTRUCTION) {
pr_err("instruction error\n");
pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
for (i = 0; i < ARRAY_SIZE(instdone); i++)
pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
if (INTEL_INFO(dev)->gen < 4) {
u32 ipeir = I915_READ(IPEIR);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
I915_WRITE(IPEIR, ipeir);
POSTING_READ(IPEIR);
} else {
u32 ipeir = I915_READ(IPEIR_I965);
pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
I915_WRITE(IPEIR_I965, ipeir);
POSTING_READ(IPEIR_I965);
}
}
I915_WRITE(EIR, eir);
POSTING_READ(EIR);
eir = I915_READ(EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
I915_WRITE(EMR, I915_READ(EMR) | eir);
I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
}
}
/**
* i915_handle_error - handle an error interrupt
* @dev: drm device
*
* Do some basic checking of regsiter state at error interrupt time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
*/
void i915_handle_error(struct drm_device *dev, bool wedged,
const char *fmt, ...)
{
struct drm_i915_private *dev_priv = dev->dev_private;
va_list args;
char error_msg[80];
va_start(args, fmt);
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
va_end(args);
i915_capture_error_state(dev, wedged, error_msg);
i915_report_and_clear_eir(dev);
if (wedged) {
atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
&dev_priv->gpu_error.reset_counter);
/*
* Wakeup waiting processes so that the reset work function
* i915_error_work_func doesn't deadlock trying to grab various
* locks. By bumping the reset counter first, the woken
* processes will see a reset in progress and back off,
* releasing their locks and then wait for the reset completion.
* We must do this for _all_ gpu waiters that might hold locks
* that the reset work needs to acquire.
*
* Note: The wake_up serves as the required memory barrier to
* ensure that the waiters see the updated value of the reset
* counter atomic_t.
*/
i915_error_wake_up(dev_priv, false);
}
/*
* Our reset work can grab modeset locks (since it needs to reset the
* state of outstanding pagelips). Hence it must not be run on our own
* dev-priv->wq work queue for otherwise the flush_work in the pageflip
* code will deadlock.
*/
schedule_work(&dev_priv->gpu_error.work);
}
static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
struct intel_unpin_work *work;
unsigned long flags;
bool stall_detected;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL ||
atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
!work->enable_stall_check) {
/* Either the pending flip IRQ arrived, or we're too early. Don't check */
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
obj = work->pending_flip_obj;
if (INTEL_INFO(dev)->gen >= 4) {
int dspsurf = DSPSURF(intel_crtc->plane);
stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
i915_gem_obj_ggtt_offset(obj);
} else {
int dspaddr = DSPADDR(intel_crtc->plane);
stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
crtc->y * crtc->primary->fb->pitches[0] +
crtc->x * crtc->primary->fb->bits_per_pixel/8);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
if (stall_detected) {
DRM_DEBUG_DRIVER("Pageflip stall detected\n");
intel_prepare_page_flip(dev, intel_crtc->plane);
}
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static int i915_enable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (INTEL_INFO(dev)->gen >= 4)
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
else
i915_enable_pipestat(dev_priv, pipe,
PIPE_VBLANK_INTERRUPT_STATUS);
/* maintain vblank delivery even in deep C-states */
if (INTEL_INFO(dev)->gen == 3)
I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
DE_PIPE_VBLANK(pipe);
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int gen8_enable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static void i915_disable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (INTEL_INFO(dev)->gen == 3)
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
i915_disable_pipestat(dev_priv, pipe,
PIPE_VBLANK_INTERRUPT_STATUS |
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void gen8_disable_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
if (!i915_pipe_enabled(dev, pipe))
return;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static u32
ring_last_seqno(struct intel_ring_buffer *ring)
{
return list_entry(ring->request_list.prev,
struct drm_i915_gem_request, list)->seqno;
}
static bool
ring_idle(struct intel_ring_buffer *ring, u32 seqno)
{
return (list_empty(&ring->request_list) ||
i915_seqno_passed(seqno, ring_last_seqno(ring)));
}
static struct intel_ring_buffer *
semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 cmd, ipehr, head;
int i;
ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
if ((ipehr & ~(0x3 << 16)) !=
(MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
return NULL;
/*
* HEAD is likely pointing to the dword after the actual command,
* so scan backwards until we find the MBOX. But limit it to just 3
* dwords. Note that we don't care about ACTHD here since that might
* point at at batch, and semaphores are always emitted into the
* ringbuffer itself.
*/
head = I915_READ_HEAD(ring) & HEAD_ADDR;
for (i = 4; i; --i) {
/*
* Be paranoid and presume the hw has gone off into the wild -
* our ring is smaller than what the hardware (and hence
* HEAD_ADDR) allows. Also handles wrap-around.
*/
head &= ring->size - 1;
/* This here seems to blow up */
cmd = ioread32(ring->virtual_start + head);
if (cmd == ipehr)
break;
head -= 4;
}
if (!i)
return NULL;
*seqno = ioread32(ring->virtual_start + head + 4) + 1;
return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
}
static int semaphore_passed(struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct intel_ring_buffer *signaller;
u32 seqno, ctl;
ring->hangcheck.deadlock = true;
signaller = semaphore_waits_for(ring, &seqno);
if (signaller == NULL || signaller->hangcheck.deadlock)
return -1;
/* cursory check for an unkickable deadlock */
ctl = I915_READ_CTL(signaller);
if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
return -1;
return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
}
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
{
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
ring->hangcheck.deadlock = false;
}
static enum intel_ring_hangcheck_action
ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
if (ring->hangcheck.acthd != acthd)
return HANGCHECK_ACTIVE;
if (IS_GEN2(dev))
return HANGCHECK_HUNG;
/* Is the chip hanging on a WAIT_FOR_EVENT?
* If so we can simply poke the RB_WAIT bit
* and break the hang. This should work on
* all but the second generation chipsets.
*/
tmp = I915_READ_CTL(ring);
if (tmp & RING_WAIT) {
i915_handle_error(dev, false,
"Kicking stuck wait on %s",
ring->name);
I915_WRITE_CTL(ring, tmp);
return HANGCHECK_KICK;
}
if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
switch (semaphore_passed(ring)) {
default:
return HANGCHECK_HUNG;
case 1:
i915_handle_error(dev, false,
"Kicking stuck semaphore on %s",
ring->name);
I915_WRITE_CTL(ring, tmp);
return HANGCHECK_KICK;
case 0:
return HANGCHECK_WAIT;
}
}
return HANGCHECK_HUNG;
}
/**
* This is called when the chip hasn't reported back with completed
* batchbuffers in a long time. We keep track per ring seqno progress and
* if there are no progress, hangcheck score for that ring is increased.
* Further, acthd is inspected to see if the ring is stuck. On stuck case
* we kick the ring. If we see no progress on three subsequent calls
* we assume chip is wedged and try to fix it by resetting the chip.
*/
static void i915_hangcheck_elapsed(unsigned long data)
{
struct drm_device *dev = (struct drm_device *)data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
int busy_count = 0, rings_hung = 0;
bool stuck[I915_NUM_RINGS] = { 0 };
#define BUSY 1
#define KICK 5
#define HUNG 20
if (!i915.enable_hangcheck)
return;
for_each_ring(ring, dev_priv, i) {
u64 acthd;
u32 seqno;
bool busy = true;
semaphore_clear_deadlocks(dev_priv);
seqno = ring->get_seqno(ring, false);
acthd = intel_ring_get_active_head(ring);
if (ring->hangcheck.seqno == seqno) {
if (ring_idle(ring, seqno)) {
ring->hangcheck.action = HANGCHECK_IDLE;
if (waitqueue_active(&ring->irq_queue)) {
/* Issue a wake-up to catch stuck h/w. */
if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
ring->name);
else
DRM_INFO("Fake missed irq on %s\n",
ring->name);
wake_up_all(&ring->irq_queue);
}
/* Safeguard against driver failure */
ring->hangcheck.score += BUSY;
} else
busy = false;
} else {
/* We always increment the hangcheck score
* if the ring is busy and still processing
* the same request, so that no single request
* can run indefinitely (such as a chain of
* batches). The only time we do not increment
* the hangcheck score on this ring, if this
* ring is in a legitimate wait for another
* ring. In that case the waiting ring is a
* victim and we want to be sure we catch the
* right culprit. Then every time we do kick
* the ring, add a small increment to the
* score so that we can catch a batch that is
* being repeatedly kicked and so responsible
* for stalling the machine.
*/
ring->hangcheck.action = ring_stuck(ring,
acthd);
switch (ring->hangcheck.action) {
case HANGCHECK_IDLE:
case HANGCHECK_WAIT:
break;
case HANGCHECK_ACTIVE:
ring->hangcheck.score += BUSY;
break;
case HANGCHECK_KICK:
ring->hangcheck.score += KICK;
break;
case HANGCHECK_HUNG:
ring->hangcheck.score += HUNG;
stuck[i] = true;
break;
}
}
} else {
ring->hangcheck.action = HANGCHECK_ACTIVE;
/* Gradually reduce the count so that we catch DoS
* attempts across multiple batches.
*/
if (ring->hangcheck.score > 0)
ring->hangcheck.score--;
}
ring->hangcheck.seqno = seqno;
ring->hangcheck.acthd = acthd;
busy_count += busy;
}
for_each_ring(ring, dev_priv, i) {
if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
DRM_INFO("%s on %s\n",
stuck[i] ? "stuck" : "no progress",
ring->name);
rings_hung++;
}
}
if (rings_hung)
return i915_handle_error(dev, true, "Ring hung");
if (busy_count)
/* Reset timer case chip hangs without another request
* being added */
i915_queue_hangcheck(dev);
}
void i915_queue_hangcheck(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!i915.enable_hangcheck)
return;
mod_timer(&dev_priv->gpu_error.hangcheck_timer,
round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
}
static void ibx_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_PCH_NOP(dev))
return;
/* south display irq */
I915_WRITE(SDEIMR, 0xffffffff);
/*
* SDEIER is also touched by the interrupt handler to work around missed
* PCH interrupts. Hence we can't update it after the interrupt handler
* is enabled - instead we unconditionally enable all PCH interrupt
* sources here, but then only unmask them as needed with SDEIMR.
*/
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void gen5_gt_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* and GT */
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
if (INTEL_INFO(dev)->gen >= 6) {
/* and PM */
I915_WRITE(GEN6_PMIMR, 0xffffffff);
I915_WRITE(GEN6_PMIER, 0x0);
POSTING_READ(GEN6_PMIER);
}
}
/* drm_dma.h hooks
*/
static void ironlake_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(HWSTAM, 0xeffe);
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
POSTING_READ(DEIER);
gen5_gt_irq_preinstall(dev);
ibx_irq_preinstall(dev);
}
static void valleyview_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
/* VLV magic */
I915_WRITE(VLV_IMR, 0);
I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
/* and GT */
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIIR, I915_READ(GTIIR));
gen5_gt_irq_preinstall(dev);
I915_WRITE(DPINVGTT, 0xff);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0xffff);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IMR, 0xffffffff);
I915_WRITE(VLV_IER, 0x0);
POSTING_READ(VLV_IER);
}
static void gen8_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
/* IIR can theoretically queue up two events. Be paranoid */
#define GEN8_IRQ_INIT_NDX(type, which) do { \
I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IMR(which)); \
I915_WRITE(GEN8_##type##_IER(which), 0); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR(which)); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
} while (0)
#define GEN8_IRQ_INIT(type) do { \
I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
POSTING_READ(GEN8_##type##_IMR); \
I915_WRITE(GEN8_##type##_IER, 0); \
I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR); \
I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
} while (0)
GEN8_IRQ_INIT_NDX(GT, 0);
GEN8_IRQ_INIT_NDX(GT, 1);
GEN8_IRQ_INIT_NDX(GT, 2);
GEN8_IRQ_INIT_NDX(GT, 3);
for_each_pipe(pipe) {
GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
}
GEN8_IRQ_INIT(DE_PORT);
GEN8_IRQ_INIT(DE_MISC);
GEN8_IRQ_INIT(PCU);
#undef GEN8_IRQ_INIT
#undef GEN8_IRQ_INIT_NDX
POSTING_READ(GEN8_PCU_IIR);
ibx_irq_preinstall(dev);
}
static void ibx_hpd_irq_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *intel_encoder;
u32 hotplug_irqs, hotplug, enabled_irqs = 0;
if (HAS_PCH_IBX(dev)) {
hotplug_irqs = SDE_HOTPLUG_MASK;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
} else {
hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
}
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
*
* This register is the same on all known PCH chips.
*/
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 mask;
if (HAS_PCH_NOP(dev))
return;
if (HAS_PCH_IBX(dev)) {
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
} else {
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
I915_WRITE(SDEIMR, ~mask);
}
static void gen5_gt_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pm_irqs, gt_irqs;
pm_irqs = gt_irqs = 0;
dev_priv->gt_irq_mask = ~0;
if (HAS_L3_DPF(dev)) {
/* L3 parity interrupt is always unmasked. */
dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
gt_irqs |= GT_PARITY_ERROR(dev);
}
gt_irqs |= GT_RENDER_USER_INTERRUPT;
if (IS_GEN5(dev)) {
gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
ILK_BSD_USER_INTERRUPT;
} else {
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
}
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
I915_WRITE(GTIER, gt_irqs);
POSTING_READ(GTIER);
if (INTEL_INFO(dev)->gen >= 6) {
pm_irqs |= dev_priv->pm_rps_events;
if (HAS_VEBOX(dev))
pm_irqs |= PM_VEBOX_USER_INTERRUPT;
dev_priv->pm_irq_mask = 0xffffffff;
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
I915_WRITE(GEN6_PMIER, pm_irqs);
POSTING_READ(GEN6_PMIER);
}
}
static int ironlake_irq_postinstall(struct drm_device *dev)
{
unsigned long irqflags;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 display_mask, extra_mask;
if (INTEL_INFO(dev)->gen >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
DE_PLANEB_FLIP_DONE_IVB |
DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
DE_AUX_CHANNEL_A |
DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
DE_POISON);
extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
}
dev_priv->irq_mask = ~display_mask;
/* should always can generate irq */
I915_WRITE(DEIIR, I915_READ(DEIIR));
I915_WRITE(DEIMR, dev_priv->irq_mask);
I915_WRITE(DEIER, display_mask | extra_mask);
POSTING_READ(DEIER);
gen5_gt_irq_postinstall(dev);
ibx_irq_postinstall(dev);
if (IS_IRONLAKE_M(dev)) {
/* Enable PCU event interrupts
*
* spinlocking not required here for correctness since interrupt
* setup is guaranteed to run in single-threaded context. But we
* need it to make the assert_spin_locked happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
return 0;
}
static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
{
u32 pipestat_mask;
u32 iir_mask;
pipestat_mask = PIPESTAT_INT_STATUS_MASK |
PIPE_FIFO_UNDERRUN_STATUS;
I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
POSTING_READ(PIPESTAT(PIPE_A));
pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
iir_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
dev_priv->irq_mask &= ~iir_mask;
I915_WRITE(VLV_IIR, iir_mask);
I915_WRITE(VLV_IIR, iir_mask);
I915_WRITE(VLV_IMR, dev_priv->irq_mask);
I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
POSTING_READ(VLV_IER);
}
static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
{
u32 pipestat_mask;
u32 iir_mask;
iir_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
dev_priv->irq_mask |= iir_mask;
I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
I915_WRITE(VLV_IMR, dev_priv->irq_mask);
I915_WRITE(VLV_IIR, iir_mask);
I915_WRITE(VLV_IIR, iir_mask);
POSTING_READ(VLV_IIR);
pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
PIPE_GMBUS_INTERRUPT_STATUS);
i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
pipestat_mask = PIPESTAT_INT_STATUS_MASK |
PIPE_FIFO_UNDERRUN_STATUS;
I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
POSTING_READ(PIPESTAT(PIPE_A));
}
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
{
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = true;
if (dev_priv->dev->irq_enabled)
valleyview_display_irqs_install(dev_priv);
}
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
{
assert_spin_locked(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = false;
if (dev_priv->dev->irq_enabled)
valleyview_display_irqs_uninstall(dev_priv);
}
static int valleyview_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
dev_priv->irq_mask = ~0;
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
I915_WRITE(VLV_IMR, dev_priv->irq_mask);
I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
I915_WRITE(VLV_IIR, 0xffffffff);
POSTING_READ(VLV_IER);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (dev_priv->display_irqs_enabled)
valleyview_display_irqs_install(dev_priv);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IIR, 0xffffffff);
gen5_gt_irq_postinstall(dev);
/* ack & enable invalid PTE error interrupts */
#if 0 /* FIXME: add support to irq handler for checking these bits */
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
#endif
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
return 0;
}
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
{
int i;
/* These are interrupts we'll toggle with the ring mask register */
uint32_t gt_interrupts[] = {
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
0,
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
};
for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
u32 tmp = I915_READ(GEN8_GT_IIR(i));
if (tmp)
DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
i, tmp);
I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
}
POSTING_READ(GEN8_GT_IER(0));
}
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
GEN8_PIPE_CDCLK_CRC_DONE |
GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
GEN8_PIPE_FIFO_UNDERRUN;
int pipe;
dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
for_each_pipe(pipe) {
u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
if (tmp)
DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
pipe, tmp);
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
}
POSTING_READ(GEN8_DE_PIPE_ISR(0));
I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
POSTING_READ(GEN8_DE_PORT_IER);
}
static int gen8_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen8_gt_irq_postinstall(dev_priv);
gen8_de_irq_postinstall(dev_priv);
ibx_irq_postinstall(dev);
I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return 0;
}
static void gen8_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
if (!dev_priv)
return;
I915_WRITE(GEN8_MASTER_IRQ, 0);
#define GEN8_IRQ_FINI_NDX(type, which) do { \
I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
I915_WRITE(GEN8_##type##_IER(which), 0); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
} while (0)
#define GEN8_IRQ_FINI(type) do { \
I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
I915_WRITE(GEN8_##type##_IER, 0); \
I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
} while (0)
GEN8_IRQ_FINI_NDX(GT, 0);
GEN8_IRQ_FINI_NDX(GT, 1);
GEN8_IRQ_FINI_NDX(GT, 2);
GEN8_IRQ_FINI_NDX(GT, 3);
for_each_pipe(pipe) {
GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
}
GEN8_IRQ_FINI(DE_PORT);
GEN8_IRQ_FINI(DE_MISC);
GEN8_IRQ_FINI(PCU);
#undef GEN8_IRQ_FINI
#undef GEN8_IRQ_FINI_NDX
POSTING_READ(GEN8_PCU_IIR);
}
static void valleyview_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
int pipe;
if (!dev_priv)
return;
intel_hpd_irq_uninstall(dev_priv);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0xffff);
I915_WRITE(HWSTAM, 0xffffffff);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (dev_priv->display_irqs_enabled)
valleyview_display_irqs_uninstall(dev_priv);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
dev_priv->irq_mask = 0;
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IMR, 0xffffffff);
I915_WRITE(VLV_IER, 0x0);
POSTING_READ(VLV_IER);
}
static void ironlake_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv)
return;
intel_hpd_irq_uninstall(dev_priv);
I915_WRITE(HWSTAM, 0xffffffff);
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
I915_WRITE(DEIIR, I915_READ(DEIIR));
if (IS_GEN7(dev))
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
I915_WRITE(GTIIR, I915_READ(GTIIR));
if (HAS_PCH_NOP(dev))
return;
I915_WRITE(SDEIMR, 0xffffffff);
I915_WRITE(SDEIER, 0x0);
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
static void i8xx_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
POSTING_READ16(IER);
}
static int i8xx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
I915_WRITE16(EMR,
~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
I915_WRITE16(IMR, dev_priv->irq_mask);
I915_WRITE16(IER,
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
I915_USER_INTERRUPT);
POSTING_READ16(IER);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i8xx_handle_vblank(struct drm_device *dev,
int plane, int pipe, u32 iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
if (!drm_handle_vblank(dev, pipe))
return false;
if ((iir & flip_pending) == 0)
return false;
intel_prepare_page_flip(dev, plane);
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ16(ISR) & flip_pending)
return false;
intel_finish_page_flip(dev, pipe);
return true;
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u16 iir, new_iir;
u32 pipe_stats[2];
unsigned long irqflags;
int pipe;
u16 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
iir = I915_READ16(IIR);
if (iir == 0)
return IRQ_NONE;
while (iir & ~flip_mask) {
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false,
"Command parser error, iir 0x%08x",
iir);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff)
I915_WRITE(reg, pipe_stats[pipe]);
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
I915_WRITE16(IIR, iir & ~flip_mask);
new_iir = I915_READ16(IIR); /* Flush posted writes */
i915_update_dri1_breadcrumb(dev);
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
for_each_pipe(pipe) {
int plane = pipe;
if (HAS_FBC(dev))
plane = !plane;
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
i8xx_handle_vblank(dev, plane, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
}
iir = new_iir;
}
return IRQ_HANDLED;
}
static void i8xx_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
for_each_pipe(pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
I915_WRITE16(IIR, I915_READ16(IIR));
}
static void i915_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xeffe);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i915_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 enable_mask;
unsigned long irqflags;
I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
i915_enable_asle_pipestat(dev);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i915_handle_vblank(struct drm_device *dev,
int plane, int pipe, u32 iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
if (!drm_handle_vblank(dev, pipe))
return false;
if ((iir & flip_pending) == 0)
return false;
intel_prepare_page_flip(dev, plane);
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ(ISR) & flip_pending)
return false;
intel_finish_page_flip(dev, pipe);
return true;
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
unsigned long irqflags;
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
int pipe, ret = IRQ_NONE;
iir = I915_READ(IIR);
do {
bool irq_received = (iir & ~flip_mask) != 0;
bool blc_event = false;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false,
"Command parser error, iir 0x%08x",
iir);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/* Clear the PIPE*STAT regs before the IIR */
if (pipe_stats[pipe] & 0x8000ffff) {
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = true;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
if (!irq_received)
break;
/* Consume port. Then clear IIR or we'll miss events */
if ((I915_HAS_HOTPLUG(dev)) &&
(iir & I915_DISPLAY_PORT_INTERRUPT)) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
POSTING_READ(PORT_HOTPLUG_STAT);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
for_each_pipe(pipe) {
int plane = pipe;
if (HAS_FBC(dev))
plane = !plane;
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev, plane, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
ret = IRQ_HANDLED;
iir = new_iir;
} while (iir & ~flip_mask);
i915_update_dri1_breadcrumb(dev);
return ret;
}
static void i915_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
intel_hpd_irq_uninstall(dev_priv);
if (I915_HAS_HOTPLUG(dev)) {
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xffff);
for_each_pipe(pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
I915_WRITE(IIR, I915_READ(IIR));
}
static void i965_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xeffe);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i965_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 enable_mask;
u32 error_mask;
unsigned long irqflags;
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask = ~dev_priv->irq_mask;
enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
enable_mask |= I915_USER_INTERRUPT;
if (IS_G4X(dev))
enable_mask |= I915_BSD_USER_INTERRUPT;
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
I915_WRITE(EMR, error_mask);
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
i915_enable_asle_pipestat(dev);
return 0;
}
static void i915_hpd_irq_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *intel_encoder;
u32 hotplug_en;
assert_spin_locked(&dev_priv->irq_lock);
if (I915_HAS_HOTPLUG(dev)) {
hotplug_en = I915_READ(PORT_HOTPLUG_EN);
hotplug_en &= ~HOTPLUG_INT_EN_MASK;
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
}
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 iir, new_iir;
u32 pipe_stats[I915_MAX_PIPES];
unsigned long irqflags;
int ret = IRQ_NONE, pipe;
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
iir = I915_READ(IIR);
for (;;) {
bool irq_received = (iir & ~flip_mask) != 0;
bool blc_event = false;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false,
"Command parser error, iir 0x%08x",
iir);
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff) {
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = true;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
if (!irq_received)
break;
ret = IRQ_HANDLED;
/* Consume port. Then clear IIR or we'll miss events */
if (iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
HOTPLUG_INT_STATUS_G4X :
HOTPLUG_INT_STATUS_I915);
intel_hpd_irq_handler(dev, hotplug_trigger,
IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
if (IS_G4X(dev) &&
(hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
dp_aux_irq_handler(dev);
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[RCS]);
if (iir & I915_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
for_each_pipe(pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev, pipe, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
iir = new_iir;
}
i915_update_dri1_breadcrumb(dev);
return ret;
}
static void i965_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
if (!dev_priv)
return;
intel_hpd_irq_uninstall(dev_priv);
I915_WRITE(PORT_HOTPLUG_EN, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xffffffff);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
for_each_pipe(pipe)
I915_WRITE(PIPESTAT(pipe),
I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
I915_WRITE(IIR, I915_READ(IIR));
}
static void intel_hpd_irq_reenable(unsigned long data)
{
struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
struct drm_device *dev = dev_priv->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
unsigned long irqflags;
int i;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
struct drm_connector *connector;
if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
continue;
dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_connector *intel_connector = to_intel_connector(connector);
if (intel_connector->encoder->hpd_pin == i) {
if (connector->polled != intel_connector->polled)
DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
drm_get_connector_name(connector));
connector->polled = intel_connector->polled;
if (!connector->polled)
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
}
}
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void intel_irq_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
/* Let's track the enabled rps events */
dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
setup_timer(&dev_priv->gpu_error.hangcheck_timer,
i915_hangcheck_elapsed,
(unsigned long) dev);
setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
(unsigned long) dev_priv);
pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
if (IS_GEN2(dev)) {
dev->max_vblank_count = 0;
dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
dev->driver->get_vblank_counter = gm45_get_vblank_counter;
} else {
dev->driver->get_vblank_counter = i915_get_vblank_counter;
dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
}
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
}
if (IS_VALLEYVIEW(dev)) {
dev->driver->irq_handler = valleyview_irq_handler;
dev->driver->irq_preinstall = valleyview_irq_preinstall;
dev->driver->irq_postinstall = valleyview_irq_postinstall;
dev->driver->irq_uninstall = valleyview_irq_uninstall;
dev->driver->enable_vblank = valleyview_enable_vblank;
dev->driver->disable_vblank = valleyview_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (IS_GEN8(dev)) {
dev->driver->irq_handler = gen8_irq_handler;
dev->driver->irq_preinstall = gen8_irq_preinstall;
dev->driver->irq_postinstall = gen8_irq_postinstall;
dev->driver->irq_uninstall = gen8_irq_uninstall;
dev->driver->enable_vblank = gen8_enable_vblank;
dev->driver->disable_vblank = gen8_disable_vblank;
dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
} else if (HAS_PCH_SPLIT(dev)) {
dev->driver->irq_handler = ironlake_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_preinstall;
dev->driver->irq_postinstall = ironlake_irq_postinstall;
dev->driver->irq_uninstall = ironlake_irq_uninstall;
dev->driver->enable_vblank = ironlake_enable_vblank;
dev->driver->disable_vblank = ironlake_disable_vblank;
dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
} else {
if (INTEL_INFO(dev)->gen == 2) {
dev->driver->irq_preinstall = i8xx_irq_preinstall;
dev->driver->irq_postinstall = i8xx_irq_postinstall;
dev->driver->irq_handler = i8xx_irq_handler;
dev->driver->irq_uninstall = i8xx_irq_uninstall;
} else if (INTEL_INFO(dev)->gen == 3) {
dev->driver->irq_preinstall = i915_irq_preinstall;
dev->driver->irq_postinstall = i915_irq_postinstall;
dev->driver->irq_uninstall = i915_irq_uninstall;
dev->driver->irq_handler = i915_irq_handler;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else {
dev->driver->irq_preinstall = i965_irq_preinstall;
dev->driver->irq_postinstall = i965_irq_postinstall;
dev->driver->irq_uninstall = i965_irq_uninstall;
dev->driver->irq_handler = i965_irq_handler;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
}
dev->driver->enable_vblank = i915_enable_vblank;
dev->driver->disable_vblank = i915_disable_vblank;
}
}
void intel_hpd_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
unsigned long irqflags;
int i;
for (i = 1; i < HPD_NUM_PINS; i++) {
dev_priv->hpd_stats[i].hpd_cnt = 0;
dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
}
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_connector *intel_connector = to_intel_connector(connector);
connector->polled = intel_connector->polled;
if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked checks happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
/* Disable interrupts so we can allow runtime PM. */
void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
dev_priv->pm.regsave.gtier = I915_READ(GTIER);
dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
ironlake_disable_display_irq(dev_priv, 0xffffffff);
ibx_disable_display_interrupt(dev_priv, 0xffffffff);
ilk_disable_gt_irq(dev_priv, 0xffffffff);
snb_disable_pm_irq(dev_priv, 0xffffffff);
dev_priv->pm.irqs_disabled = true;
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
/* Restore interrupts so we can recover from runtime PM. */
void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
uint32_t val;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
val = I915_READ(DEIMR);
WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
val = I915_READ(SDEIMR);
WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
val = I915_READ(GTIMR);
WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
val = I915_READ(GEN6_PMIMR);
WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
dev_priv->pm.irqs_disabled = false;
ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}