/*
* AMD64 class Memory Controller kernel module
*
* Copyright (c) 2009 SoftwareBitMaker.
* Copyright (c) 2009 Advanced Micro Devices, Inc.
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Originally Written by Thayne Harbaugh
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* - K8 CPU Revision D and greater support
*
* Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
* - Module largely rewritten, with new (and hopefully correct)
* code for dealing with node and chip select interleaving,
* various code cleanup, and bug fixes
* - Added support for memory hoisting using DRAM hole address
* register
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* -K8 Rev (1207) revision support added, required Revision
* specific mini-driver code to support Rev F as well as
* prior revisions
*
* Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
* -Family 10h revision support added. New PCI Device IDs,
* indicating new changes. Actual registers modified
* were slight, less than the Rev E to Rev F transition
* but changing the PCI Device ID was the proper thing to
* do, as it provides for almost automactic family
* detection. The mods to Rev F required more family
* information detection.
*
* Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
* - misc fixes and code cleanups
*
* This module is based on the following documents
* (available from http://www.amd.com/):
*
* Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
* Opteron Processors
* AMD publication #: 26094
*` Revision: 3.26
*
* Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
* Processors
* AMD publication #: 32559
* Revision: 3.00
* Issue Date: May 2006
*
* Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
* Processors
* AMD publication #: 31116
* Revision: 3.00
* Issue Date: September 07, 2007
*
* Sections in the first 2 documents are no longer in sync with each other.
* The Family 10h BKDG was totally re-written from scratch with a new
* presentation model.
* Therefore, comments that refer to a Document section might be off.
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/edac.h>
#include <asm/msr.h>
#include "edac_core.h"
#include "edac_mce_amd.h"
#define amd64_printk(level, fmt, arg...) \
edac_printk(level, "amd64", fmt, ##arg)
#define amd64_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg)
/*
* Throughout the comments in this code, the following terms are used:
*
* SysAddr, DramAddr, and InputAddr
*
* These terms come directly from the amd64 documentation
* (AMD publication #26094). They are defined as follows:
*
* SysAddr:
* This is a physical address generated by a CPU core or a device
* doing DMA. If generated by a CPU core, a SysAddr is the result of
* a virtual to physical address translation by the CPU core's address
* translation mechanism (MMU).
*
* DramAddr:
* A DramAddr is derived from a SysAddr by subtracting an offset that
* depends on which node the SysAddr maps to and whether the SysAddr
* is within a range affected by memory hoisting. The DRAM Base
* (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
* determine which node a SysAddr maps to.
*
* If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
* is within the range of addresses specified by this register, then
* a value x from the DHAR is subtracted from the SysAddr to produce a
* DramAddr. Here, x represents the base address for the node that
* the SysAddr maps to plus an offset due to memory hoisting. See
* section 3.4.8 and the comments in amd64_get_dram_hole_info() and
* sys_addr_to_dram_addr() below for more information.
*
* If the SysAddr is not affected by the DHAR then a value y is
* subtracted from the SysAddr to produce a DramAddr. Here, y is the
* base address for the node that the SysAddr maps to. See section
* 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
* information.
*
* InputAddr:
* A DramAddr is translated to an InputAddr before being passed to the
* memory controller for the node that the DramAddr is associated
* with. The memory controller then maps the InputAddr to a csrow.
* If node interleaving is not in use, then the InputAddr has the same
* value as the DramAddr. Otherwise, the InputAddr is produced by
* discarding the bits used for node interleaving from the DramAddr.
* See section 3.4.4 for more information.
*
* The memory controller for a given node uses its DRAM CS Base and
* DRAM CS Mask registers to map an InputAddr to a csrow. See
* sections 3.5.4 and 3.5.5 for more information.
*/
#define EDAC_AMD64_VERSION " Ver: 3.3.0 " __DATE__
#define EDAC_MOD_STR "amd64_edac"
#define EDAC_MAX_NUMNODES 8
/* Extended Model from CPUID, for CPU Revision numbers */
#define K8_REV_D 1
#define K8_REV_E 2
#define K8_REV_F 4
/* Hardware limit on ChipSelect rows per MC and processors per system */
#define MAX_CS_COUNT 8
#define DRAM_REG_COUNT 8
#define ON true
#define OFF false
/*
* PCI-defined configuration space registers
*/
/*
* Function 1 - Address Map
*/
#define K8_DRAM_BASE_LOW 0x40
#define K8_DRAM_LIMIT_LOW 0x44
#define K8_DHAR 0xf0
#define DHAR_VALID BIT(0)
#define F10_DRAM_MEM_HOIST_VALID BIT(1)
#define DHAR_BASE_MASK 0xff000000
#define dhar_base(dhar) (dhar & DHAR_BASE_MASK)
#define K8_DHAR_OFFSET_MASK 0x0000ff00
#define k8_dhar_offset(dhar) ((dhar & K8_DHAR_OFFSET_MASK) << 16)
#define F10_DHAR_OFFSET_MASK 0x0000ff80
/* NOTE: Extra mask bit vs K8 */
#define f10_dhar_offset(dhar) ((dhar & F10_DHAR_OFFSET_MASK) << 16)
/* F10 High BASE/LIMIT registers */
#define F10_DRAM_BASE_HIGH 0x140
#define F10_DRAM_LIMIT_HIGH 0x144
/*
* Function 2 - DRAM controller
*/
#define K8_DCSB0 0x40
#define F10_DCSB1 0x140
#define K8_DCSB_CS_ENABLE BIT(0)
#define K8_DCSB_NPT_SPARE BIT(1)
#define K8_DCSB_NPT_TESTFAIL BIT(2)
/*
* REV E: select [31:21] and [15:9] from DCSB and the shift amount to form
* the address
*/
#define REV_E_DCSB_BASE_BITS (0xFFE0FE00ULL)
#define REV_E_DCS_SHIFT 4
#define REV_F_F1Xh_DCSB_BASE_BITS (0x1FF83FE0ULL)
#define REV_F_F1Xh_DCS_SHIFT 8
/*
* REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount
* to form the address
*/
#define REV_F_DCSB_BASE_BITS (0x1FF83FE0ULL)
#define REV_F_DCS_SHIFT 8
/* DRAM CS Mask Registers */
#define K8_DCSM0 0x60
#define F10_DCSM1 0x160
/* REV E: select [29:21] and [15:9] from DCSM */
#define REV_E_DCSM_MASK_BITS 0x3FE0FE00
/* unused bits [24:20] and [12:0] */
#define REV_E_DCS_NOTUSED_BITS 0x01F01FFF
/* REV F and later: select [28:19] and [13:5] from DCSM */
#define REV_F_F1Xh_DCSM_MASK_BITS 0x1FF83FE0
/* unused bits [26:22] and [12:0] */
#define REV_F_F1Xh_DCS_NOTUSED_BITS 0x07C01FFF
#define DBAM0 0x80
#define DBAM1 0x180
/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
#define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
#define DBAM_MAX_VALUE 11
#define F10_DCLR_0 0x90
#define F10_DCLR_1 0x190
#define REVE_WIDTH_128 BIT(16)
#define F10_WIDTH_128 BIT(11)
#define F10_DCHR_0 0x94
#define F10_DCHR_1 0x194
#define F10_DCHR_FOUR_RANK_DIMM BIT(18)
#define DDR3_MODE BIT(8)
#define F10_DCHR_MblMode BIT(6)
#define F10_DCTL_SEL_LOW 0x110
#define dct_sel_baseaddr(pvt) \
((pvt->dram_ctl_select_low) & 0xFFFFF800)
#define dct_sel_interleave_addr(pvt) \
(((pvt->dram_ctl_select_low) >> 6) & 0x3)
enum {
F10_DCTL_SEL_LOW_DctSelHiRngEn = BIT(0),
F10_DCTL_SEL_LOW_DctSelIntLvEn = BIT(2),
F10_DCTL_SEL_LOW_DctGangEn = BIT(4),
F10_DCTL_SEL_LOW_DctDatIntLv = BIT(5),
F10_DCTL_SEL_LOW_DramEnable = BIT(8),
F10_DCTL_SEL_LOW_MemCleared = BIT(10),
};
#define dct_high_range_enabled(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn)
#define dct_interleave_enabled(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn)
#define dct_ganging_enabled(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn)
#define dct_data_intlv_enabled(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv)
#define dct_dram_enabled(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable)
#define dct_memory_cleared(pvt) \
(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared)
#define F10_DCTL_SEL_HIGH 0x114
/*
* Function 3 - Misc Control
*/
#define K8_NBCTL 0x40
/* Correctable ECC error reporting enable */
#define K8_NBCTL_CECCEn BIT(0)
/* UnCorrectable ECC error reporting enable */
#define K8_NBCTL_UECCEn BIT(1)
#define K8_NBCFG 0x44
#define K8_NBCFG_CHIPKILL BIT(23)
#define K8_NBCFG_ECC_ENABLE BIT(22)
#define K8_NBSL 0x48
/* Family F10h: Normalized Extended Error Codes */
#define F10_NBSL_EXT_ERR_RES 0x0
#define F10_NBSL_EXT_ERR_ECC 0x8
/* Next two are overloaded values */
#define F10_NBSL_EXT_ERR_LINK_PROTO 0xB
#define F10_NBSL_EXT_ERR_L3_PROTO 0xB
#define F10_NBSL_EXT_ERR_NB_ARRAY 0xC
#define F10_NBSL_EXT_ERR_DRAM_PARITY 0xD
#define F10_NBSL_EXT_ERR_LINK_RETRY 0xE
/* Next two are overloaded values */
#define F10_NBSL_EXT_ERR_GART_WALK 0xF
#define F10_NBSL_EXT_ERR_DEV_WALK 0xF
/* 0x10 to 0x1B: Reserved */
#define F10_NBSL_EXT_ERR_L3_DATA 0x1C
#define F10_NBSL_EXT_ERR_L3_TAG 0x1D
#define F10_NBSL_EXT_ERR_L3_LRU 0x1E
/* K8: Normalized Extended Error Codes */
#define K8_NBSL_EXT_ERR_ECC 0x0
#define K8_NBSL_EXT_ERR_CRC 0x1
#define K8_NBSL_EXT_ERR_SYNC 0x2
#define K8_NBSL_EXT_ERR_MST 0x3
#define K8_NBSL_EXT_ERR_TGT 0x4
#define K8_NBSL_EXT_ERR_GART 0x5
#define K8_NBSL_EXT_ERR_RMW 0x6
#define K8_NBSL_EXT_ERR_WDT 0x7
#define K8_NBSL_EXT_ERR_CHIPKILL_ECC 0x8
#define K8_NBSL_EXT_ERR_DRAM_PARITY 0xD
/*
* The following are for BUS type errors AFTER values have been normalized by
* shifting right
*/
#define K8_NBSL_PP_SRC 0x0
#define K8_NBSL_PP_RES 0x1
#define K8_NBSL_PP_OBS 0x2
#define K8_NBSL_PP_GENERIC 0x3
#define EXTRACT_ERR_CPU_MAP(x) ((x) & 0xF)
#define K8_NBEAL 0x50
#define K8_NBEAH 0x54
#define K8_SCRCTRL 0x58
#define F10_NB_CFG_LOW 0x88
#define F10_NB_CFG_LOW_ENABLE_EXT_CFG BIT(14)
#define F10_NB_CFG_HIGH 0x8C
#define F10_ONLINE_SPARE 0xB0
#define F10_ONLINE_SPARE_SWAPDONE0(x) ((x) & BIT(1))
#define F10_ONLINE_SPARE_SWAPDONE1(x) ((x) & BIT(3))
#define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007)
#define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007)
#define F10_NB_ARRAY_ADDR 0xB8
#define F10_NB_ARRAY_DRAM_ECC 0x80000000
/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
#define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
#define F10_NB_ARRAY_DATA 0xBC
#define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
(BIT(((word) & 0xF) + 20) | \
BIT(17) | bits)
#define SET_NB_DRAM_INJECTION_READ(word, bits) \
(BIT(((word) & 0xF) + 20) | \
BIT(16) | bits)
#define K8_NBCAP 0xE8
#define K8_NBCAP_CORES (BIT(12)|BIT(13))
#define K8_NBCAP_CHIPKILL BIT(4)
#define K8_NBCAP_SECDED BIT(3)
#define K8_NBCAP_DCT_DUAL BIT(0)
/* MSRs */
#define K8_MSR_MCGCTL_NBE BIT(4)
#define K8_MSR_MC4CTL 0x0410
#define K8_MSR_MC4STAT 0x0411
#define K8_MSR_MC4ADDR 0x0412
/* AMD sets the first MC device at device ID 0x18. */
static inline int get_node_id(struct pci_dev *pdev)
{
return PCI_SLOT(pdev->devfn) - 0x18;
}
enum amd64_chipset_families {
K8_CPUS = 0,
F10_CPUS,
F11_CPUS,
};
/* Error injection control structure */
struct error_injection {
u32 section;
u32 word;
u32 bit_map;
};
struct amd64_pvt {
/* pci_device handles which we utilize */
struct pci_dev *addr_f1_ctl;
struct pci_dev *dram_f2_ctl;
struct pci_dev *misc_f3_ctl;
int mc_node_id; /* MC index of this MC node */
int ext_model; /* extended model value of this node */
struct low_ops *ops; /* pointer to per PCI Device ID func table */
int channel_count;
/* Raw registers */
u32 dclr0; /* DRAM Configuration Low DCT0 reg */
u32 dclr1; /* DRAM Configuration Low DCT1 reg */
u32 dchr0; /* DRAM Configuration High DCT0 reg */
u32 dchr1; /* DRAM Configuration High DCT1 reg */
u32 nbcap; /* North Bridge Capabilities */
u32 nbcfg; /* F10 North Bridge Configuration */
u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
u32 dhar; /* DRAM Hoist reg */
u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
/* DRAM CS Base Address Registers F2x[1,0][5C:40] */
u32 dcsb0[MAX_CS_COUNT];
u32 dcsb1[MAX_CS_COUNT];
/* DRAM CS Mask Registers F2x[1,0][6C:60] */
u32 dcsm0[MAX_CS_COUNT];
u32 dcsm1[MAX_CS_COUNT];
/*
* Decoded parts of DRAM BASE and LIMIT Registers
* F1x[78,70,68,60,58,50,48,40]
*/
u64 dram_base[DRAM_REG_COUNT];
u64 dram_limit[DRAM_REG_COUNT];
u8 dram_IntlvSel[DRAM_REG_COUNT];
u8 dram_IntlvEn[DRAM_REG_COUNT];
u8 dram_DstNode[DRAM_REG_COUNT];
u8 dram_rw_en[DRAM_REG_COUNT];
/*
* The following fields are set at (load) run time, after CPU revision
* has been determined, since the dct_base and dct_mask registers vary
* based on revision
*/
u32 dcsb_base; /* DCSB base bits */
u32 dcsm_mask; /* DCSM mask bits */
u32 cs_count; /* num chip selects (== num DCSB registers) */
u32 num_dcsm; /* Number of DCSM registers */
u32 dcs_mask_notused; /* DCSM notused mask bits */
u32 dcs_shift; /* DCSB and DCSM shift value */
u64 top_mem; /* top of memory below 4GB */
u64 top_mem2; /* top of memory above 4GB */
u32 dram_ctl_select_low; /* DRAM Controller Select Low Reg */
u32 dram_ctl_select_high; /* DRAM Controller Select High Reg */
u32 online_spare; /* On-Line spare Reg */
/* temp storage for when input is received from sysfs */
struct err_regs ctl_error_info;
/* place to store error injection parameters prior to issue */
struct error_injection injection;
/* Save old hw registers' values before we modified them */
u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */
u32 old_nbctl;
/* MC Type Index value: socket F vs Family 10h */
u32 mc_type_index;
/* misc settings */
struct flags {
unsigned long cf8_extcfg:1;
unsigned long ecc_report:1;
} flags;
};
struct scrubrate {
u32 scrubval; /* bit pattern for scrub rate */
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
};
extern struct scrubrate scrubrates[23];
extern const char *tt_msgs[4];
extern const char *ll_msgs[4];
extern const char *rrrr_msgs[16];
extern const char *to_msgs[2];
extern const char *pp_msgs[4];
extern const char *ii_msgs[4];
extern const char *ext_msgs[32];
extern const char *htlink_msgs[8];
#ifdef CONFIG_EDAC_DEBUG
#define NUM_DBG_ATTRS 9
#else
#define NUM_DBG_ATTRS 0
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
#define NUM_INJ_ATTRS 5
#else
#define NUM_INJ_ATTRS 0
#endif
extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
amd64_inj_attrs[NUM_INJ_ATTRS];
/*
* Each of the PCI Device IDs types have their own set of hardware accessor
* functions and per device encoding/decoding logic.
*/
struct low_ops {
int (*early_channel_count) (struct amd64_pvt *pvt);
u64 (*get_error_address) (struct mem_ctl_info *mci,
struct err_regs *info);
void (*read_dram_base_limit) (struct amd64_pvt *pvt, int dram);
void (*read_dram_ctl_register) (struct amd64_pvt *pvt);
void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci,
struct err_regs *info, u64 SystemAddr);
int (*dbam_to_cs) (struct amd64_pvt *pvt, int cs_mode);
};
struct amd64_family_type {
const char *ctl_name;
u16 addr_f1_ctl;
u16 misc_f3_ctl;
struct low_ops ops;
};
static struct amd64_family_type amd64_family_types[];
static inline const char *get_amd_family_name(int index)
{
return amd64_family_types[index].ctl_name;
}
static inline struct low_ops *family_ops(int index)
{
return &amd64_family_types[index].ops;
}
static inline int amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 *val, const char *func)
{
int err = 0;
err = pci_read_config_dword(pdev, offset, val);
if (err)
amd64_printk(KERN_WARNING, "%s: error reading F%dx%x.\n",
func, PCI_FUNC(pdev->devfn), offset);
return err;
}
#define amd64_read_pci_cfg(pdev, offset, val) \
amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
/*
* For future CPU versions, verify the following as new 'slow' rates appear and
* modify the necessary skip values for the supported CPU.
*/
#define K8_MIN_SCRUB_RATE_BITS 0x0
#define F10_MIN_SCRUB_RATE_BITS 0x5
#define F11_MIN_SCRUB_RATE_BITS 0x6
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size);