aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/cpufreq/cpufreq_conservative.c
blob: 39543a2bed0f43c232e724ce809f1c89d438f6e1 (plain) (tree)


























































































                                                                                



                                                              
                                              



                                               




























                                                                               
                                        














































































                                                                                 
                                                                    





















                                                                            
                                

                                                       
                                                                    





































                                                                               
                                








                                              
                               













                                                                

















                                                    


                                                                      


















                                                                        
 
                              
                                            
                                                              

                                                  

                                                       
                                                        













                                                                        
                                   






                                                                     















                                                                           







                                                                 
                              
                                            
                                                              

                                                  
                                                       
                                                                
















                                                                        
                                           











































































                                                                             
                                                                            

























































































                                                                              
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/cpufreq.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>

/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define MIN_FREQUENCY_UP_THRESHOLD		(0)
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
#define MIN_FREQUENCY_DOWN_THRESHOLD		(0)
#define MAX_FREQUENCY_DOWN_THRESHOLD		(100)

/* 
 * The polling frequency of this governor depends on the capability of 
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with 
 * transition latency <= 10mS, using appropriate sampling 
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
static unsigned int 				def_sampling_rate;
#define MIN_SAMPLING_RATE			(def_sampling_rate / 2)
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(100000)
#define DEF_SAMPLING_DOWN_FACTOR		(5)
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

static void do_dbs_timer(void *data);

struct cpu_dbs_info_s {
	struct cpufreq_policy 	*cur_policy;
	unsigned int 		prev_cpu_idle_up;
	unsigned int 		prev_cpu_idle_down;
	unsigned int 		enable;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

static DECLARE_MUTEX 	(dbs_sem);
static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);

struct dbs_tuners {
	unsigned int 		sampling_rate;
	unsigned int		sampling_down_factor;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		ignore_nice;
	unsigned int		freq_step;
};

static struct dbs_tuners dbs_tuners_ins = {
	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
};

static inline unsigned int get_cpu_idle_time(unsigned int cpu)
{
	return	kstat_cpu(cpu).cpustat.idle +
		kstat_cpu(cpu).cpustat.iowait +
		( dbs_tuners_ins.ignore_nice ?
		  kstat_cpu(cpu).cpustat.nice :
		  0);
}

/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name) 					\
static struct freq_attr _name =  				\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
show_one(ignore_nice_load, ignore_nice);
show_one(freq_step, freq_step);

static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);
	if (ret != 1 )
		return -EINVAL;

	down(&dbs_sem);
	dbs_tuners_ins.sampling_down_factor = input;
	up(&dbs_sem);

	return count;
}

static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

	down(&dbs_sem);
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
		up(&dbs_sem);
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
	up(&dbs_sem);

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

	down(&dbs_sem);
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 
			input < MIN_FREQUENCY_UP_THRESHOLD ||
			input <= dbs_tuners_ins.down_threshold) {
		up(&dbs_sem);
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
	up(&dbs_sem);

	return count;
}

static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

	down(&dbs_sem);
	if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || 
			input < MIN_FREQUENCY_DOWN_THRESHOLD ||
			input >= dbs_tuners_ins.up_threshold) {
		up(&dbs_sem);
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
	up(&dbs_sem);

	return count;
}

static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
	
	ret = sscanf (buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
	
	down(&dbs_sem);
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
		up(&dbs_sem);
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
	for_each_online_cpu(j) {
		struct cpu_dbs_info_s *j_dbs_info;
		j_dbs_info = &per_cpu(cpu_dbs_info, j);
		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
	}
	up(&dbs_sem);

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf (buf, "%u", &input);

	if ( ret != 1 )
		return -EINVAL;

	if ( input > 100 )
		input = 100;
	
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
	down(&dbs_sem);
	dbs_tuners_ins.freq_step = input;
	up(&dbs_sem);

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
define_one_rw(ignore_nice_load);
define_one_rw(freq_step);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
	&ignore_nice_load.attr,
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(int cpu)
{
	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
	unsigned int freq_step;
	unsigned int freq_down_sampling_rate;
	static int down_skip[NR_CPUS];
	static int requested_freq[NR_CPUS];
	static unsigned short init_flag = 0;
	struct cpu_dbs_info_s *this_dbs_info;
	struct cpu_dbs_info_s *dbs_info;

	struct cpufreq_policy *policy;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
	if (!this_dbs_info->enable)
		return;

	policy = this_dbs_info->cur_policy;

	if ( init_flag == 0 ) {
		for_each_online_cpu(j) {
			dbs_info = &per_cpu(cpu_dbs_info, j);
			requested_freq[j] = dbs_info->cur_policy->cur;
		}
		init_flag = 1;
	}
	
	/* 
	 * The default safe range is 20% to 80% 
	 * Every sampling_rate, we check
	 * 	- If current idle time is less than 20%, then we try to 
	 * 	  increase frequency
	 * Every sampling_rate*sampling_down_factor, we check
	 * 	- If current idle time is more than 80%, then we try to
	 * 	  decrease frequency
	 *
	 * Any frequency increase takes it to the maximum frequency. 
	 * Frequency reduction happens at minimum steps of 
	 * 5% (default) of max_frequency 
	 */

	/* Check for frequency increase */

	idle_ticks = UINT_MAX;
	for_each_cpu_mask(j, policy->cpus) {
		unsigned int tmp_idle_ticks, total_idle_ticks;
		struct cpu_dbs_info_s *j_dbs_info;

		j_dbs_info = &per_cpu(cpu_dbs_info, j);
		/* Check for frequency increase */
		total_idle_ticks = get_cpu_idle_time(j);
		tmp_idle_ticks = total_idle_ticks -
			j_dbs_info->prev_cpu_idle_up;
		j_dbs_info->prev_cpu_idle_up = total_idle_ticks;

		if (tmp_idle_ticks < idle_ticks)
			idle_ticks = tmp_idle_ticks;
	}

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
		usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	if (idle_ticks < up_idle_ticks) {
		down_skip[cpu] = 0;
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;

			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->prev_cpu_idle_down = 
					j_dbs_info->prev_cpu_idle_up;
		}
		/* if we are already at full speed then break out early */
		if (requested_freq[cpu] == policy->max)
			return;
		
		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;
		
		requested_freq[cpu] += freq_step;
		if (requested_freq[cpu] > policy->max)
			requested_freq[cpu] = policy->max;

		__cpufreq_driver_target(policy, requested_freq[cpu], 
			CPUFREQ_RELATION_H);
		return;
	}

	/* Check for frequency decrease */
	down_skip[cpu]++;
	if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
		return;

	idle_ticks = UINT_MAX;
	for_each_cpu_mask(j, policy->cpus) {
		unsigned int tmp_idle_ticks, total_idle_ticks;
		struct cpu_dbs_info_s *j_dbs_info;

		j_dbs_info = &per_cpu(cpu_dbs_info, j);
		total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
		tmp_idle_ticks = total_idle_ticks -
			j_dbs_info->prev_cpu_idle_down;
		j_dbs_info->prev_cpu_idle_down = total_idle_ticks;

		if (tmp_idle_ticks < idle_ticks)
			idle_ticks = tmp_idle_ticks;
	}

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	down_skip[cpu] = 0;

	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
		dbs_tuners_ins.sampling_down_factor;
	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
			usecs_to_jiffies(freq_down_sampling_rate);

	if (idle_ticks > down_idle_ticks) {
		/* if we are already at the lowest speed then break out early
		 * or if we 'cannot' reduce the speed as the user might want
		 * freq_step to be zero */
		if (requested_freq[cpu] == policy->min
				|| dbs_tuners_ins.freq_step == 0)
			return;

		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;

		requested_freq[cpu] -= freq_step;
		if (requested_freq[cpu] < policy->min)
			requested_freq[cpu] = policy->min;

		__cpufreq_driver_target(policy,
			requested_freq[cpu],
			CPUFREQ_RELATION_H);
		return;
	}
}

static void do_dbs_timer(void *data)
{ 
	int i;
	down(&dbs_sem);
	for_each_online_cpu(i)
		dbs_check_cpu(i);
	schedule_delayed_work(&dbs_work, 
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	up(&dbs_sem);
} 

static inline void dbs_timer_init(void)
{
	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
	schedule_delayed_work(&dbs_work,
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	return;
}

static inline void dbs_timer_exit(void)
{
	cancel_delayed_work(&dbs_work);
	return;
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || 
		    (!policy->cur))
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
				(TRANSITION_LATENCY_LIMIT * 1000))
			return -EINVAL;
		if (this_dbs_info->enable) /* Already enabled */
			break;
		 
		down(&dbs_sem);
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
		
			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
			j_dbs_info->prev_cpu_idle_down
				= j_dbs_info->prev_cpu_idle_up;
		}
		this_dbs_info->enable = 1;
		sysfs_create_group(&policy->kobj, &dbs_attr_group);
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */

			latency = policy->cpuinfo.transition_latency;
			if (latency < 1000)
				latency = 1000;

			def_sampling_rate = (latency / 1000) *
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
			dbs_tuners_ins.sampling_rate = def_sampling_rate;
			dbs_tuners_ins.ignore_nice = 0;
			dbs_tuners_ins.freq_step = 5;

			dbs_timer_init();
		}
		
		up(&dbs_sem);
		break;

	case CPUFREQ_GOV_STOP:
		down(&dbs_sem);
		this_dbs_info->enable = 0;
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 0) 
			dbs_timer_exit();
		
		up(&dbs_sem);

		break;

	case CPUFREQ_GOV_LIMITS:
		down(&dbs_sem);
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->min, CPUFREQ_RELATION_L);
		up(&dbs_sem);
		break;
	}
	return 0;
}

static struct cpufreq_governor cpufreq_gov_dbs = {
	.name		= "conservative",
	.governor	= cpufreq_governor_dbs,
	.owner		= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	/* Make sure that the scheduled work is indeed not running */
	flush_scheduled_work();

	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE ("GPL");

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);