/*
* SuperH Timer Support - CMT
*
* Copyright (C) 2008 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
struct sh_cmt_priv {
void __iomem *mapbase;
struct clk *clk;
unsigned long width; /* 16 or 32 bit version of hardware block */
unsigned long overflow_bit;
unsigned long clear_bits;
struct irqaction irqaction;
struct platform_device *pdev;
unsigned long flags;
unsigned long match_value;
unsigned long next_match_value;
unsigned long max_match_value;
unsigned long rate;
spinlock_t lock;
struct clock_event_device ced;
struct clocksource cs;
unsigned long total_cycles;
};
static DEFINE_SPINLOCK(sh_cmt_lock);
#define CMSTR -1 /* shared register */
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */
static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs;
if (reg_nr == CMSTR) {
offs = 0;
base -= cfg->channel_offset;
} else
offs = reg_nr;
if (p->width == 16)
offs <<= 1;
else {
offs <<= 2;
if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
return ioread32(base + offs);
}
return ioread16(base + offs);
}
static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
unsigned long value)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
void __iomem *base = p->mapbase;
unsigned long offs;
if (reg_nr == CMSTR) {
offs = 0;
base -= cfg->channel_offset;
} else
offs = reg_nr;
if (p->width == 16)
offs <<= 1;
else {
offs <<= 2;
if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
iowrite32(value, base + offs);
return;
}
}
iowrite16(value, base + offs);
}
static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
int *has_wrapped)
{
unsigned long v1, v2, v3;
int o1, o2;
o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
do {
o2 = o1;
v1 = sh_cmt_read(p, CMCNT);
v2 = sh_cmt_read(p, CMCNT);
v3 = sh_cmt_read(p, CMCNT);
o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
*has_wrapped = o1;
return v2;
}
static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
spin_lock_irqsave(&sh_cmt_lock, flags);
value = sh_cmt_read(p, CMSTR);
if (start)
value |= 1 << cfg->timer_bit;
else
value &= ~(1 << cfg->timer_bit);
sh_cmt_write(p, CMSTR, value);
spin_unlock_irqrestore(&sh_cmt_lock, flags);
}
static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
int ret;
/* enable clock */
ret = clk_enable(p->clk);
if (ret) {
pr_err("sh_cmt: cannot enable clock \"%s\"\n", cfg->clk);
return ret;
}
/* make sure channel is disabled */
sh_cmt_start_stop_ch(p, 0);
/* configure channel, periodic mode and maximum timeout */
if (p->width == 16) {
*rate = clk_get_rate(p->clk) / 512;
sh_cmt_write(p, CMCSR, 0x43);
} else {
*rate = clk_get_rate(p->clk) / 8;
sh_cmt_write(p, CMCSR, 0x01a4);
}
sh_cmt_write(p, CMCOR, 0xffffffff);
sh_cmt_write(p, CMCNT, 0);
/* enable channel */
sh_cmt_start_stop_ch(p, 1);
return 0;
}
static void sh_cmt_disable(struct sh_cmt_priv *p)
{
/* disable channel */
sh_cmt_start_stop_ch(p, 0);
/* disable interrupts in CMT block */
sh_cmt_write(p, CMCSR, 0);
/* stop clock */
clk_disable(p->clk);
}
/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)
static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
int absolute)
{
unsigned long new_match;
unsigned long value = p->next_match_value;
unsigned long delay = 0;
unsigned long now = 0;
int has_wrapped;
now = sh_cmt_get_counter(p, &has_wrapped);
p->flags |= FLAG_REPROGRAM; /* force reprogram */
if (has_wrapped) {
/* we're competing with the interrupt handler.
* -> let the interrupt handler reprogram the timer.
* -> interrupt number two handles the event.
*/
p->flags |= FLAG_SKIPEVENT;
return;
}
if (absolute)
now = 0;
do {
/* reprogram the timer hardware,
* but don't save the new match value yet.
*/
new_match = now + value + delay;
if (new_match > p->max_match_value)
new_match = p->max_match_value;
sh_cmt_write(p, CMCOR, new_match);
now = sh_cmt_get_counter(p, &has_wrapped);
if (has_wrapped && (new_match > p->match_value)) {
/* we are changing to a greater match value,
* so this wrap must be caused by the counter
* matching the old value.
* -> first interrupt reprograms the timer.
* -> interrupt number two handles the event.
*/
p->flags |= FLAG_SKIPEVENT;
break;
}
if (has_wrapped) {
/* we are changing to a smaller match value,
* so the wrap must be caused by the counter
* matching the new value.
* -> save programmed match value.
* -> let isr handle the event.
*/
p->match_value = new_match;
break;
}
/* be safe: verify hardware settings */
if (now < new_match) {
/* timer value is below match value, all good.
* this makes sure we won't miss any match events.
* -> save programmed match value.
* -> let isr handle the event.
*/
p->match_value = new_match;
break;
}
/* the counter has reached a value greater
* than our new match value. and since the
* has_wrapped flag isn't set we must have
* programmed a too close event.
* -> increase delay and retry.
*/
if (delay)
delay <<= 1;
else
delay = 1;
if (!delay)
pr_warning("sh_cmt: too long delay\n");
} while (delay);
}
static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
{
unsigned long flags;
if (delta > p->max_match_value)
pr_warning("sh_cmt: delta out of range\n");
spin_lock_irqsave(&p->lock, flags);
p->next_match_value = delta;
sh_cmt_clock_event_program_verify(p, 0);
spin_unlock_irqrestore(&p->lock, flags);
}
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
struct sh_cmt_priv *p = dev_id;
/* clear flags */
sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
/* update clock source counter to begin with if enabled
* the wrap flag should be cleared by the timer specific
* isr before we end up here.
*/
if (p->flags & FLAG_CLOCKSOURCE)
p->total_cycles += p->match_value;
if (!(p->flags & FLAG_REPROGRAM))
p->next_match_value = p->max_match_value;
p->flags |= FLAG_IRQCONTEXT;
if (p->flags & FLAG_CLOCKEVENT) {
if (!(p->flags & FLAG_SKIPEVENT)) {
if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
p->next_match_value = p->max_match_value;
p->flags |= FLAG_REPROGRAM;
}
p->ced.event_handler(&p->ced);
}
}
p->flags &= ~FLAG_SKIPEVENT;
if (p->flags & FLAG_REPROGRAM) {
p->flags &= ~FLAG_REPROGRAM;
sh_cmt_clock_event_program_verify(p, 1);
if (p->flags & FLAG_CLOCKEVENT)
if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
|| (p->match_value == p->next_match_value))
p->flags &= ~FLAG_REPROGRAM;
}
p->flags &= ~FLAG_IRQCONTEXT;
return IRQ_HANDLED;
}
static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
{
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&p->lock, flags);
if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
ret = sh_cmt_enable(p, &p->rate);
if (ret)
goto out;
p->flags |= flag;
/* setup timeout if no clockevent */
if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
sh_cmt_set_next(p, p->max_match_value);
out:
spin_unlock_irqrestore(&p->lock, flags);
return ret;
}
static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
{
unsigned long flags;
unsigned long f;
spin_lock_irqsave(&p->lock, flags);
f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
p->flags &= ~flag;
if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
sh_cmt_disable(p);
/* adjust the timeout to maximum if only clocksource left */
if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
sh_cmt_set_next(p, p->max_match_value);
spin_unlock_irqrestore(&p->lock, flags);
}
static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
{
return container_of(cs, struct sh_cmt_priv, cs);
}
static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
unsigned long flags, raw;
unsigned long value;
int has_wrapped;
spin_lock_irqsave(&p->lock, flags);
value = p->total_cycles;
raw = sh_cmt_get_counter(p, &has_wrapped);
if (unlikely(has_wrapped))
raw += p->match_value;
spin_unlock_irqrestore(&p->lock, flags);
return value + raw;
}
static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
int ret;
p->total_cycles = 0;
ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
if (ret)
return ret;
/* TODO: calculate good shift from rate and counter bit width */
cs->shift = 0;
cs->mult = clocksource_hz2mult(p->rate, cs->shift);
return 0;
}
static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
}
static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
}
static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
char *name, unsigned long rating)
{
struct clocksource *cs = &p->cs;
cs->name = name;
cs->rating = rating;
cs->read = sh_cmt_clocksource_read;
cs->enable = sh_cmt_clocksource_enable;
cs->disable = sh_cmt_clocksource_disable;
cs->suspend = sh_cmt_clocksource_disable;
cs->resume = sh_cmt_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
pr_info("sh_cmt: %s used as clock source\n", cs->name);
clocksource_register(cs);
return 0;
}
static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
{
return container_of(ced, struct sh_cmt_priv, ced);
}
static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
{
struct clock_event_device *ced = &p->ced;
sh_cmt_start(p, FLAG_CLOCKEVENT);
/* TODO: calculate good shift from rate and counter bit width */
ced->shift = 32;
ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
if (periodic)
sh_cmt_set_next(p, (p->rate + HZ/2) / HZ);
else
sh_cmt_set_next(p, p->max_match_value);
}
static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
/* deal with old setting first */
switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
sh_cmt_stop(p, FLAG_CLOCKEVENT);
break;
default:
break;
}
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
pr_info("sh_cmt: %s used for periodic clock events\n",
ced->name);
sh_cmt_clock_event_start(p, 1);
break;
case CLOCK_EVT_MODE_ONESHOT:
pr_info("sh_cmt: %s used for oneshot clock events\n",
ced->name);
sh_cmt_clock_event_start(p, 0);
break;
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_UNUSED:
sh_cmt_stop(p, FLAG_CLOCKEVENT);
break;
default:
break;
}
}
static int sh_cmt_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
if (likely(p->flags & FLAG_IRQCONTEXT))
p->next_match_value = delta;
else
sh_cmt_set_next(p, delta);
return 0;
}
static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
char *name, unsigned long rating)
{
struct clock_event_device *ced = &p->ced;
memset(ced, 0, sizeof(*ced));
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = rating;
ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_cmt_clock_event_next;
ced->set_mode = sh_cmt_clock_event_mode;
pr_info("sh_cmt: %s used for clock events\n", ced->name);
clockevents_register_device(ced);
}
static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
unsigned long clockevent_rating,
unsigned long clocksource_rating)
{
if (p->width == (sizeof(p->max_match_value) * 8))
p->max_match_value = ~0;
else
p->max_match_value = (1 << p->width) - 1;
p->match_value = p->max_match_value;
spin_lock_init(&p->lock);
if (clockevent_rating)
sh_cmt_register_clockevent(p, name, clockevent_rating);
if (clocksource_rating)
sh_cmt_register_clocksource(p, name, clocksource_rating);
return 0;
}
static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
{
struct sh_timer_config *cfg = pdev->dev.platform_data;
struct resource *res;
int irq, ret;
ret = -ENXIO;
memset(p, 0, sizeof(*p));
p->pdev = pdev;
if (!cfg) {
dev_err(&p->pdev->dev, "missing platform data\n");
goto err0;
}
platform_set_drvdata(pdev, p);
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&p->pdev->dev, "failed to get I/O memory\n");
goto err0;
}
irq = platform_get_irq(p->pdev, 0);
if (irq < 0) {
dev_err(&p->pdev->dev, "failed to get irq\n");
goto err0;
}
/* map memory, let mapbase point to our channel */
p->mapbase = ioremap_nocache(res->start, resource_size(res));
if (p->mapbase == NULL) {
pr_err("sh_cmt: failed to remap I/O memory\n");
goto err0;
}
/* request irq using setup_irq() (too early for request_irq()) */
p->irqaction.name = cfg->name;
p->irqaction.handler = sh_cmt_interrupt;
p->irqaction.dev_id = p;
p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL;
/* get hold of clock */
p->clk = clk_get(&p->pdev->dev, cfg->clk);
if (IS_ERR(p->clk)) {
pr_err("sh_cmt: cannot get clock \"%s\"\n", cfg->clk);
ret = PTR_ERR(p->clk);
goto err1;
}
if (resource_size(res) == 6) {
p->width = 16;
p->overflow_bit = 0x80;
p->clear_bits = ~0x80;
} else {
p->width = 32;
p->overflow_bit = 0x8000;
p->clear_bits = ~0xc000;
}
ret = sh_cmt_register(p, cfg->name,
cfg->clockevent_rating,
cfg->clocksource_rating);
if (ret) {
pr_err("sh_cmt: registration failed\n");
goto err1;
}
ret = setup_irq(irq, &p->irqaction);
if (ret) {
pr_err("sh_cmt: failed to request irq %d\n", irq);
goto err1;
}
return 0;
err1:
iounmap(p->mapbase);
err0:
return ret;
}
static int __devinit sh_cmt_probe(struct platform_device *pdev)
{
struct sh_cmt_priv *p = platform_get_drvdata(pdev);
struct sh_timer_config *cfg = pdev->dev.platform_data;
int ret;
if (p) {
pr_info("sh_cmt: %s kept as earlytimer\n", cfg->name);
return 0;
}
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
ret = sh_cmt_setup(p, pdev);
if (ret) {
kfree(p);
platform_set_drvdata(pdev, NULL);
}
return ret;
}
static int __devexit sh_cmt_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static struct platform_driver sh_cmt_device_driver = {
.probe = sh_cmt_probe,
.remove = __devexit_p(sh_cmt_remove),
.driver = {
.name = "sh_cmt",
}
};
static int __init sh_cmt_init(void)
{
return platform_driver_register(&sh_cmt_device_driver);
}
static void __exit sh_cmt_exit(void)
{
platform_driver_unregister(&sh_cmt_device_driver);
}
early_platform_init("earlytimer", &sh_cmt_device_driver);
module_init(sh_cmt_init);
module_exit(sh_cmt_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");