/*
* CMOS/NV-RAM driver for Linux
*
* Copyright (C) 1997 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
* idea by and with help from Richard Jelinek <rj@suse.de>
* Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
*
* This driver allows you to access the contents of the non-volatile memory in
* the mc146818rtc.h real-time clock. This chip is built into all PCs and into
* many Atari machines. In the former it's called "CMOS-RAM", in the latter
* "NVRAM" (NV stands for non-volatile).
*
* The data are supplied as a (seekable) character device, /dev/nvram. The
* size of this file is dependent on the controller. The usual size is 114,
* the number of freely available bytes in the memory (i.e., not used by the
* RTC itself).
*
* Checksums over the NVRAM contents are managed by this driver. In case of a
* bad checksum, reads and writes return -EIO. The checksum can be initialized
* to a sane state either by ioctl(NVRAM_INIT) (clear whole NVRAM) or
* ioctl(NVRAM_SETCKS) (doesn't change contents, just makes checksum valid
* again; use with care!)
*
* This file also provides some functions for other parts of the kernel that
* want to access the NVRAM: nvram_{read,write,check_checksum,set_checksum}.
* Obviously this can be used only if this driver is always configured into
* the kernel and is not a module. Since the functions are used by some Atari
* drivers, this is the case on the Atari.
*
*
* 1.1 Cesar Barros: SMP locking fixes
* added changelog
* 1.2 Erik Gilling: Cobalt Networks support
* Tim Hockin: general cleanup, Cobalt support
* 1.3 Jon Ringle: Comdial MP1000 support
*
*/
#define NVRAM_VERSION "1.3"
#include <linux/module.h>
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/nvram.h>
#define PC 1
#define ATARI 2
#define COBALT 3
#define MP1000 4
/* select machine configuration */
#if defined(CONFIG_ATARI)
# define MACH ATARI
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) /* and others?? */
#define MACH PC
# if defined(CONFIG_COBALT)
# include <linux/cobalt-nvram.h>
# define MACH COBALT
# elif defined(CONFIG_MACH_MP1000)
# undef MACH
# define MACH MP1000
# else
# define MACH PC
# endif
#else
# error Cannot build nvram driver for this machine configuration.
#endif
#if MACH == PC
/* RTC in a PC */
#define CHECK_DRIVER_INIT() 1
/* On PCs, the checksum is built only over bytes 2..31 */
#define PC_CKS_RANGE_START 2
#define PC_CKS_RANGE_END 31
#define PC_CKS_LOC 32
#define NVRAM_BYTES (128-NVRAM_FIRST_BYTE)
#define mach_check_checksum pc_check_checksum
#define mach_set_checksum pc_set_checksum
#define mach_proc_infos pc_proc_infos
#endif
#if MACH == COBALT
#define CHECK_DRIVER_INIT() 1
#define NVRAM_BYTES (128-NVRAM_FIRST_BYTE)
#define mach_check_checksum cobalt_check_checksum
#define mach_set_checksum cobalt_set_checksum
#define mach_proc_infos cobalt_proc_infos
#endif
#if MACH == ATARI
/* Special parameters for RTC in Atari machines */
#include <asm/atarihw.h>
#include <asm/atariints.h>
#define RTC_PORT(x) (TT_RTC_BAS + 2*(x))
#define CHECK_DRIVER_INIT() (MACH_IS_ATARI && ATARIHW_PRESENT(TT_CLK))
#define NVRAM_BYTES 50
/* On Ataris, the checksum is over all bytes except the checksum bytes
* themselves; these are at the very end */
#define ATARI_CKS_RANGE_START 0
#define ATARI_CKS_RANGE_END 47
#define ATARI_CKS_LOC 48
#define mach_check_checksum atari_check_checksum
#define mach_set_checksum atari_set_checksum
#define mach_proc_infos atari_proc_infos
#endif
#if MACH == MP1000
/* RTC in a MP1000 */
#define CHECK_DRIVER_INIT() 1
#define MP1000_CKS_RANGE_START 0
#define MP1000_CKS_RANGE_END 111
#define MP1000_CKS_LOC 112
#define NVRAM_BYTES (128-NVRAM_FIRST_BYTE)
#define mach_check_checksum mp1000_check_checksum
#define mach_set_checksum mp1000_set_checksum
#define mach_proc_infos mp1000_proc_infos
#endif
/* Note that *all* calls to CMOS_READ and CMOS_WRITE must be done with
* rtc_lock held. Due to the index-port/data-port design of the RTC, we
* don't want two different things trying to get to it at once. (e.g. the
* periodic 11 min sync from time.c vs. this driver.)
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
static DEFINE_SPINLOCK(nvram_state_lock);
static int nvram_open_cnt; /* #times opened */
static int nvram_open_mode; /* special open modes */
#define NVRAM_WRITE 1 /* opened for writing (exclusive) */
#define NVRAM_EXCL 2 /* opened with O_EXCL */
static int mach_check_checksum(void);
static void mach_set_checksum(void);
#ifdef CONFIG_PROC_FS
static int mach_proc_infos(unsigned char *contents, char *buffer, int *len,
off_t *begin, off_t offset, int size);
#endif
/*
* These functions are provided to be called internally or by other parts of
* the kernel. It's up to the caller to ensure correct checksum before reading
* or after writing (needs to be done only once).
*
* It is worth noting that these functions all access bytes of general
* purpose memory in the NVRAM - that is to say, they all add the
* NVRAM_FIRST_BYTE offset. Pass them offsets into NVRAM as if you did not
* know about the RTC cruft.
*/
unsigned char
__nvram_read_byte(int i)
{
return CMOS_READ(NVRAM_FIRST_BYTE + i);
}
unsigned char
nvram_read_byte(int i)
{
unsigned long flags;
unsigned char c;
spin_lock_irqsave(&rtc_lock, flags);
c = __nvram_read_byte(i);
spin_unlock_irqrestore(&rtc_lock, flags);
return c;
}
/* This races nicely with trying to read with checksum checking (nvram_read) */
void
__nvram_write_byte(unsigned char c, int i)
{
CMOS_WRITE(c, NVRAM_FIRST_BYTE + i);
}
void
nvram_write_byte(unsigned char c, int i)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
__nvram_write_byte(c, i);
spin_unlock_irqrestore(&rtc_lock, flags);
}
int
__nvram_check_checksum(void)
{
return mach_check_checksum();
}
int
nvram_check_checksum(void)
{
unsigned long flags;
int rv;
spin_lock_irqsave(&rtc_lock, flags);
rv = __nvram_check_checksum();
spin_unlock_irqrestore(&rtc_lock, flags);
return rv;
}
static void
__nvram_set_checksum(void)
{
mach_set_checksum();
}
#if 0
void
nvram_set_checksum(void)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
__nvram_set_checksum();
spin_unlock_irqrestore(&rtc_lock, flags);
}
#endif /* 0 */
/*
* The are the file operation function for user access to /dev/nvram
*/
static loff_t nvram_llseek(struct file *file,loff_t offset, int origin )
{
lock_kernel();
switch (origin) {
case 0:
/* nothing to do */
break;
case 1:
offset += file->f_pos;
break;
case 2:
offset += NVRAM_BYTES;
break;
}
unlock_kernel();
return (offset >= 0) ? (file->f_pos = offset) : -EINVAL;
}
static ssize_t
nvram_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned char contents[NVRAM_BYTES];
unsigned i = *ppos;
unsigned char *tmp;
spin_lock_irq(&rtc_lock);
if (!__nvram_check_checksum())
goto checksum_err;
for (tmp = contents; count-- > 0 && i < NVRAM_BYTES; ++i, ++tmp)
*tmp = __nvram_read_byte(i);
spin_unlock_irq(&rtc_lock);
if (copy_to_user(buf, contents, tmp - contents))
return -EFAULT;
*ppos = i;
return tmp - contents;
checksum_err:
spin_unlock_irq(&rtc_lock);
return -EIO;
}
static ssize_t
nvram_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
unsigned char contents[NVRAM_BYTES];
unsigned i = *ppos;
unsigned char *tmp;
int len;
len = (NVRAM_BYTES - i) < count ? (NVRAM_BYTES - i) : count;
if (copy_from_user(contents, buf, len))
return -EFAULT;
spin_lock_irq(&rtc_lock);
if (!__nvram_check_checksum())
goto checksum_err;
for (tmp = contents; count-- > 0 && i < NVRAM_BYTES; ++i, ++tmp)
__nvram_write_byte(*tmp, i);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
*ppos = i;
return tmp - contents;
checksum_err:
spin_unlock_irq(&rtc_lock);
return -EIO;
}
static int
nvram_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int i;
switch (cmd) {
case NVRAM_INIT:
/* initialize NVRAM contents and checksum */
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock_irq(&rtc_lock);
for (i = 0; i < NVRAM_BYTES; ++i)
__nvram_write_byte(0, i);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
return 0;
case NVRAM_SETCKS:
/* just set checksum, contents unchanged (maybe useful after
* checksum garbaged somehow...) */
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock_irq(&rtc_lock);
__nvram_set_checksum();
spin_unlock_irq(&rtc_lock);
return 0;
default:
return -ENOTTY;
}
}
static int
nvram_open(struct inode *inode, struct file *file)
{
spin_lock(&nvram_state_lock);
if ((nvram_open_cnt && (file->f_flags & O_EXCL)) ||
(nvram_open_mode & NVRAM_EXCL) ||
((file->f_mode & 2) && (nvram_open_mode & NVRAM_WRITE))) {
spin_unlock(&nvram_state_lock);
return -EBUSY;
}
if (file->f_flags & O_EXCL)
nvram_open_mode |= NVRAM_EXCL;
if (file->f_mode & 2)
nvram_open_mode |= NVRAM_WRITE;
nvram_open_cnt++;
spin_unlock(&nvram_state_lock);
return 0;
}
static int
nvram_release(struct inode *inode, struct file *file)
{
spin_lock(&nvram_state_lock);
nvram_open_cnt--;
/* if only one instance is open, clear the EXCL bit */
if (nvram_open_mode & NVRAM_EXCL)
nvram_open_mode &= ~NVRAM_EXCL;
if (file->f_mode & 2)
nvram_open_mode &= ~NVRAM_WRITE;
spin_unlock(&nvram_state_lock);
return 0;
}
#ifndef CONFIG_PROC_FS
static int
nvram_read_proc(char *buffer, char **start, off_t offset,
int size, int *eof, void *data)
{
return 0;
}
#else
static int
nvram_read_proc(char *buffer, char **start, off_t offset,
int size, int *eof, void *data)
{
unsigned char contents[NVRAM_BYTES];
int i, len = 0;
off_t begin = 0;
spin_lock_irq(&rtc_lock);
for (i = 0; i < NVRAM_BYTES; ++i)
contents[i] = __nvram_read_byte(i);
spin_unlock_irq(&rtc_lock);
*eof = mach_proc_infos(contents, buffer, &len, &begin, offset, size);
if (offset >= begin + len)
return 0;
*start = buffer + (offset - begin);
return (size < begin + len - offset) ? size : begin + len - offset;
}
/* This macro frees the machine specific function from bounds checking and
* this like that... */
#define PRINT_PROC(fmt,args...) \
do { \
*len += sprintf(buffer+*len, fmt, ##args); \
if (*begin + *len > offset + size) \
return 0; \
if (*begin + *len < offset) { \
*begin += *len; \
*len = 0; \
} \
} while(0)
#endif /* CONFIG_PROC_FS */
static struct file_operations nvram_fops = {
.owner = THIS_MODULE,
.llseek = nvram_llseek,
.read = nvram_read,
.write = nvram_write,
.ioctl = nvram_ioctl,
.open = nvram_open,
.release = nvram_release,
};
static struct miscdevice nvram_dev = {
NVRAM_MINOR,
"nvram",
&nvram_fops
};
static int __init
nvram_init(void)
{
int ret;
/* First test whether the driver should init at all */
if (!CHECK_DRIVER_INIT())
return -ENXIO;
ret = misc_register(&nvram_dev);
if (ret) {
printk(KERN_ERR "nvram: can't misc_register on minor=%d\n",
NVRAM_MINOR);
goto out;
}
if (!create_proc_read_entry("driver/nvram", 0, NULL, nvram_read_proc,
NULL)) {
printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");
ret = -ENOMEM;
goto outmisc;
}
ret = 0;
printk(KERN_INFO "Non-volatile memory driver v" NVRAM_VERSION "\n");
out:
return ret;
outmisc:
misc_deregister(&nvram_dev);
goto out;
}
static void __exit
nvram_cleanup_module(void)
{
remove_proc_entry("driver/nvram", NULL);
misc_deregister(&nvram_dev);
}
module_init(nvram_init);
module_exit(nvram_cleanup_module);
/*
* Machine specific functions
*/
#if MACH == PC
static int
pc_check_checksum(void)
{
int i;
unsigned short sum = 0;
unsigned short expect;
for (i = PC_CKS_RANGE_START; i <= PC_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
expect = __nvram_read_byte(PC_CKS_LOC)<<8 |
__nvram_read_byte(PC_CKS_LOC+1);
return ((sum & 0xffff) == expect);
}
static void
pc_set_checksum(void)
{
int i;
unsigned short sum = 0;
for (i = PC_CKS_RANGE_START; i <= PC_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
__nvram_write_byte(sum >> 8, PC_CKS_LOC);
__nvram_write_byte(sum & 0xff, PC_CKS_LOC + 1);
}
#ifdef CONFIG_PROC_FS
static char *floppy_types[] = {
"none", "5.25'' 360k", "5.25'' 1.2M", "3.5'' 720k", "3.5'' 1.44M",
"3.5'' 2.88M", "3.5'' 2.88M"
};
static char *gfx_types[] = {
"EGA, VGA, ... (with BIOS)",
"CGA (40 cols)",
"CGA (80 cols)",
"monochrome",
};
static int
pc_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int checksum;
int type;
spin_lock_irq(&rtc_lock);
checksum = __nvram_check_checksum();
spin_unlock_irq(&rtc_lock);
PRINT_PROC("Checksum status: %svalid\n", checksum ? "" : "not ");
PRINT_PROC("# floppies : %d\n",
(nvram[6] & 1) ? (nvram[6] >> 6) + 1 : 0);
PRINT_PROC("Floppy 0 type : ");
type = nvram[2] >> 4;
if (type < sizeof (floppy_types) / sizeof (*floppy_types))
PRINT_PROC("%s\n", floppy_types[type]);
else
PRINT_PROC("%d (unknown)\n", type);
PRINT_PROC("Floppy 1 type : ");
type = nvram[2] & 0x0f;
if (type < sizeof (floppy_types) / sizeof (*floppy_types))
PRINT_PROC("%s\n", floppy_types[type]);
else
PRINT_PROC("%d (unknown)\n", type);
PRINT_PROC("HD 0 type : ");
type = nvram[4] >> 4;
if (type)
PRINT_PROC("%02x\n", type == 0x0f ? nvram[11] : type);
else
PRINT_PROC("none\n");
PRINT_PROC("HD 1 type : ");
type = nvram[4] & 0x0f;
if (type)
PRINT_PROC("%02x\n", type == 0x0f ? nvram[12] : type);
else
PRINT_PROC("none\n");
PRINT_PROC("HD type 48 data: %d/%d/%d C/H/S, precomp %d, lz %d\n",
nvram[18] | (nvram[19] << 8),
nvram[20], nvram[25],
nvram[21] | (nvram[22] << 8), nvram[23] | (nvram[24] << 8));
PRINT_PROC("HD type 49 data: %d/%d/%d C/H/S, precomp %d, lz %d\n",
nvram[39] | (nvram[40] << 8),
nvram[41], nvram[46],
nvram[42] | (nvram[43] << 8), nvram[44] | (nvram[45] << 8));
PRINT_PROC("DOS base memory: %d kB\n", nvram[7] | (nvram[8] << 8));
PRINT_PROC("Extended memory: %d kB (configured), %d kB (tested)\n",
nvram[9] | (nvram[10] << 8), nvram[34] | (nvram[35] << 8));
PRINT_PROC("Gfx adapter : %s\n", gfx_types[(nvram[6] >> 4) & 3]);
PRINT_PROC("FPU : %sinstalled\n",
(nvram[6] & 2) ? "" : "not ");
return 1;
}
#endif
#endif /* MACH == PC */
#if MACH == COBALT
/* the cobalt CMOS has a wider range of its checksum */
static int cobalt_check_checksum(void)
{
int i;
unsigned short sum = 0;
unsigned short expect;
for (i = COBT_CMOS_CKS_START; i <= COBT_CMOS_CKS_END; ++i) {
if ((i == COBT_CMOS_CHECKSUM) || (i == (COBT_CMOS_CHECKSUM+1)))
continue;
sum += __nvram_read_byte(i);
}
expect = __nvram_read_byte(COBT_CMOS_CHECKSUM) << 8 |
__nvram_read_byte(COBT_CMOS_CHECKSUM+1);
return ((sum & 0xffff) == expect);
}
static void cobalt_set_checksum(void)
{
int i;
unsigned short sum = 0;
for (i = COBT_CMOS_CKS_START; i <= COBT_CMOS_CKS_END; ++i) {
if ((i == COBT_CMOS_CHECKSUM) || (i == (COBT_CMOS_CHECKSUM+1)))
continue;
sum += __nvram_read_byte(i);
}
__nvram_write_byte(sum >> 8, COBT_CMOS_CHECKSUM);
__nvram_write_byte(sum & 0xff, COBT_CMOS_CHECKSUM+1);
}
#ifdef CONFIG_PROC_FS
static int cobalt_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int i;
unsigned int checksum;
unsigned int flags;
char sernum[14];
char *key = "cNoEbTaWlOtR!";
unsigned char bto_csum;
spin_lock_irq(&rtc_lock);
checksum = __nvram_check_checksum();
spin_unlock_irq(&rtc_lock);
PRINT_PROC("Checksum status: %svalid\n", checksum ? "" : "not ");
flags = nvram[COBT_CMOS_FLAG_BYTE_0] << 8
| nvram[COBT_CMOS_FLAG_BYTE_1];
PRINT_PROC("Console: %s\n",
flags & COBT_CMOS_CONSOLE_FLAG ? "on": "off");
PRINT_PROC("Firmware Debug Messages: %s\n",
flags & COBT_CMOS_DEBUG_FLAG ? "on": "off");
PRINT_PROC("Auto Prompt: %s\n",
flags & COBT_CMOS_AUTO_PROMPT_FLAG ? "on": "off");
PRINT_PROC("Shutdown Status: %s\n",
flags & COBT_CMOS_CLEAN_BOOT_FLAG ? "clean": "dirty");
PRINT_PROC("Hardware Probe: %s\n",
flags & COBT_CMOS_HW_NOPROBE_FLAG ? "partial": "full");
PRINT_PROC("System Fault: %sdetected\n",
flags & COBT_CMOS_SYSFAULT_FLAG ? "": "not ");
PRINT_PROC("Panic on OOPS: %s\n",
flags & COBT_CMOS_OOPSPANIC_FLAG ? "yes": "no");
PRINT_PROC("Delayed Cache Initialization: %s\n",
flags & COBT_CMOS_DELAY_CACHE_FLAG ? "yes": "no");
PRINT_PROC("Show Logo at Boot: %s\n",
flags & COBT_CMOS_NOLOGO_FLAG ? "no": "yes");
PRINT_PROC("Boot Method: ");
switch (nvram[COBT_CMOS_BOOT_METHOD]) {
case COBT_CMOS_BOOT_METHOD_DISK:
PRINT_PROC("disk\n");
break;
case COBT_CMOS_BOOT_METHOD_ROM:
PRINT_PROC("rom\n");
break;
case COBT_CMOS_BOOT_METHOD_NET:
PRINT_PROC("net\n");
break;
default:
PRINT_PROC("unknown\n");
break;
}
PRINT_PROC("Primary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV0_MAJ],
nvram[COBT_CMOS_BOOT_DEV0_MIN] );
PRINT_PROC("Secondary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV1_MAJ],
nvram[COBT_CMOS_BOOT_DEV1_MIN] );
PRINT_PROC("Tertiary Boot Device: %d:%d\n",
nvram[COBT_CMOS_BOOT_DEV2_MAJ],
nvram[COBT_CMOS_BOOT_DEV2_MIN] );
PRINT_PROC("Uptime: %d\n",
nvram[COBT_CMOS_UPTIME_0] << 24 |
nvram[COBT_CMOS_UPTIME_1] << 16 |
nvram[COBT_CMOS_UPTIME_2] << 8 |
nvram[COBT_CMOS_UPTIME_3]);
PRINT_PROC("Boot Count: %d\n",
nvram[COBT_CMOS_BOOTCOUNT_0] << 24 |
nvram[COBT_CMOS_BOOTCOUNT_1] << 16 |
nvram[COBT_CMOS_BOOTCOUNT_2] << 8 |
nvram[COBT_CMOS_BOOTCOUNT_3]);
/* 13 bytes of serial num */
for (i=0 ; i<13 ; i++) {
sernum[i] = nvram[COBT_CMOS_SYS_SERNUM_0 + i];
}
sernum[13] = '\0';
checksum = 0;
for (i=0 ; i<13 ; i++) {
checksum += sernum[i] ^ key[i];
}
checksum = ((checksum & 0x7f) ^ (0xd6)) & 0xff;
PRINT_PROC("Serial Number: %s", sernum);
if (checksum != nvram[COBT_CMOS_SYS_SERNUM_CSUM]) {
PRINT_PROC(" (invalid checksum)");
}
PRINT_PROC("\n");
PRINT_PROC("Rom Revison: %d.%d.%d\n", nvram[COBT_CMOS_ROM_REV_MAJ],
nvram[COBT_CMOS_ROM_REV_MIN], nvram[COBT_CMOS_ROM_REV_REV]);
PRINT_PROC("BTO Server: %d.%d.%d.%d", nvram[COBT_CMOS_BTO_IP_0],
nvram[COBT_CMOS_BTO_IP_1], nvram[COBT_CMOS_BTO_IP_2],
nvram[COBT_CMOS_BTO_IP_3]);
bto_csum = nvram[COBT_CMOS_BTO_IP_0] + nvram[COBT_CMOS_BTO_IP_1]
+ nvram[COBT_CMOS_BTO_IP_2] + nvram[COBT_CMOS_BTO_IP_3];
if (bto_csum != nvram[COBT_CMOS_BTO_IP_CSUM]) {
PRINT_PROC(" (invalid checksum)");
}
PRINT_PROC("\n");
if (flags & COBT_CMOS_VERSION_FLAG
&& nvram[COBT_CMOS_VERSION] >= COBT_CMOS_VER_BTOCODE) {
PRINT_PROC("BTO Code: 0x%x\n",
nvram[COBT_CMOS_BTO_CODE_0] << 24 |
nvram[COBT_CMOS_BTO_CODE_1] << 16 |
nvram[COBT_CMOS_BTO_CODE_2] << 8 |
nvram[COBT_CMOS_BTO_CODE_3]);
}
return 1;
}
#endif /* CONFIG_PROC_FS */
#endif /* MACH == COBALT */
#if MACH == ATARI
static int
atari_check_checksum(void)
{
int i;
unsigned char sum = 0;
for (i = ATARI_CKS_RANGE_START; i <= ATARI_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
return (__nvram_read_byte(ATARI_CKS_LOC) == (~sum & 0xff) &&
__nvram_read_byte(ATARI_CKS_LOC + 1) == (sum & 0xff));
}
static void
atari_set_checksum(void)
{
int i;
unsigned char sum = 0;
for (i = ATARI_CKS_RANGE_START; i <= ATARI_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
__nvram_write_byte(~sum, ATARI_CKS_LOC);
__nvram_write_byte(sum, ATARI_CKS_LOC + 1);
}
#ifdef CONFIG_PROC_FS
static struct {
unsigned char val;
char *name;
} boot_prefs[] = {
{ 0x80, "TOS" },
{ 0x40, "ASV" },
{ 0x20, "NetBSD (?)" },
{ 0x10, "Linux" },
{ 0x00, "unspecified" }
};
static char *languages[] = {
"English (US)",
"German",
"French",
"English (UK)",
"Spanish",
"Italian",
"6 (undefined)",
"Swiss (French)",
"Swiss (German)"
};
static char *dateformat[] = {
"MM%cDD%cYY",
"DD%cMM%cYY",
"YY%cMM%cDD",
"YY%cDD%cMM",
"4 (undefined)",
"5 (undefined)",
"6 (undefined)",
"7 (undefined)"
};
static char *colors[] = {
"2", "4", "16", "256", "65536", "??", "??", "??"
};
#define fieldsize(a) (sizeof(a)/sizeof(*a))
static int
atari_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int checksum = nvram_check_checksum();
int i;
unsigned vmode;
PRINT_PROC("Checksum status : %svalid\n", checksum ? "" : "not ");
PRINT_PROC("Boot preference : ");
for (i = fieldsize(boot_prefs) - 1; i >= 0; --i) {
if (nvram[1] == boot_prefs[i].val) {
PRINT_PROC("%s\n", boot_prefs[i].name);
break;
}
}
if (i < 0)
PRINT_PROC("0x%02x (undefined)\n", nvram[1]);
PRINT_PROC("SCSI arbitration : %s\n",
(nvram[16] & 0x80) ? "on" : "off");
PRINT_PROC("SCSI host ID : ");
if (nvram[16] & 0x80)
PRINT_PROC("%d\n", nvram[16] & 7);
else
PRINT_PROC("n/a\n");
/* the following entries are defined only for the Falcon */
if ((atari_mch_cookie >> 16) != ATARI_MCH_FALCON)
return 1;
PRINT_PROC("OS language : ");
if (nvram[6] < fieldsize(languages))
PRINT_PROC("%s\n", languages[nvram[6]]);
else
PRINT_PROC("%u (undefined)\n", nvram[6]);
PRINT_PROC("Keyboard language: ");
if (nvram[7] < fieldsize(languages))
PRINT_PROC("%s\n", languages[nvram[7]]);
else
PRINT_PROC("%u (undefined)\n", nvram[7]);
PRINT_PROC("Date format : ");
PRINT_PROC(dateformat[nvram[8] & 7],
nvram[9] ? nvram[9] : '/', nvram[9] ? nvram[9] : '/');
PRINT_PROC(", %dh clock\n", nvram[8] & 16 ? 24 : 12);
PRINT_PROC("Boot delay : ");
if (nvram[10] == 0)
PRINT_PROC("default");
else
PRINT_PROC("%ds%s\n", nvram[10],
nvram[10] < 8 ? ", no memory test" : "");
vmode = (nvram[14] << 8) || nvram[15];
PRINT_PROC("Video mode : %s colors, %d columns, %s %s monitor\n",
colors[vmode & 7],
vmode & 8 ? 80 : 40,
vmode & 16 ? "VGA" : "TV", vmode & 32 ? "PAL" : "NTSC");
PRINT_PROC(" %soverscan, compat. mode %s%s\n",
vmode & 64 ? "" : "no ",
vmode & 128 ? "on" : "off",
vmode & 256 ?
(vmode & 16 ? ", line doubling" : ", half screen") : "");
return 1;
}
#endif
#endif /* MACH == ATARI */
#if MACH == MP1000
static int
mp1000_check_checksum(void)
{
int i;
unsigned short sum = 0;
unsigned short expect;
for (i = MP1000_CKS_RANGE_START; i <= MP1000_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
expect = __nvram_read_byte(MP1000_CKS_LOC+1)<<8 |
__nvram_read_byte(MP1000_CKS_LOC);
return ((sum & 0xffff) == expect);
}
static void
mp1000_set_checksum(void)
{
int i;
unsigned short sum = 0;
for (i = MP1000_CKS_RANGE_START; i <= MP1000_CKS_RANGE_END; ++i)
sum += __nvram_read_byte(i);
__nvram_write_byte(sum >> 8, MP1000_CKS_LOC + 1);
__nvram_write_byte(sum & 0xff, MP1000_CKS_LOC);
}
#ifdef CONFIG_PROC_FS
#define SERVER_N_LEN 32
#define PATH_N_LEN 32
#define FILE_N_LEN 32
#define NVRAM_MAGIC_SIG 0xdead
typedef struct NvRamImage
{
unsigned short int magic;
unsigned short int mode;
char fname[FILE_N_LEN];
char path[PATH_N_LEN];
char server[SERVER_N_LEN];
char pad[12];
} NvRam;
static int
mp1000_proc_infos(unsigned char *nvram, char *buffer, int *len,
off_t *begin, off_t offset, int size)
{
int checksum;
NvRam* nv = (NvRam*)nvram;
spin_lock_irq(&rtc_lock);
checksum = __nvram_check_checksum();
spin_unlock_irq(&rtc_lock);
PRINT_PROC("Checksum status: %svalid\n", checksum ? "" : "not ");
switch( nv->mode )
{
case 0 :
PRINT_PROC( "\tMode 0, tftp prompt\n" );
break;
case 1 :
PRINT_PROC( "\tMode 1, booting from disk\n" );
break;
case 2 :
PRINT_PROC( "\tMode 2, Alternate boot from disk /boot/%s\n", nv->fname );
break;
case 3 :
PRINT_PROC( "\tMode 3, Booting from net:\n" );
PRINT_PROC( "\t\t%s:%s%s\n",nv->server, nv->path, nv->fname );
break;
default:
PRINT_PROC( "\tInconsistant nvram?\n" );
break;
}
return 1;
}
#endif
#endif /* MACH == MP1000 */
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(__nvram_read_byte);
EXPORT_SYMBOL(nvram_read_byte);
EXPORT_SYMBOL(__nvram_write_byte);
EXPORT_SYMBOL(nvram_write_byte);
EXPORT_SYMBOL(__nvram_check_checksum);
EXPORT_SYMBOL(nvram_check_checksum);
MODULE_ALIAS_MISCDEV(NVRAM_MINOR);