/*
* Quick & dirty crypto testing module.
*
* This will only exist until we have a better testing mechanism
* (e.g. a char device).
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* 14 - 09 - 2003
* Rewritten by Kartikey Mahendra Bhatt
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <asm/scatterlist.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/highmem.h>
#include <linux/moduleparam.h>
#include "tcrypt.h"
/*
* Need to kmalloc() memory for testing kmap().
*/
#define TVMEMSIZE 4096
#define XBUFSIZE 32768
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 37
#define IDX2 32400
#define IDX3 1
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
#define MODE_ECB 1
#define MODE_CBC 0
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static int mode;
static char *xbuf;
static char *tvmem;
static char *check[] = {
"des", "md5", "des3_ede", "rot13", "sha1", "sha256", "blowfish",
"twofish", "serpent", "sha384", "sha512", "md4", "aes", "cast6",
"arc4", "michael_mic", "deflate", "crc32c", "tea", "xtea",
"khazad", "wp512", "wp384", "wp256", "tnepres", NULL
};
static void
hexdump(unsigned char *buf, unsigned int len)
{
while (len--)
printk("%02x", *buf++);
printk("\n");
}
static void
test_hash (char * algo, struct hash_testvec * template, unsigned int tcount)
{
char *p;
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char result[64];
struct crypto_tfm *tfm;
struct hash_testvec *hash_tv;
unsigned int tsize;
printk("\ntesting %s\n", algo);
tsize = sizeof (struct hash_testvec);
tsize *= tcount;
if (tsize > TVMEMSIZE) {
printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE);
return;
}
memcpy(tvmem, template, tsize);
hash_tv = (void *) tvmem;
tfm = crypto_alloc_tfm(algo, 0);
if (tfm == NULL) {
printk("failed to load transform for %s\n", algo);
return;
}
for (i = 0; i < tcount; i++) {
printk ("test %u:\n", i + 1);
memset (result, 0, 64);
p = hash_tv[i].plaintext;
sg[0].page = virt_to_page (p);
sg[0].offset = offset_in_page (p);
sg[0].length = hash_tv[i].psize;
crypto_digest_init (tfm);
if (tfm->crt_u.digest.dit_setkey) {
crypto_digest_setkey (tfm, hash_tv[i].key,
hash_tv[i].ksize);
}
crypto_digest_update (tfm, sg, 1);
crypto_digest_final (tfm, result);
hexdump (result, crypto_tfm_alg_digestsize (tfm));
printk("%s\n",
memcmp(result, hash_tv[i].digest,
crypto_tfm_alg_digestsize(tfm)) ? "fail" :
"pass");
}
printk ("testing %s across pages\n", algo);
/* setup the dummy buffer first */
memset(xbuf, 0, XBUFSIZE);
j = 0;
for (i = 0; i < tcount; i++) {
if (hash_tv[i].np) {
j++;
printk ("test %u:\n", j);
memset (result, 0, 64);
temp = 0;
for (k = 0; k < hash_tv[i].np; k++) {
memcpy (&xbuf[IDX[k]], hash_tv[i].plaintext + temp,
hash_tv[i].tap[k]);
temp += hash_tv[i].tap[k];
p = &xbuf[IDX[k]];
sg[k].page = virt_to_page (p);
sg[k].offset = offset_in_page (p);
sg[k].length = hash_tv[i].tap[k];
}
crypto_digest_digest (tfm, sg, hash_tv[i].np, result);
hexdump (result, crypto_tfm_alg_digestsize (tfm));
printk("%s\n",
memcmp(result, hash_tv[i].digest,
crypto_tfm_alg_digestsize(tfm)) ? "fail" :
"pass");
}
}
crypto_free_tfm (tfm);
}
#ifdef CONFIG_CRYPTO_HMAC
static void
test_hmac(char *algo, struct hmac_testvec * template, unsigned int tcount)
{
char *p;
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char result[64];
struct crypto_tfm *tfm;
struct hmac_testvec *hmac_tv;
unsigned int tsize, klen;
tfm = crypto_alloc_tfm(algo, 0);
if (tfm == NULL) {
printk("failed to load transform for %s\n", algo);
return;
}
printk("\ntesting hmac_%s\n", algo);
tsize = sizeof (struct hmac_testvec);
tsize *= tcount;
if (tsize > TVMEMSIZE) {
printk("template (%u) too big for tvmem (%u)\n", tsize,
TVMEMSIZE);
goto out;
}
memcpy(tvmem, template, tsize);
hmac_tv = (void *) tvmem;
for (i = 0; i < tcount; i++) {
printk("test %u:\n", i + 1);
memset(result, 0, sizeof (result));
p = hmac_tv[i].plaintext;
klen = hmac_tv[i].ksize;
sg[0].page = virt_to_page(p);
sg[0].offset = offset_in_page(p);
sg[0].length = hmac_tv[i].psize;
crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, 1, result);
hexdump(result, crypto_tfm_alg_digestsize(tfm));
printk("%s\n",
memcmp(result, hmac_tv[i].digest,
crypto_tfm_alg_digestsize(tfm)) ? "fail" :
"pass");
}
printk("\ntesting hmac_%s across pages\n", algo);
memset(xbuf, 0, XBUFSIZE);
j = 0;
for (i = 0; i < tcount; i++) {
if (hmac_tv[i].np) {
j++;
printk ("test %u:\n",j);
memset (result, 0, 64);
temp = 0;
klen = hmac_tv[i].ksize;
for (k = 0; k < hmac_tv[i].np; k++) {
memcpy (&xbuf[IDX[k]], hmac_tv[i].plaintext + temp,
hmac_tv[i].tap[k]);
temp += hmac_tv[i].tap[k];
p = &xbuf[IDX[k]];
sg[k].page = virt_to_page (p);
sg[k].offset = offset_in_page (p);
sg[k].length = hmac_tv[i].tap[k];
}
crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, hmac_tv[i].np,
result);
hexdump(result, crypto_tfm_alg_digestsize(tfm));
printk("%s\n",
memcmp(result, hmac_tv[i].digest,
crypto_tfm_alg_digestsize(tfm)) ? "fail" :
"pass");
}
}
out:
crypto_free_tfm(tfm);
}
#endif /* CONFIG_CRYPTO_HMAC */
static void
test_cipher(char * algo, int mode, int enc, struct cipher_testvec * template, unsigned int tcount)
{
unsigned int ret, i, j, k, temp;
unsigned int tsize;
char *p, *q;
struct crypto_tfm *tfm;
char *key;
struct cipher_testvec *cipher_tv;
struct scatterlist sg[8];
char e[11], m[4];
if (enc == ENCRYPT)
strncpy(e, "encryption", 11);
else
strncpy(e, "decryption", 11);
if (mode == MODE_ECB)
strncpy(m, "ECB", 4);
else
strncpy(m, "CBC", 4);
printk("\ntesting %s %s %s \n", algo, m, e);
tsize = sizeof (struct cipher_testvec);
tsize *= tcount;
if (tsize > TVMEMSIZE) {
printk("template (%u) too big for tvmem (%u)\n", tsize,
TVMEMSIZE);
return;
}
memcpy(tvmem, template, tsize);
cipher_tv = (void *) tvmem;
if (mode)
tfm = crypto_alloc_tfm (algo, 0);
else
tfm = crypto_alloc_tfm (algo, CRYPTO_TFM_MODE_CBC);
if (tfm == NULL) {
printk("failed to load transform for %s %s\n", algo, m);
return;
}
j = 0;
for (i = 0; i < tcount; i++) {
if (!(cipher_tv[i].np)) {
j++;
printk("test %u (%d bit key):\n",
j, cipher_tv[i].klen * 8);
tfm->crt_flags = 0;
if (cipher_tv[i].wk)
tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
key = cipher_tv[i].key;
ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
if (ret) {
printk("setkey() failed flags=%x\n", tfm->crt_flags);
if (!cipher_tv[i].fail)
goto out;
}
p = cipher_tv[i].input;
sg[0].page = virt_to_page(p);
sg[0].offset = offset_in_page(p);
sg[0].length = cipher_tv[i].ilen;
if (!mode) {
crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
crypto_tfm_alg_ivsize (tfm));
}
if (enc)
ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
else
ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
if (ret) {
printk("%s () failed flags=%x\n", e, tfm->crt_flags);
goto out;
}
q = kmap(sg[0].page) + sg[0].offset;
hexdump(q, cipher_tv[i].rlen);
printk("%s\n",
memcmp(q, cipher_tv[i].result, cipher_tv[i].rlen) ? "fail" :
"pass");
}
}
printk("\ntesting %s %s %s across pages (chunking) \n", algo, m, e);
memset(xbuf, 0, XBUFSIZE);
j = 0;
for (i = 0; i < tcount; i++) {
if (cipher_tv[i].np) {
j++;
printk("test %u (%d bit key):\n",
j, cipher_tv[i].klen * 8);
tfm->crt_flags = 0;
if (cipher_tv[i].wk)
tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
key = cipher_tv[i].key;
ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
if (ret) {
printk("setkey() failed flags=%x\n", tfm->crt_flags);
if (!cipher_tv[i].fail)
goto out;
}
temp = 0;
for (k = 0; k < cipher_tv[i].np; k++) {
memcpy (&xbuf[IDX[k]], cipher_tv[i].input + temp,
cipher_tv[i].tap[k]);
temp += cipher_tv[i].tap[k];
p = &xbuf[IDX[k]];
sg[k].page = virt_to_page (p);
sg[k].offset = offset_in_page (p);
sg[k].length = cipher_tv[i].tap[k];
}
if (!mode) {
crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
crypto_tfm_alg_ivsize (tfm));
}
if (enc)
ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
else
ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
if (ret) {
printk("%s () failed flags=%x\n", e, tfm->crt_flags);
goto out;
}
temp = 0;
for (k = 0; k < cipher_tv[i].np; k++) {
printk("page %u\n", k);
q = kmap(sg[k].page) + sg[k].offset;
hexdump(q, cipher_tv[i].tap[k]);
printk("%s\n",
memcmp(q, cipher_tv[i].result + temp,
cipher_tv[i].tap[k]) ? "fail" :
"pass");
temp += cipher_tv[i].tap[k];
}
}
}
out:
crypto_free_tfm(tfm);
}
static void
test_deflate(void)
{
unsigned int i;
char result[COMP_BUF_SIZE];
struct crypto_tfm *tfm;
struct comp_testvec *tv;
unsigned int tsize;
printk("\ntesting deflate compression\n");
tsize = sizeof (deflate_comp_tv_template);
if (tsize > TVMEMSIZE) {
printk("template (%u) too big for tvmem (%u)\n", tsize,
TVMEMSIZE);
return;
}
memcpy(tvmem, deflate_comp_tv_template, tsize);
tv = (void *) tvmem;
tfm = crypto_alloc_tfm("deflate", 0);
if (tfm == NULL) {
printk("failed to load transform for deflate\n");
return;
}
for (i = 0; i < DEFLATE_COMP_TEST_VECTORS; i++) {
int ilen, ret, dlen = COMP_BUF_SIZE;
printk("test %u:\n", i + 1);
memset(result, 0, sizeof (result));
ilen = tv[i].inlen;
ret = crypto_comp_compress(tfm, tv[i].input,
ilen, result, &dlen);
if (ret) {
printk("fail: ret=%d\n", ret);
continue;
}
hexdump(result, dlen);
printk("%s (ratio %d:%d)\n",
memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
ilen, dlen);
}
printk("\ntesting deflate decompression\n");
tsize = sizeof (deflate_decomp_tv_template);
if (tsize > TVMEMSIZE) {
printk("template (%u) too big for tvmem (%u)\n", tsize,
TVMEMSIZE);
goto out;
}
memcpy(tvmem, deflate_decomp_tv_template, tsize);
tv = (void *) tvmem;
for (i = 0; i < DEFLATE_DECOMP_TEST_VECTORS; i++) {
int ilen, ret, dlen = COMP_BUF_SIZE;
printk("test %u:\n", i + 1);
memset(result, 0, sizeof (result));
ilen = tv[i].inlen;
ret = crypto_comp_decompress(tfm, tv[i].input,
ilen, result, &dlen);
if (ret) {
printk("fail: ret=%d\n", ret);
continue;
}
hexdump(result, dlen);
printk("%s (ratio %d:%d)\n",
memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
ilen, dlen);
}
out:
crypto_free_tfm(tfm);
}
static void
test_crc32c(void)
{
#define NUMVEC 6
#define VECSIZE 40
int i, j, pass;
u32 crc;
u8 b, test_vec[NUMVEC][VECSIZE];
static u32 vec_results[NUMVEC] = {
0x0e2c157f, 0xe980ebf6, 0xde74bded,
0xd579c862, 0xba979ad0, 0x2b29d913
};
static u32 tot_vec_results = 0x24c5d375;
struct scatterlist sg[NUMVEC];
struct crypto_tfm *tfm;
char *fmtdata = "testing crc32c initialized to %08x: %s\n";
#define SEEDTESTVAL 0xedcba987
u32 seed;
printk("\ntesting crc32c\n");
tfm = crypto_alloc_tfm("crc32c", 0);
if (tfm == NULL) {
printk("failed to load transform for crc32c\n");
return;
}
crypto_digest_init(tfm);
crypto_digest_final(tfm, (u8*)&crc);
printk(fmtdata, crc, (crc == 0) ? "pass" : "ERROR");
/*
* stuff test_vec with known values, simple incrementing
* byte values.
*/
b = 0;
for (i = 0; i < NUMVEC; i++) {
for (j = 0; j < VECSIZE; j++)
test_vec[i][j] = ++b;
sg[i].page = virt_to_page(test_vec[i]);
sg[i].offset = offset_in_page(test_vec[i]);
sg[i].length = VECSIZE;
}
seed = SEEDTESTVAL;
(void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32));
crypto_digest_final(tfm, (u8*)&crc);
printk("testing crc32c setkey returns %08x : %s\n", crc, (crc == (SEEDTESTVAL ^ ~(u32)0)) ?
"pass" : "ERROR");
printk("testing crc32c using update/final:\n");
pass = 1; /* assume all is well */
for (i = 0; i < NUMVEC; i++) {
seed = ~(u32)0;
(void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32));
crypto_digest_update(tfm, &sg[i], 1);
crypto_digest_final(tfm, (u8*)&crc);
if (crc == vec_results[i]) {
printk(" %08x:OK", crc);
} else {
printk(" %08x:BAD, wanted %08x\n", crc, vec_results[i]);
pass = 0;
}
}
printk("\ntesting crc32c using incremental accumulator:\n");
crc = 0;
for (i = 0; i < NUMVEC; i++) {
seed = (crc ^ ~(u32)0);
(void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32));
crypto_digest_update(tfm, &sg[i], 1);
crypto_digest_final(tfm, (u8*)&crc);
}
if (crc == tot_vec_results) {
printk(" %08x:OK", crc);
} else {
printk(" %08x:BAD, wanted %08x\n", crc, tot_vec_results);
pass = 0;
}
printk("\ntesting crc32c using digest:\n");
seed = ~(u32)0;
(void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32));
crypto_digest_digest(tfm, sg, NUMVEC, (u8*)&crc);
if (crc == tot_vec_results) {
printk(" %08x:OK", crc);
} else {
printk(" %08x:BAD, wanted %08x\n", crc, tot_vec_results);
pass = 0;
}
printk("\n%s\n", pass ? "pass" : "ERROR");
crypto_free_tfm(tfm);
printk("crc32c test complete\n");
}
static void
test_available(void)
{
char **name = check;
while (*name) {
printk("alg %s ", *name);
printk((crypto_alg_available(*name, 0)) ?
"found\n" : "not found\n");
name++;
}
}
static void
do_test(void)
{
switch (mode) {
case 0:
test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
//DES
test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
//DES3_EDE
test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
//BLOWFISH
test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
//TWOFISH
test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
//SERPENT
test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS);
test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS);
//TNEPRES
test_cipher ("tnepres", MODE_ECB, ENCRYPT, tnepres_enc_tv_template, TNEPRES_ENC_TEST_VECTORS);
test_cipher ("tnepres", MODE_ECB, DECRYPT, tnepres_dec_tv_template, TNEPRES_DEC_TEST_VECTORS);
//AES
test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
//CAST5
test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
//CAST6
test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
//ARC4
test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
//TEA
test_cipher ("tea", MODE_ECB, ENCRYPT, tea_enc_tv_template, TEA_ENC_TEST_VECTORS);
test_cipher ("tea", MODE_ECB, DECRYPT, tea_dec_tv_template, TEA_DEC_TEST_VECTORS);
//XTEA
test_cipher ("xtea", MODE_ECB, ENCRYPT, xtea_enc_tv_template, XTEA_ENC_TEST_VECTORS);
test_cipher ("xtea", MODE_ECB, DECRYPT, xtea_dec_tv_template, XTEA_DEC_TEST_VECTORS);
//KHAZAD
test_cipher ("khazad", MODE_ECB, ENCRYPT, khazad_enc_tv_template, KHAZAD_ENC_TEST_VECTORS);
test_cipher ("khazad", MODE_ECB, DECRYPT, khazad_dec_tv_template, KHAZAD_DEC_TEST_VECTORS);
//ANUBIS
test_cipher ("anubis", MODE_ECB, ENCRYPT, anubis_enc_tv_template, ANUBIS_ENC_TEST_VECTORS);
test_cipher ("anubis", MODE_ECB, DECRYPT, anubis_dec_tv_template, ANUBIS_DEC_TEST_VECTORS);
test_cipher ("anubis", MODE_CBC, ENCRYPT, anubis_cbc_enc_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS);
test_cipher ("anubis", MODE_CBC, DECRYPT, anubis_cbc_dec_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS);
test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
test_hash("wp512", wp512_tv_template, WP512_TEST_VECTORS);
test_hash("wp384", wp384_tv_template, WP384_TEST_VECTORS);
test_hash("wp256", wp256_tv_template, WP256_TEST_VECTORS);
test_hash("tgr192", tgr192_tv_template, TGR192_TEST_VECTORS);
test_hash("tgr160", tgr160_tv_template, TGR160_TEST_VECTORS);
test_hash("tgr128", tgr128_tv_template, TGR128_TEST_VECTORS);
test_deflate();
test_crc32c();
#ifdef CONFIG_CRYPTO_HMAC
test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
#endif
test_hash("michael_mic", michael_mic_tv_template, MICHAEL_MIC_TEST_VECTORS);
break;
case 1:
test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
break;
case 2:
test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
break;
case 3:
test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
break;
case 4:
test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
break;
case 5:
test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
break;
case 6:
test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
break;
case 7:
test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
break;
case 8:
test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
break;
case 9:
test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS);
test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS);
break;
case 10:
test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
break;
case 11:
test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
break;
case 12:
test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
break;
case 13:
test_deflate();
break;
case 14:
test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
break;
case 15:
test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
break;
case 16:
test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
break;
case 17:
test_hash("michael_mic", michael_mic_tv_template, MICHAEL_MIC_TEST_VECTORS);
break;
case 18:
test_crc32c();
break;
case 19:
test_cipher ("tea", MODE_ECB, ENCRYPT, tea_enc_tv_template, TEA_ENC_TEST_VECTORS);
test_cipher ("tea", MODE_ECB, DECRYPT, tea_dec_tv_template, TEA_DEC_TEST_VECTORS);
break;
case 20:
test_cipher ("xtea", MODE_ECB, ENCRYPT, xtea_enc_tv_template, XTEA_ENC_TEST_VECTORS);
test_cipher ("xtea", MODE_ECB, DECRYPT, xtea_dec_tv_template, XTEA_DEC_TEST_VECTORS);
break;
case 21:
test_cipher ("khazad", MODE_ECB, ENCRYPT, khazad_enc_tv_template, KHAZAD_ENC_TEST_VECTORS);
test_cipher ("khazad", MODE_ECB, DECRYPT, khazad_dec_tv_template, KHAZAD_DEC_TEST_VECTORS);
break;
case 22:
test_hash("wp512", wp512_tv_template, WP512_TEST_VECTORS);
break;
case 23:
test_hash("wp384", wp384_tv_template, WP384_TEST_VECTORS);
break;
case 24:
test_hash("wp256", wp256_tv_template, WP256_TEST_VECTORS);
break;
case 25:
test_cipher ("tnepres", MODE_ECB, ENCRYPT, tnepres_enc_tv_template, TNEPRES_ENC_TEST_VECTORS);
test_cipher ("tnepres", MODE_ECB, DECRYPT, tnepres_dec_tv_template, TNEPRES_DEC_TEST_VECTORS);
break;
case 26:
test_cipher ("anubis", MODE_ECB, ENCRYPT, anubis_enc_tv_template, ANUBIS_ENC_TEST_VECTORS);
test_cipher ("anubis", MODE_ECB, DECRYPT, anubis_dec_tv_template, ANUBIS_DEC_TEST_VECTORS);
test_cipher ("anubis", MODE_CBC, ENCRYPT, anubis_cbc_enc_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS);
test_cipher ("anubis", MODE_CBC, DECRYPT, anubis_cbc_dec_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS);
break;
case 27:
test_hash("tgr192", tgr192_tv_template, TGR192_TEST_VECTORS);
break;
case 28:
test_hash("tgr160", tgr160_tv_template, TGR160_TEST_VECTORS);
break;
case 29:
test_hash("tgr128", tgr128_tv_template, TGR128_TEST_VECTORS);
break;
#ifdef CONFIG_CRYPTO_HMAC
case 100:
test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
break;
case 101:
test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
break;
case 102:
test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
break;
#endif
case 1000:
test_available();
break;
default:
/* useful for debugging */
printk("not testing anything\n");
break;
}
}
static int __init
init(void)
{
tvmem = kmalloc(TVMEMSIZE, GFP_KERNEL);
if (tvmem == NULL)
return -ENOMEM;
xbuf = kmalloc(XBUFSIZE, GFP_KERNEL);
if (xbuf == NULL) {
kfree(tvmem);
return -ENOMEM;
}
do_test();
kfree(xbuf);
kfree(tvmem);
return 0;
}
/*
* If an init function is provided, an exit function must also be provided
* to allow module unload.
*/
static void __exit fini(void) { }
module_init(init);
module_exit(fini);
module_param(mode, int, 0);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Quick & dirty crypto testing module");
MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>");