/*
* Copyright 2002 Andi Kleen, SuSE Labs.
* Thanks to Ben LaHaise for precious feedback.
*/
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <asm/e820.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/proto.h>
#include <asm/pat.h>
/*
* The current flushing context - we pass it instead of 5 arguments:
*/
struct cpa_data {
unsigned long vaddr;
pgprot_t mask_set;
pgprot_t mask_clr;
int numpages;
int flushtlb;
unsigned long pfn;
unsigned force_split : 1;
};
#ifdef CONFIG_PROC_FS
static unsigned long direct_pages_count[PG_LEVEL_NUM];
void update_page_count(int level, unsigned long pages)
{
unsigned long flags;
/* Protect against CPA */
spin_lock_irqsave(&pgd_lock, flags);
direct_pages_count[level] += pages;
spin_unlock_irqrestore(&pgd_lock, flags);
}
static void split_page_count(int level)
{
direct_pages_count[level]--;
direct_pages_count[level - 1] += PTRS_PER_PTE;
}
int arch_report_meminfo(char *page)
{
int n = sprintf(page, "DirectMap4k: %8lu\n"
"DirectMap2M: %8lu\n",
direct_pages_count[PG_LEVEL_4K],
direct_pages_count[PG_LEVEL_2M]);
#ifdef CONFIG_X86_64
n += sprintf(page + n, "DirectMap1G: %8lu\n",
direct_pages_count[PG_LEVEL_1G]);
#endif
return n;
}
#else
static inline void split_page_count(int level) { }
#endif
#ifdef CONFIG_X86_64
static inline unsigned long highmap_start_pfn(void)
{
return __pa(_text) >> PAGE_SHIFT;
}
static inline unsigned long highmap_end_pfn(void)
{
return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
}
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
# define debug_pagealloc 1
#else
# define debug_pagealloc 0
#endif
static inline int
within(unsigned long addr, unsigned long start, unsigned long end)
{
return addr >= start && addr < end;
}
/*
* Flushing functions
*/
/**
* clflush_cache_range - flush a cache range with clflush
* @addr: virtual start address
* @size: number of bytes to flush
*
* clflush is an unordered instruction which needs fencing with mfence
* to avoid ordering issues.
*/
void clflush_cache_range(void *vaddr, unsigned int size)
{
void *vend = vaddr + size - 1;
mb();
for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
clflush(vaddr);
/*
* Flush any possible final partial cacheline:
*/
clflush(vend);
mb();
}
static void __cpa_flush_all(void *arg)
{
unsigned long cache = (unsigned long)arg;
/*
* Flush all to work around Errata in early athlons regarding
* large page flushing.
*/
__flush_tlb_all();
if (cache && boot_cpu_data.x86_model >= 4)
wbinvd();
}
static void cpa_flush_all(unsigned long cache)
{
BUG_ON(irqs_disabled());
on_each_cpu(__cpa_flush_all, (void *) cache, 1);
}
static void __cpa_flush_range(void *arg)
{
/*
* We could optimize that further and do individual per page
* tlb invalidates for a low number of pages. Caveat: we must
* flush the high aliases on 64bit as well.
*/
__flush_tlb_all();
}
static void cpa_flush_range(unsigned long start, int numpages, int cache)
{
unsigned int i, level;
unsigned long addr;
BUG_ON(irqs_disabled());
WARN_ON(PAGE_ALIGN(start) != start);
on_each_cpu(__cpa_flush_range, NULL, 1);
if (!cache)
return;
/*
* We only need to flush on one CPU,
* clflush is a MESI-coherent instruction that
* will cause all other CPUs to flush the same
* cachelines:
*/
for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
pte_t *pte = lookup_address(addr, &level);
/*
* Only flush present addresses:
*/
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
clflush_cache_range((void *) addr, PAGE_SIZE);
}
}
/*
* Certain areas of memory on x86 require very specific protection flags,
* for example the BIOS area or kernel text. Callers don't always get this
* right (again, ioremap() on BIOS memory is not uncommon) so this function
* checks and fixes these known static required protection bits.
*/
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
unsigned long pfn)
{
pgprot_t forbidden = __pgprot(0);
/*
* The BIOS area between 640k and 1Mb needs to be executable for
* PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
*/
if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
pgprot_val(forbidden) |= _PAGE_NX;
/*
* The kernel text needs to be executable for obvious reasons
* Does not cover __inittext since that is gone later on. On
* 64bit we do not enforce !NX on the low mapping
*/
if (within(address, (unsigned long)_text, (unsigned long)_etext))
pgprot_val(forbidden) |= _PAGE_NX;
/*
* The .rodata section needs to be read-only. Using the pfn
* catches all aliases.
*/
if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
__pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
pgprot_val(forbidden) |= _PAGE_RW;
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
return prot;
}
/*
* Lookup the page table entry for a virtual address. Return a pointer
* to the entry and the level of the mapping.
*
* Note: We return pud and pmd either when the entry is marked large
* or when the present bit is not set. Otherwise we would return a
* pointer to a nonexisting mapping.
*/
pte_t *lookup_address(unsigned long address, unsigned int *level)
{
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
*level = PG_LEVEL_NONE;
if (pgd_none(*pgd))
return NULL;
pud = pud_offset(pgd, address);
if (pud_none(*pud))
return NULL;
*level = PG_LEVEL_1G;
if (pud_large(*pud) || !pud_present(*pud))
return (pte_t *)pud;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
return NULL;
*level = PG_LEVEL_2M;
if (pmd_large(*pmd) || !pmd_present(*pmd))
return (pte_t *)pmd;
*level = PG_LEVEL_4K;
return pte_offset_kernel(pmd, address);
}
EXPORT_SYMBOL_GPL(lookup_address);
/*
* Set the new pmd in all the pgds we know about:
*/
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
{
/* change init_mm */
set_pte_atomic(kpte, pte);
#ifdef CONFIG_X86_32
if (!SHARED_KERNEL_PMD) {
struct page *page;
list_for_each_entry(page, &pgd_list, lru) {
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pgd = (pgd_t *)page_address(page) + pgd_index(address);
pud = pud_offset(pgd, address);
pmd = pmd_offset(pud, address);
set_pte_atomic((pte_t *)pmd, pte);
}
}
#endif
}
static int
try_preserve_large_page(pte_t *kpte, unsigned long address,
struct cpa_data *cpa)
{
unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
pte_t new_pte, old_pte, *tmp;
pgprot_t old_prot, new_prot;
int i, do_split = 1;
unsigned int level;
if (cpa->force_split)
return 1;
spin_lock_irqsave(&pgd_lock, flags);
/*
* Check for races, another CPU might have split this page
* up already:
*/
tmp = lookup_address(address, &level);
if (tmp != kpte)
goto out_unlock;
switch (level) {
case PG_LEVEL_2M:
psize = PMD_PAGE_SIZE;
pmask = PMD_PAGE_MASK;
break;
#ifdef CONFIG_X86_64
case PG_LEVEL_1G:
psize = PUD_PAGE_SIZE;
pmask = PUD_PAGE_MASK;
break;
#endif
default:
do_split = -EINVAL;
goto out_unlock;
}
/*
* Calculate the number of pages, which fit into this large
* page starting at address:
*/
nextpage_addr = (address + psize) & pmask;
numpages = (nextpage_addr - address) >> PAGE_SHIFT;
if (numpages < cpa->numpages)
cpa->numpages = numpages;
/*
* We are safe now. Check whether the new pgprot is the same:
*/
old_pte = *kpte;
old_prot = new_prot = pte_pgprot(old_pte);
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
/*
* old_pte points to the large page base address. So we need
* to add the offset of the virtual address:
*/
pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
cpa->pfn = pfn;
new_prot = static_protections(new_prot, address, pfn);
/*
* We need to check the full range, whether
* static_protection() requires a different pgprot for one of
* the pages in the range we try to preserve:
*/
addr = address + PAGE_SIZE;
pfn++;
for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
if (pgprot_val(chk_prot) != pgprot_val(new_prot))
goto out_unlock;
}
/*
* If there are no changes, return. maxpages has been updated
* above:
*/
if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
do_split = 0;
goto out_unlock;
}
/*
* We need to change the attributes. Check, whether we can
* change the large page in one go. We request a split, when
* the address is not aligned and the number of pages is
* smaller than the number of pages in the large page. Note
* that we limited the number of possible pages already to
* the number of pages in the large page.
*/
if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
/*
* The address is aligned and the number of pages
* covers the full page.
*/
new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
__set_pmd_pte(kpte, address, new_pte);
cpa->flushtlb = 1;
do_split = 0;
}
out_unlock:
spin_unlock_irqrestore(&pgd_lock, flags);
return do_split;
}
static LIST_HEAD(page_pool);
static unsigned long pool_size, pool_pages, pool_low;
static unsigned long pool_used, pool_failed;
static void cpa_fill_pool(struct page **ret)
{
gfp_t gfp = GFP_KERNEL;
unsigned long flags;
struct page *p;
/*
* Avoid recursion (on debug-pagealloc) and also signal
* our priority to get to these pagetables:
*/
if (current->flags & PF_MEMALLOC)
return;
current->flags |= PF_MEMALLOC;
/*
* Allocate atomically from atomic contexts:
*/
if (in_atomic() || irqs_disabled() || debug_pagealloc)
gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
while (pool_pages < pool_size || (ret && !*ret)) {
p = alloc_pages(gfp, 0);
if (!p) {
pool_failed++;
break;
}
/*
* If the call site needs a page right now, provide it:
*/
if (ret && !*ret) {
*ret = p;
continue;
}
spin_lock_irqsave(&pgd_lock, flags);
list_add(&p->lru, &page_pool);
pool_pages++;
spin_unlock_irqrestore(&pgd_lock, flags);
}
current->flags &= ~PF_MEMALLOC;
}
#define SHIFT_MB (20 - PAGE_SHIFT)
#define ROUND_MB_GB ((1 << 10) - 1)
#define SHIFT_MB_GB 10
#define POOL_PAGES_PER_GB 16
void __init cpa_init(void)
{
struct sysinfo si;
unsigned long gb;
si_meminfo(&si);
/*
* Calculate the number of pool pages:
*
* Convert totalram (nr of pages) to MiB and round to the next
* GiB. Shift MiB to Gib and multiply the result by
* POOL_PAGES_PER_GB:
*/
if (debug_pagealloc) {
gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
pool_size = POOL_PAGES_PER_GB * gb;
} else {
pool_size = 1;
}
pool_low = pool_size;
cpa_fill_pool(NULL);
printk(KERN_DEBUG
"CPA: page pool initialized %lu of %lu pages preallocated\n",
pool_pages, pool_size);
}
static int split_large_page(pte_t *kpte, unsigned long address)
{
unsigned long flags, pfn, pfninc = 1;
unsigned int i, level;
pte_t *pbase, *tmp;
pgprot_t ref_prot;
struct page *base;
/*
* Get a page from the pool. The pool list is protected by the
* pgd_lock, which we have to take anyway for the split
* operation:
*/
spin_lock_irqsave(&pgd_lock, flags);
if (list_empty(&page_pool)) {
spin_unlock_irqrestore(&pgd_lock, flags);
base = NULL;
cpa_fill_pool(&base);
if (!base)
return -ENOMEM;
spin_lock_irqsave(&pgd_lock, flags);
} else {
base = list_first_entry(&page_pool, struct page, lru);
list_del(&base->lru);
pool_pages--;
if (pool_pages < pool_low)
pool_low = pool_pages;
}
/*
* Check for races, another CPU might have split this page
* up for us already:
*/
tmp = lookup_address(address, &level);
if (tmp != kpte)
goto out_unlock;
pbase = (pte_t *)page_address(base);
paravirt_alloc_pte(&init_mm, page_to_pfn(base));
ref_prot = pte_pgprot(pte_clrhuge(*kpte));
#ifdef CONFIG_X86_64
if (level == PG_LEVEL_1G) {
pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
pgprot_val(ref_prot) |= _PAGE_PSE;
}
#endif
/*
* Get the target pfn from the original entry:
*/
pfn = pte_pfn(*kpte);
for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
if (address >= (unsigned long)__va(0) &&
address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
split_page_count(level);
#ifdef CONFIG_X86_64
if (address >= (unsigned long)__va(1UL<<32) &&
address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
split_page_count(level);
#endif
/*
* Install the new, split up pagetable. Important details here:
*
* On Intel the NX bit of all levels must be cleared to make a
* page executable. See section 4.13.2 of Intel 64 and IA-32
* Architectures Software Developer's Manual).
*
* Mark the entry present. The current mapping might be
* set to not present, which we preserved above.
*/
ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
pgprot_val(ref_prot) |= _PAGE_PRESENT;
__set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
base = NULL;
out_unlock:
/*
* If we dropped out via the lookup_address check under
* pgd_lock then stick the page back into the pool:
*/
if (base) {
list_add(&base->lru, &page_pool);
pool_pages++;
} else
pool_used++;
spin_unlock_irqrestore(&pgd_lock, flags);
return 0;
}
static int __change_page_attr(struct cpa_data *cpa, int primary)
{
unsigned long address = cpa->vaddr;
int do_split, err;
unsigned int level;
pte_t *kpte, old_pte;
repeat:
kpte = lookup_address(address, &level);
if (!kpte)
return 0;
old_pte = *kpte;
if (!pte_val(old_pte)) {
if (!primary)
return 0;
printk(KERN_WARNING "CPA: called for zero pte. "
"vaddr = %lx cpa->vaddr = %lx\n", address,
cpa->vaddr);
WARN_ON(1);
return -EINVAL;
}
if (level == PG_LEVEL_4K) {
pte_t new_pte;
pgprot_t new_prot = pte_pgprot(old_pte);
unsigned long pfn = pte_pfn(old_pte);
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
new_prot = static_protections(new_prot, address, pfn);
/*
* We need to keep the pfn from the existing PTE,
* after all we're only going to change it's attributes
* not the memory it points to
*/
new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
cpa->pfn = pfn;
/*
* Do we really change anything ?
*/
if (pte_val(old_pte) != pte_val(new_pte)) {
set_pte_atomic(kpte, new_pte);
cpa->flushtlb = 1;
}
cpa->numpages = 1;
return 0;
}
/*
* Check, whether we can keep the large page intact
* and just change the pte:
*/
do_split = try_preserve_large_page(kpte, address, cpa);
/*
* When the range fits into the existing large page,
* return. cp->numpages and cpa->tlbflush have been updated in
* try_large_page:
*/
if (do_split <= 0)
return do_split;
/*
* We have to split the large page:
*/
err = split_large_page(kpte, address);
if (!err) {
cpa->flushtlb = 1;
goto repeat;
}
return err;
}
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
static int cpa_process_alias(struct cpa_data *cpa)
{
struct cpa_data alias_cpa;
int ret = 0;
if (cpa->pfn >= max_pfn_mapped)
return 0;
#ifdef CONFIG_X86_64
if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
return 0;
#endif
/*
* No need to redo, when the primary call touched the direct
* mapping already:
*/
if (!(within(cpa->vaddr, PAGE_OFFSET,
PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
#ifdef CONFIG_X86_64
|| within(cpa->vaddr, PAGE_OFFSET + (1UL<<32),
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
#endif
)) {
alias_cpa = *cpa;
alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
ret = __change_page_attr_set_clr(&alias_cpa, 0);
}
#ifdef CONFIG_X86_64
if (ret)
return ret;
/*
* No need to redo, when the primary call touched the high
* mapping already:
*/
if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
return 0;
/*
* If the physical address is inside the kernel map, we need
* to touch the high mapped kernel as well:
*/
if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
return 0;
alias_cpa = *cpa;
alias_cpa.vaddr =
(cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
/*
* The high mapping range is imprecise, so ignore the return value.
*/
__change_page_attr_set_clr(&alias_cpa, 0);
#endif
return ret;
}
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
{
int ret, numpages = cpa->numpages;
while (numpages) {
/*
* Store the remaining nr of pages for the large page
* preservation check.
*/
cpa->numpages = numpages;
ret = __change_page_attr(cpa, checkalias);
if (ret)
return ret;
if (checkalias) {
ret = cpa_process_alias(cpa);
if (ret)
return ret;
}
/*
* Adjust the number of pages with the result of the
* CPA operation. Either a large page has been
* preserved or a single page update happened.
*/
BUG_ON(cpa->numpages > numpages);
numpages -= cpa->numpages;
cpa->vaddr += cpa->numpages * PAGE_SIZE;
}
return 0;
}
static inline int cache_attr(pgprot_t attr)
{
return pgprot_val(attr) &
(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
}
static int change_page_attr_set_clr(unsigned long addr, int numpages,
pgprot_t mask_set, pgprot_t mask_clr,
int force_split)
{
struct cpa_data cpa;
int ret, cache, checkalias;
/*
* Check, if we are requested to change a not supported
* feature:
*/
mask_set = canon_pgprot(mask_set);
mask_clr = canon_pgprot(mask_clr);
if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
return 0;
/* Ensure we are PAGE_SIZE aligned */
if (addr & ~PAGE_MASK) {
addr &= PAGE_MASK;
/*
* People should not be passing in unaligned addresses:
*/
WARN_ON_ONCE(1);
}
cpa.vaddr = addr;
cpa.numpages = numpages;
cpa.mask_set = mask_set;
cpa.mask_clr = mask_clr;
cpa.flushtlb = 0;
cpa.force_split = force_split;
/* No alias checking for _NX bit modifications */
checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
ret = __change_page_attr_set_clr(&cpa, checkalias);
/*
* Check whether we really changed something:
*/
if (!cpa.flushtlb)
goto out;
/*
* No need to flush, when we did not set any of the caching
* attributes:
*/
cache = cache_attr(mask_set);
/*
* On success we use clflush, when the CPU supports it to
* avoid the wbindv. If the CPU does not support it and in the
* error case we fall back to cpa_flush_all (which uses
* wbindv):
*/
if (!ret && cpu_has_clflush)
cpa_flush_range(addr, numpages, cache);
else
cpa_flush_all(cache);
out:
cpa_fill_pool(NULL);
return ret;
}
static inline int change_page_attr_set(unsigned long addr, int numpages,
pgprot_t mask)
{
return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0);
}
static inline int change_page_attr_clear(unsigned long addr, int numpages,
pgprot_t mask)
{
return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0);
}
int _set_memory_uc(unsigned long addr, int numpages)
{
/*
* for now UC MINUS. see comments in ioremap_nocache()
*/
return change_page_attr_set(addr, numpages,
__pgprot(_PAGE_CACHE_UC_MINUS));
}
int set_memory_uc(unsigned long addr, int numpages)
{
/*
* for now UC MINUS. see comments in ioremap_nocache()
*/
if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
_PAGE_CACHE_UC_MINUS, NULL))
return -EINVAL;
return _set_memory_uc(addr, numpages);
}
EXPORT_SYMBOL(set_memory_uc);
int _set_memory_wc(unsigned long addr, int numpages)
{
return change_page_attr_set(addr, numpages,
__pgprot(_PAGE_CACHE_WC));
}
int set_memory_wc(unsigned long addr, int numpages)
{
if (!pat_enabled)
return set_memory_uc(addr, numpages);
if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
_PAGE_CACHE_WC, NULL))
return -EINVAL;
return _set_memory_wc(addr, numpages);
}
EXPORT_SYMBOL(set_memory_wc);
int _set_memory_wb(unsigned long addr, int numpages)
{
return change_page_attr_clear(addr, numpages,
__pgprot(_PAGE_CACHE_MASK));
}
int set_memory_wb(unsigned long addr, int numpages)
{
free_memtype(addr, addr + numpages * PAGE_SIZE);
return _set_memory_wb(addr, numpages);
}
EXPORT_SYMBOL(set_memory_wb);
int set_memory_x(unsigned long addr, int numpages)
{
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
}
EXPORT_SYMBOL(set_memory_x);
int set_memory_nx(unsigned long addr, int numpages)
{
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
}
EXPORT_SYMBOL(set_memory_nx);
int set_memory_ro(unsigned long addr, int numpages)
{
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
}
int set_memory_rw(unsigned long addr, int numpages)
{
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
}
int set_memory_np(unsigned long addr, int numpages)
{
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
}
int set_memory_4k(unsigned long addr, int numpages)
{
return change_page_attr_set_clr(addr, numpages, __pgprot(0),
__pgprot(0), 1);
}
int set_pages_uc(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_uc(addr, numpages);
}
EXPORT_SYMBOL(set_pages_uc);
int set_pages_wb(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_wb(addr, numpages);
}
EXPORT_SYMBOL(set_pages_wb);
int set_pages_x(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_x(addr, numpages);
}
EXPORT_SYMBOL(set_pages_x);
int set_pages_nx(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_nx(addr, numpages);
}
EXPORT_SYMBOL(set_pages_nx);
int set_pages_ro(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_ro(addr, numpages);
}
int set_pages_rw(struct page *page, int numpages)
{
unsigned long addr = (unsigned long)page_address(page);
return set_memory_rw(addr, numpages);
}
#ifdef CONFIG_DEBUG_PAGEALLOC
static int __set_pages_p(struct page *page, int numpages)
{
struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
.numpages = numpages,
.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
.mask_clr = __pgprot(0)};
return __change_page_attr_set_clr(&cpa, 1);
}
static int __set_pages_np(struct page *page, int numpages)
{
struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
.numpages = numpages,
.mask_set = __pgprot(0),
.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
return __change_page_attr_set_clr(&cpa, 1);
}
void kernel_map_pages(struct page *page, int numpages, int enable)
{
if (PageHighMem(page))
return;
if (!enable) {
debug_check_no_locks_freed(page_address(page),
numpages * PAGE_SIZE);
}
/*
* If page allocator is not up yet then do not call c_p_a():
*/
if (!debug_pagealloc_enabled)
return;
/*
* The return value is ignored as the calls cannot fail.
* Large pages are kept enabled at boot time, and are
* split up quickly with DEBUG_PAGEALLOC. If a splitup
* fails here (due to temporary memory shortage) no damage
* is done because we just keep the largepage intact up
* to the next attempt when it will likely be split up:
*/
if (enable)
__set_pages_p(page, numpages);
else
__set_pages_np(page, numpages);
/*
* We should perform an IPI and flush all tlbs,
* but that can deadlock->flush only current cpu:
*/
__flush_tlb_all();
/*
* Try to refill the page pool here. We can do this only after
* the tlb flush.
*/
cpa_fill_pool(NULL);
}
#ifdef CONFIG_DEBUG_FS
static int dpa_show(struct seq_file *m, void *v)
{
seq_puts(m, "DEBUG_PAGEALLOC\n");
seq_printf(m, "pool_size : %lu\n", pool_size);
seq_printf(m, "pool_pages : %lu\n", pool_pages);
seq_printf(m, "pool_low : %lu\n", pool_low);
seq_printf(m, "pool_used : %lu\n", pool_used);
seq_printf(m, "pool_failed : %lu\n", pool_failed);
return 0;
}
static int dpa_open(struct inode *inode, struct file *filp)
{
return single_open(filp, dpa_show, NULL);
}
static const struct file_operations dpa_fops = {
.open = dpa_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init debug_pagealloc_proc_init(void)
{
struct dentry *de;
de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
&dpa_fops);
if (!de)
return -ENOMEM;
return 0;
}
__initcall(debug_pagealloc_proc_init);
#endif
#ifdef CONFIG_HIBERNATION
bool kernel_page_present(struct page *page)
{
unsigned int level;
pte_t *pte;
if (PageHighMem(page))
return false;
pte = lookup_address((unsigned long)page_address(page), &level);
return (pte_val(*pte) & _PAGE_PRESENT);
}
#endif /* CONFIG_HIBERNATION */
#endif /* CONFIG_DEBUG_PAGEALLOC */
/*
* The testcases use internal knowledge of the implementation that shouldn't
* be exposed to the rest of the kernel. Include these directly here.
*/
#ifdef CONFIG_CPA_DEBUG
#include "pageattr-test.c"
#endif