/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/ftrace_event.h>
#include <linux/slab.h>
#include <asm/desc.h>
#include <asm/virtext.h>
#include "trace.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
#define SVM_FEATURE_NPT (1 << 0)
#define SVM_FEATURE_LBRV (1 << 1)
#define SVM_FEATURE_SVML (1 << 2)
#define SVM_FEATURE_NRIP (1 << 3)
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
static const u32 host_save_user_msrs[] = {
#ifdef CONFIG_X86_64
MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
MSR_FS_BASE,
#endif
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
};
#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
struct kvm_vcpu;
struct nested_state {
struct vmcb *hsave;
u64 hsave_msr;
u64 vm_cr_msr;
u64 vmcb;
/* These are the merged vectors */
u32 *msrpm;
/* gpa pointers to the real vectors */
u64 vmcb_msrpm;
/* A VMEXIT is required but not yet emulated */
bool exit_required;
/* cache for intercepts of the guest */
u16 intercept_cr_read;
u16 intercept_cr_write;
u16 intercept_dr_read;
u16 intercept_dr_write;
u32 intercept_exceptions;
u64 intercept;
};
#define MSRPM_OFFSETS 16
static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
struct vcpu_svm {
struct kvm_vcpu vcpu;
struct vmcb *vmcb;
unsigned long vmcb_pa;
struct svm_cpu_data *svm_data;
uint64_t asid_generation;
uint64_t sysenter_esp;
uint64_t sysenter_eip;
u64 next_rip;
u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
u64 host_gs_base;
u32 *msrpm;
struct nested_state nested;
bool nmi_singlestep;
unsigned int3_injected;
unsigned long int3_rip;
};
#define MSR_INVALID 0xffffffffU
static struct svm_direct_access_msrs {
u32 index; /* Index of the MSR */
bool always; /* True if intercept is always on */
} direct_access_msrs[] = {
{ .index = MSR_K6_STAR, .always = true },
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
#ifdef CONFIG_X86_64
{ .index = MSR_GS_BASE, .always = true },
{ .index = MSR_FS_BASE, .always = true },
{ .index = MSR_KERNEL_GS_BASE, .always = true },
{ .index = MSR_LSTAR, .always = true },
{ .index = MSR_CSTAR, .always = true },
{ .index = MSR_SYSCALL_MASK, .always = true },
#endif
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
{ .index = MSR_INVALID, .always = false },
};
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
static bool npt_enabled = true;
#else
static bool npt_enabled;
#endif
static int npt = 1;
module_param(npt, int, S_IRUGO);
static int nested = 1;
module_param(nested, int, S_IRUGO);
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
static void svm_complete_interrupts(struct vcpu_svm *svm);
static int nested_svm_exit_handled(struct vcpu_svm *svm);
static int nested_svm_intercept(struct vcpu_svm *svm);
static int nested_svm_vmexit(struct vcpu_svm *svm);
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code);
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_svm, vcpu);
}
static inline bool is_nested(struct vcpu_svm *svm)
{
return svm->nested.vmcb;
}
static inline void enable_gif(struct vcpu_svm *svm)
{
svm->vcpu.arch.hflags |= HF_GIF_MASK;
}
static inline void disable_gif(struct vcpu_svm *svm)
{
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
}
static inline bool gif_set(struct vcpu_svm *svm)
{
return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
}
static unsigned long iopm_base;
struct kvm_ldttss_desc {
u16 limit0;
u16 base0;
unsigned base1:8, type:5, dpl:2, p:1;
unsigned limit1:4, zero0:3, g:1, base2:8;
u32 base3;
u32 zero1;
} __attribute__((packed));
struct svm_cpu_data {
int cpu;
u64 asid_generation;
u32 max_asid;
u32 next_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
};
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
static uint32_t svm_features;
struct svm_init_data {
int cpu;
int r;
};
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
static u32 svm_msrpm_offset(u32 msr)
{
u32 offset;
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr < msrpm_ranges[i] ||
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
continue;
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
/* Now we have the u8 offset - but need the u32 offset */
return offset / 4;
}
/* MSR not in any range */
return MSR_INVALID;
}
#define MAX_INST_SIZE 15
static inline u32 svm_has(u32 feat)
{
return svm_features & feat;
}
static inline void clgi(void)
{
asm volatile (__ex(SVM_CLGI));
}
static inline void stgi(void)
{
asm volatile (__ex(SVM_STGI));
}
static inline void invlpga(unsigned long addr, u32 asid)
{
asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
}
static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
to_svm(vcpu)->asid_generation--;
}
static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (!npt_enabled && !(efer & EFER_LMA))
efer &= ~EFER_LME;
to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
vcpu->arch.efer = efer;
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 ret = 0;
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
return ret & mask;
}
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (mask == 0)
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
else
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!svm->next_rip) {
if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
EMULATE_DONE)
printk(KERN_DEBUG "%s: NOP\n", __func__);
return;
}
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
__func__, kvm_rip_read(vcpu), svm->next_rip);
kvm_rip_write(vcpu, svm->next_rip);
svm_set_interrupt_shadow(vcpu, 0);
}
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* If we are within a nested VM we'd better #VMEXIT and let the guest
* handle the exception
*/
if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
return;
if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
/*
* For guest debugging where we have to reinject #BP if some
* INT3 is guest-owned:
* Emulate nRIP by moving RIP forward. Will fail if injection
* raises a fault that is not intercepted. Still better than
* failing in all cases.
*/
skip_emulated_instruction(&svm->vcpu);
rip = kvm_rip_read(&svm->vcpu);
svm->int3_rip = rip + svm->vmcb->save.cs.base;
svm->int3_injected = rip - old_rip;
}
svm->vmcb->control.event_inj = nr
| SVM_EVTINJ_VALID
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
| SVM_EVTINJ_TYPE_EXEPT;
svm->vmcb->control.event_inj_err = error_code;
}
static int has_svm(void)
{
const char *msg;
if (!cpu_has_svm(&msg)) {
printk(KERN_INFO "has_svm: %s\n", msg);
return 0;
}
return 1;
}
static void svm_hardware_disable(void *garbage)
{
cpu_svm_disable();
}
static int svm_hardware_enable(void *garbage)
{
struct svm_cpu_data *sd;
uint64_t efer;
struct desc_ptr gdt_descr;
struct desc_struct *gdt;
int me = raw_smp_processor_id();
rdmsrl(MSR_EFER, efer);
if (efer & EFER_SVME)
return -EBUSY;
if (!has_svm()) {
printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
me);
return -EINVAL;
}
sd = per_cpu(svm_data, me);
if (!sd) {
printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
me);
return -EINVAL;
}
sd->asid_generation = 1;
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
sd->next_asid = sd->max_asid + 1;
native_store_gdt(&gdt_descr);
gdt = (struct desc_struct *)gdt_descr.address;
sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
wrmsrl(MSR_EFER, efer | EFER_SVME);
wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
return 0;
}
static void svm_cpu_uninit(int cpu)
{
struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
if (!sd)
return;
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
__free_page(sd->save_area);
kfree(sd);
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *sd;
int r;
sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
if (!sd)
return -ENOMEM;
sd->cpu = cpu;
sd->save_area = alloc_page(GFP_KERNEL);
r = -ENOMEM;
if (!sd->save_area)
goto err_1;
per_cpu(svm_data, cpu) = sd;
return 0;
err_1:
kfree(sd);
return r;
}
static bool valid_msr_intercept(u32 index)
{
int i;
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
if (direct_access_msrs[i].index == index)
return true;
return false;
}
static void set_msr_interception(u32 *msrpm, unsigned msr,
int read, int write)
{
u8 bit_read, bit_write;
unsigned long tmp;
u32 offset;
/*
* If this warning triggers extend the direct_access_msrs list at the
* beginning of the file
*/
WARN_ON(!valid_msr_intercept(msr));
offset = svm_msrpm_offset(msr);
bit_read = 2 * (msr & 0x0f);
bit_write = 2 * (msr & 0x0f) + 1;
tmp = msrpm[offset];
BUG_ON(offset == MSR_INVALID);
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
msrpm[offset] = tmp;
}
static void svm_vcpu_init_msrpm(u32 *msrpm)
{
int i;
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
if (!direct_access_msrs[i].always)
continue;
set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
}
}
static void add_msr_offset(u32 offset)
{
int i;
for (i = 0; i < MSRPM_OFFSETS; ++i) {
/* Offset already in list? */
if (msrpm_offsets[i] == offset)
return;
/* Slot used by another offset? */
if (msrpm_offsets[i] != MSR_INVALID)
continue;
/* Add offset to list */
msrpm_offsets[i] = offset;
return;
}
/*
* If this BUG triggers the msrpm_offsets table has an overflow. Just
* increase MSRPM_OFFSETS in this case.
*/
BUG();
}
static void init_msrpm_offsets(void)
{
int i;
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
u32 offset;
offset = svm_msrpm_offset(direct_access_msrs[i].index);
BUG_ON(offset == MSR_INVALID);
add_msr_offset(offset);
}
}
static void svm_enable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.lbr_ctl = 1;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}
static void svm_disable_lbrv(struct vcpu_svm *svm)
{
u32 *msrpm = svm->msrpm;
svm->vmcb->control.lbr_ctl = 0;
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
void *iopm_va;
int r;
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
if (!iopm_pages)
return -ENOMEM;
iopm_va = page_address(iopm_pages);
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
init_msrpm_offsets();
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
kvm_enable_efer_bits(EFER_FFXSR);
if (nested) {
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
kvm_enable_efer_bits(EFER_SVME);
}
for_each_possible_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err;
}
svm_features = cpuid_edx(SVM_CPUID_FUNC);
if (!svm_has(SVM_FEATURE_NPT))
npt_enabled = false;
if (npt_enabled && !npt) {
printk(KERN_INFO "kvm: Nested Paging disabled\n");
npt_enabled = false;
}
if (npt_enabled) {
printk(KERN_INFO "kvm: Nested Paging enabled\n");
kvm_enable_tdp();
} else
kvm_disable_tdp();
return 0;
err:
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
iopm_base = 0;
return r;
}
static __exit void svm_hardware_unsetup(void)
{
int cpu;
for_each_possible_cpu(cpu)
svm_cpu_uninit(cpu);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
iopm_base = 0;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static void init_vmcb(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
svm->vcpu.fpu_active = 1;
control->intercept_cr_read = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK;
control->intercept_cr_write = INTERCEPT_CR0_MASK |
INTERCEPT_CR3_MASK |
INTERCEPT_CR4_MASK |
INTERCEPT_CR8_MASK;
control->intercept_dr_read = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK |
INTERCEPT_DR4_MASK |
INTERCEPT_DR5_MASK |
INTERCEPT_DR6_MASK |
INTERCEPT_DR7_MASK;
control->intercept_dr_write = INTERCEPT_DR0_MASK |
INTERCEPT_DR1_MASK |
INTERCEPT_DR2_MASK |
INTERCEPT_DR3_MASK |
INTERCEPT_DR4_MASK |
INTERCEPT_DR5_MASK |
INTERCEPT_DR6_MASK |
INTERCEPT_DR7_MASK;
control->intercept_exceptions = (1 << PF_VECTOR) |
(1 << UD_VECTOR) |
(1 << MC_VECTOR);
control->intercept = (1ULL << INTERCEPT_INTR) |
(1ULL << INTERCEPT_NMI) |
(1ULL << INTERCEPT_SMI) |
(1ULL << INTERCEPT_SELECTIVE_CR0) |
(1ULL << INTERCEPT_CPUID) |
(1ULL << INTERCEPT_INVD) |
(1ULL << INTERCEPT_HLT) |
(1ULL << INTERCEPT_INVLPG) |
(1ULL << INTERCEPT_INVLPGA) |
(1ULL << INTERCEPT_IOIO_PROT) |
(1ULL << INTERCEPT_MSR_PROT) |
(1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_SHUTDOWN) |
(1ULL << INTERCEPT_VMRUN) |
(1ULL << INTERCEPT_VMMCALL) |
(1ULL << INTERCEPT_VMLOAD) |
(1ULL << INTERCEPT_VMSAVE) |
(1ULL << INTERCEPT_STGI) |
(1ULL << INTERCEPT_CLGI) |
(1ULL << INTERCEPT_SKINIT) |
(1ULL << INTERCEPT_WBINVD) |
(1ULL << INTERCEPT_MONITOR) |
(1ULL << INTERCEPT_MWAIT);
control->iopm_base_pa = iopm_base;
control->msrpm_base_pa = __pa(svm->msrpm);
control->tsc_offset = 0;
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
/*
* cs.base should really be 0xffff0000, but vmx can't handle that, so
* be consistent with it.
*
* Replace when we have real mode working for vmx.
*/
save->cs.base = 0xf0000;
save->gdtr.limit = 0xffff;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
save->efer = EFER_SVME;
save->dr6 = 0xffff0ff0;
save->dr7 = 0x400;
save->rflags = 2;
save->rip = 0x0000fff0;
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
/*
* This is the guest-visible cr0 value.
* svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
*/
svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
save->cr4 = X86_CR4_PAE;
/* rdx = ?? */
if (npt_enabled) {
/* Setup VMCB for Nested Paging */
control->nested_ctl = 1;
control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
(1ULL << INTERCEPT_INVLPG));
control->intercept_exceptions &= ~(1 << PF_VECTOR);
control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
save->g_pat = 0x0007040600070406ULL;
save->cr3 = 0;
save->cr4 = 0;
}
force_new_asid(&svm->vcpu);
svm->nested.vmcb = 0;
svm->vcpu.arch.hflags = 0;
if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
control->pause_filter_count = 3000;
control->intercept |= (1ULL << INTERCEPT_PAUSE);
}
enable_gif(svm);
}
static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
init_vmcb(svm);
if (!kvm_vcpu_is_bsp(vcpu)) {
kvm_rip_write(vcpu, 0);
svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
}
vcpu->arch.regs_avail = ~0;
vcpu->arch.regs_dirty = ~0;
return 0;
}
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
{
struct vcpu_svm *svm;
struct page *page;
struct page *msrpm_pages;
struct page *hsave_page;
struct page *nested_msrpm_pages;
int err;
svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!svm) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
if (err)
goto free_svm;
err = -ENOMEM;
page = alloc_page(GFP_KERNEL);
if (!page)
goto uninit;
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
if (!msrpm_pages)
goto free_page1;
nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
if (!nested_msrpm_pages)
goto free_page2;
hsave_page = alloc_page(GFP_KERNEL);
if (!hsave_page)
goto free_page3;
svm->nested.hsave = page_address(hsave_page);
svm->msrpm = page_address(msrpm_pages);
svm_vcpu_init_msrpm(svm->msrpm);
svm->nested.msrpm = page_address(nested_msrpm_pages);
svm_vcpu_init_msrpm(svm->nested.msrpm);
svm->vmcb = page_address(page);
clear_page(svm->vmcb);
svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
svm->asid_generation = 0;
init_vmcb(svm);
fx_init(&svm->vcpu);
svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_bsp(&svm->vcpu))
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
return &svm->vcpu;
free_page3:
__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
free_page2:
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
free_page1:
__free_page(page);
uninit:
kvm_vcpu_uninit(&svm->vcpu);
free_svm:
kmem_cache_free(kvm_vcpu_cache, svm);
out:
return ERR_PTR(err);
}
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
__free_page(virt_to_page(svm->nested.hsave));
__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, svm);
}
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int i;
if (unlikely(cpu != vcpu->cpu)) {
u64 delta;
if (check_tsc_unstable()) {
/*
* Make sure that the guest sees a monotonically
* increasing TSC.
*/
delta = vcpu->arch.host_tsc - native_read_tsc();
svm->vmcb->control.tsc_offset += delta;
if (is_nested(svm))
svm->nested.hsave->control.tsc_offset += delta;
}
vcpu->cpu = cpu;
kvm_migrate_timers(vcpu);
svm->asid_generation = 0;
}
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int i;
++vcpu->stat.host_state_reload;
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
vcpu->arch.host_tsc = native_read_tsc();
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return to_svm(vcpu)->vmcb->save.rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
to_svm(vcpu)->vmcb->save.rflags = rflags;
}
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
switch (reg) {
case VCPU_EXREG_PDPTR:
BUG_ON(!npt_enabled);
load_pdptrs(vcpu, vcpu->arch.cr3);
break;
default:
BUG();
}
}
static void svm_set_vintr(struct vcpu_svm *svm)
{
svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
}
static void svm_clear_vintr(struct vcpu_svm *svm)
{
svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save->fs;
case VCPU_SREG_GS: return &save->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save->tr;
case VCPU_SREG_LDTR: return &save->ldtr;
}
BUG();
return NULL;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
/*
* AMD's VMCB does not have an explicit unusable field, so emulate it
* for cross vendor migration purposes by "not present"
*/
var->unusable = !var->present || (var->type == 0);
switch (seg) {
case VCPU_SREG_CS:
/*
* SVM always stores 0 for the 'G' bit in the CS selector in
* the VMCB on a VMEXIT. This hurts cross-vendor migration:
* Intel's VMENTRY has a check on the 'G' bit.
*/
var->g = s->limit > 0xfffff;
break;
case VCPU_SREG_TR:
/*
* Work around a bug where the busy flag in the tr selector
* isn't exposed
*/
var->type |= 0x2;
break;
case VCPU_SREG_DS:
case VCPU_SREG_ES:
case VCPU_SREG_FS:
case VCPU_SREG_GS:
/*
* The accessed bit must always be set in the segment
* descriptor cache, although it can be cleared in the
* descriptor, the cached bit always remains at 1. Since
* Intel has a check on this, set it here to support
* cross-vendor migration.
*/
if (!var->unusable)
var->type |= 0x1;
break;
case VCPU_SREG_SS:
/*
* On AMD CPUs sometimes the DB bit in the segment
* descriptor is left as 1, although the whole segment has
* been made unusable. Clear it here to pass an Intel VMX
* entry check when cross vendor migrating.
*/
if (var->unusable)
var->db = 0;
break;
}
}
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
return save->cpl;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.idtr.limit;
dt->address = svm->vmcb->save.idtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.idtr.limit = dt->size;
svm->vmcb->save.idtr.base = dt->address ;
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.gdtr.limit;
dt->address = svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.gdtr.limit = dt->size;
svm->vmcb->save.gdtr.base = dt->address ;
}
static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
}
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
}
static void update_cr0_intercept(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb;
ulong gcr0 = svm->vcpu.arch.cr0;
u64 *hcr0 = &svm->vmcb->save.cr0;
if (!svm->vcpu.fpu_active)
*hcr0 |= SVM_CR0_SELECTIVE_MASK;
else
*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
| (gcr0 & SVM_CR0_SELECTIVE_MASK);
if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
if (is_nested(svm)) {
struct vmcb *hsave = svm->nested.hsave;
hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
}
} else {
svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
if (is_nested(svm)) {
struct vmcb *hsave = svm->nested.hsave;
hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
}
}
}
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (is_nested(svm)) {
/*
* We are here because we run in nested mode, the host kvm
* intercepts cr0 writes but the l1 hypervisor does not.
* But the L1 hypervisor may intercept selective cr0 writes.
* This needs to be checked here.
*/
unsigned long old, new;
/* Remove bits that would trigger a real cr0 write intercept */
old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
new = cr0 & SVM_CR0_SELECTIVE_MASK;
if (old == new) {
/* cr0 write with ts and mp unchanged */
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
return;
}
}
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
vcpu->arch.efer |= EFER_LMA;
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
vcpu->arch.efer &= ~EFER_LMA;
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
}
}
#endif
vcpu->arch.cr0 = cr0;
if (!npt_enabled)
cr0 |= X86_CR0_PG | X86_CR0_WP;
if (!vcpu->fpu_active)
cr0 |= X86_CR0_TS;
/*
* re-enable caching here because the QEMU bios
* does not do it - this results in some delay at
* reboot
*/
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
svm->vmcb->save.cr0 = cr0;
update_cr0_intercept(svm);
}
static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
force_new_asid(vcpu);
vcpu->arch.cr4 = cr4;
if (!npt_enabled)
cr4 |= X86_CR4_PAE;
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
if (var->unusable)
s->attrib = 0;
else {
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
}
if (seg == VCPU_SREG_CS)
svm->vmcb->save.cpl
= (svm->vmcb->save.cs.attrib
>> SVM_SELECTOR_DPL_SHIFT) & 3;
}
static void update_db_intercept(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.intercept_exceptions &=
~((1 << DB_VECTOR) | (1 << BP_VECTOR));
if (svm->nmi_singlestep)
svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
svm->vmcb->control.intercept_exceptions |=
1 << DB_VECTOR;
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
svm->vmcb->control.intercept_exceptions |=
1 << BP_VECTOR;
} else
vcpu->guest_debug = 0;
}
static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
else
svm->vmcb->save.dr7 = vcpu->arch.dr7;
update_db_intercept(vcpu);
}
static void load_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}
static void save_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{
if (sd->next_asid > sd->max_asid) {
++sd->asid_generation;
sd->next_asid = 1;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
}
svm->asid_generation = sd->asid_generation;
svm->vmcb->control.asid = sd->next_asid++;
}
static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (dr) {
case 0 ... 3:
*dest = vcpu->arch.db[dr];
break;
case 4:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return EMULATE_FAIL; /* will re-inject UD */
/* fall through */
case 6:
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
*dest = vcpu->arch.dr6;
else
*dest = svm->vmcb->save.dr6;
break;
case 5:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return EMULATE_FAIL; /* will re-inject UD */
/* fall through */
case 7:
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
*dest = vcpu->arch.dr7;
else
*dest = svm->vmcb->save.dr7;
break;
}
return EMULATE_DONE;
}
static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (dr) {
case 0 ... 3:
vcpu->arch.db[dr] = value;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
vcpu->arch.eff_db[dr] = value;
break;
case 4:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return EMULATE_FAIL; /* will re-inject UD */
/* fall through */
case 6:
vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
break;
case 5:
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
return EMULATE_FAIL; /* will re-inject UD */
/* fall through */
case 7:
vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
svm->vmcb->save.dr7 = vcpu->arch.dr7;
vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
}
break;
}
return EMULATE_DONE;
}
static int pf_interception(struct vcpu_svm *svm)
{
u64 fault_address;
u32 error_code;
fault_address = svm->vmcb->control.exit_info_2;
error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(fault_address, error_code);
if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
}
static int db_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
if (!(svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
!svm->nmi_singlestep) {
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
return 1;
}
if (svm->nmi_singlestep) {
svm->nmi_singlestep = false;
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
svm->vmcb->save.rflags &=
~(X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(&svm->vcpu);
}
if (svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc =
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
}
return 1;
}
static int bp_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = BP_VECTOR;
return 0;
}
static int ud_interception(struct vcpu_svm *svm)
{
int er;
er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static void svm_fpu_activate(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 excp;
if (is_nested(svm)) {
u32 h_excp, n_excp;
h_excp = svm->nested.hsave->control.intercept_exceptions;
n_excp = svm->nested.intercept_exceptions;
h_excp &= ~(1 << NM_VECTOR);
excp = h_excp | n_excp;
} else {
excp = svm->vmcb->control.intercept_exceptions;
excp &= ~(1 << NM_VECTOR);
}
svm->vmcb->control.intercept_exceptions = excp;
svm->vcpu.fpu_active = 1;
update_cr0_intercept(svm);
}
static int nm_interception(struct vcpu_svm *svm)
{
svm_fpu_activate(&svm->vcpu);
return 1;
}
static int mc_interception(struct vcpu_svm *svm)
{
/*
* On an #MC intercept the MCE handler is not called automatically in
* the host. So do it by hand here.
*/
asm volatile (
"int $0x12\n");
/* not sure if we ever come back to this point */
return 1;
}
static int shutdown_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
/*
* VMCB is undefined after a SHUTDOWN intercept
* so reinitialize it.
*/
clear_page(svm->vmcb);
init_vmcb(svm);
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int io_interception(struct vcpu_svm *svm)
{
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
int size, in, string;
unsigned port;
++svm->vcpu.stat.io_exits;
svm->next_rip = svm->vmcb->control.exit_info_2;
string = (io_info & SVM_IOIO_STR_MASK) != 0;
if (string) {
if (emulate_instruction(&svm->vcpu,
0, 0, 0) == EMULATE_DO_MMIO)
return 0;
return 1;
}
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
port = io_info >> 16;
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
skip_emulated_instruction(&svm->vcpu);
return kvm_emulate_pio(&svm->vcpu, in, size, port);
}
static int nmi_interception(struct vcpu_svm *svm)
{
return 1;
}
static int intr_interception(struct vcpu_svm *svm)
{
++svm->vcpu.stat.irq_exits;
return 1;
}
static int nop_on_interception(struct vcpu_svm *svm)
{
return 1;
}
static int halt_interception(struct vcpu_svm *svm)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
skip_emulated_instruction(&svm->vcpu);
return kvm_emulate_halt(&svm->vcpu);
}
static int vmmcall_interception(struct vcpu_svm *svm)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
kvm_emulate_hypercall(&svm->vcpu);
return 1;
}
static int nested_svm_check_permissions(struct vcpu_svm *svm)
{
if (!(svm->vcpu.arch.efer & EFER_SVME)
|| !is_paging(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
if (svm->vmcb->save.cpl) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
return 0;
}
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code)
{
int vmexit;
if (!is_nested(svm))
return 0;
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = error_code;
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
vmexit = nested_svm_intercept(svm);
if (vmexit == NESTED_EXIT_DONE)
svm->nested.exit_required = true;
return vmexit;
}
/* This function returns true if it is save to enable the irq window */
static inline bool nested_svm_intr(struct vcpu_svm *svm)
{
if (!is_nested(svm))
return true;
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
return true;
if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
return false;
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
if (svm->nested.intercept & 1ULL) {
/*
* The #vmexit can't be emulated here directly because this
* code path runs with irqs and preemtion disabled. A
* #vmexit emulation might sleep. Only signal request for
* the #vmexit here.
*/
svm->nested.exit_required = true;
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
return false;
}
return true;
}
/* This function returns true if it is save to enable the nmi window */
static inline bool nested_svm_nmi(struct vcpu_svm *svm)
{
if (!is_nested(svm))
return true;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
return true;
svm->vmcb->control.exit_code = SVM_EXIT_NMI;
svm->nested.exit_required = true;
return false;
}
static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
{
struct page *page;
might_sleep();
page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
if (is_error_page(page))
goto error;
*_page = page;
return kmap(page);
error:
kvm_release_page_clean(page);
kvm_inject_gp(&svm->vcpu, 0);
return NULL;
}
static void nested_svm_unmap(struct page *page)
{
kunmap(page);
kvm_release_page_dirty(page);
}
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
{
u32 param = svm->vmcb->control.exit_info_1 & 1;
u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u32 t0, t1;
int ret;
u8 val;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return NESTED_EXIT_HOST;
switch (msr) {
case 0 ... 0x1fff:
t0 = (msr * 2) % 8;
t1 = msr / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + msr - 0xc0000000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
case 0xc0010000 ... 0xc0011fff:
t0 = (16384 + msr - 0xc0010000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
default:
ret = NESTED_EXIT_DONE;
goto out;
}
if (!kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + t1, &val, 1))
ret = val & ((1 << param) << t0) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
out:
return ret;
}
static int nested_svm_exit_special(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
switch (exit_code) {
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
return NESTED_EXIT_HOST;
case SVM_EXIT_NPF:
/* For now we are always handling NPFs when using them */
if (npt_enabled)
return NESTED_EXIT_HOST;
break;
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
/* When we're shadowing, trap PFs */
if (!npt_enabled)
return NESTED_EXIT_HOST;
break;
case SVM_EXIT_EXCP_BASE + NM_VECTOR:
nm_interception(svm);
break;
default:
break;
}
return NESTED_EXIT_CONTINUE;
}
/*
* If this function returns true, this #vmexit was already handled
*/
static int nested_svm_intercept(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
int vmexit = NESTED_EXIT_HOST;
switch (exit_code) {
case SVM_EXIT_MSR:
vmexit = nested_svm_exit_handled_msr(svm);
break;
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
if (svm->nested.intercept_cr_read & cr_bits)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
if (svm->nested.intercept_cr_write & cr_bits)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
if (svm->nested.intercept_dr_read & dr_bits)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
if (svm->nested.intercept_dr_write & dr_bits)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
if (svm->nested.intercept_exceptions & excp_bits)
vmexit = NESTED_EXIT_DONE;
break;
}
default: {
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
if (svm->nested.intercept & exit_bits)
vmexit = NESTED_EXIT_DONE;
}
}
return vmexit;
}
static int nested_svm_exit_handled(struct vcpu_svm *svm)
{
int vmexit;
vmexit = nested_svm_intercept(svm);
if (vmexit == NESTED_EXIT_DONE)
nested_svm_vmexit(svm);
return vmexit;
}
static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
{
struct vmcb_control_area *dst = &dst_vmcb->control;
struct vmcb_control_area *from = &from_vmcb->control;
dst->intercept_cr_read = from->intercept_cr_read;
dst->intercept_cr_write = from->intercept_cr_write;
dst->intercept_dr_read = from->intercept_dr_read;
dst->intercept_dr_write = from->intercept_dr_write;
dst->intercept_exceptions = from->intercept_exceptions;
dst->intercept = from->intercept;
dst->iopm_base_pa = from->iopm_base_pa;
dst->msrpm_base_pa = from->msrpm_base_pa;
dst->tsc_offset = from->tsc_offset;
dst->asid = from->asid;
dst->tlb_ctl = from->tlb_ctl;
dst->int_ctl = from->int_ctl;
dst->int_vector = from->int_vector;
dst->int_state = from->int_state;
dst->exit_code = from->exit_code;
dst->exit_code_hi = from->exit_code_hi;
dst->exit_info_1 = from->exit_info_1;
dst->exit_info_2 = from->exit_info_2;
dst->exit_int_info = from->exit_int_info;
dst->exit_int_info_err = from->exit_int_info_err;
dst->nested_ctl = from->nested_ctl;
dst->event_inj = from->event_inj;
dst->event_inj_err = from->event_inj_err;
dst->nested_cr3 = from->nested_cr3;
dst->lbr_ctl = from->lbr_ctl;
}
static int nested_svm_vmexit(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct page *page;
trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
vmcb->control.exit_info_1,
vmcb->control.exit_info_2,
vmcb->control.exit_int_info,
vmcb->control.exit_int_info_err);
nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
if (!nested_vmcb)
return 1;
/* Exit nested SVM mode */
svm->nested.vmcb = 0;
/* Give the current vmcb to the guest */
disable_gif(svm);
nested_vmcb->save.es = vmcb->save.es;
nested_vmcb->save.cs = vmcb->save.cs;
nested_vmcb->save.ss = vmcb->save.ss;
nested_vmcb->save.ds = vmcb->save.ds;
nested_vmcb->save.gdtr = vmcb->save.gdtr;
nested_vmcb->save.idtr = vmcb->save.idtr;
nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
if (npt_enabled)
nested_vmcb->save.cr3 = vmcb->save.cr3;
else
nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
nested_vmcb->save.cr2 = vmcb->save.cr2;
nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
nested_vmcb->save.rflags = vmcb->save.rflags;
nested_vmcb->save.rip = vmcb->save.rip;
nested_vmcb->save.rsp = vmcb->save.rsp;
nested_vmcb->save.rax = vmcb->save.rax;
nested_vmcb->save.dr7 = vmcb->save.dr7;
nested_vmcb->save.dr6 = vmcb->save.dr6;
nested_vmcb->save.cpl = vmcb->save.cpl;
nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
nested_vmcb->control.int_vector = vmcb->control.int_vector;
nested_vmcb->control.int_state = vmcb->control.int_state;
nested_vmcb->control.exit_code = vmcb->control.exit_code;
nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
/*
* If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
* to make sure that we do not lose injected events. So check event_inj
* here and copy it to exit_int_info if it is valid.
* Exit_int_info and event_inj can't be both valid because the case
* below only happens on a VMRUN instruction intercept which has
* no valid exit_int_info set.
*/
if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
struct vmcb_control_area *nc = &nested_vmcb->control;
nc->exit_int_info = vmcb->control.event_inj;
nc->exit_int_info_err = vmcb->control.event_inj_err;
}
nested_vmcb->control.tlb_ctl = 0;
nested_vmcb->control.event_inj = 0;
nested_vmcb->control.event_inj_err = 0;
/* We always set V_INTR_MASKING and remember the old value in hflags */
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
/* Restore the original control entries */
copy_vmcb_control_area(vmcb, hsave);
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
/* Restore selected save entries */
svm->vmcb->save.es = hsave->save.es;
svm->vmcb->save.cs = hsave->save.cs;
svm->vmcb->save.ss = hsave->save.ss;
svm->vmcb->save.ds = hsave->save.ds;
svm->vmcb->save.gdtr = hsave->save.gdtr;
svm->vmcb->save.idtr = hsave->save.idtr;
svm->vmcb->save.rflags = hsave->save.rflags;
svm_set_efer(&svm->vcpu, hsave->save.efer);
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = hsave->save.cr3;
svm->vcpu.arch.cr3 = hsave->save.cr3;
} else {
kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
}
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
svm->vmcb->save.dr7 = 0;
svm->vmcb->save.cpl = 0;
svm->vmcb->control.exit_int_info = 0;
nested_svm_unmap(page);
kvm_mmu_reset_context(&svm->vcpu);
kvm_mmu_load(&svm->vcpu);
return 0;
}
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
{
/*
* This function merges the msr permission bitmaps of kvm and the
* nested vmcb. It is omptimized in that it only merges the parts where
* the kvm msr permission bitmap may contain zero bits
*/
int i;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return true;
for (i = 0; i < MSRPM_OFFSETS; i++) {
u32 value, p;
u64 offset;
if (msrpm_offsets[i] == 0xffffffff)
break;
offset = svm->nested.vmcb_msrpm + msrpm_offsets[i];
p = msrpm_offsets[i] / 4;
if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
return false;
svm->nested.msrpm[p] = svm->msrpm[p] | value;
}
svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
return true;
}
static bool nested_svm_vmrun(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct page *page;
u64 vmcb_gpa;
vmcb_gpa = svm->vmcb->save.rax;
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
if (!nested_vmcb)
return false;
trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
nested_vmcb->save.rip,
nested_vmcb->control.int_ctl,
nested_vmcb->control.event_inj,
nested_vmcb->control.nested_ctl);
trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
nested_vmcb->control.intercept_cr_write,
nested_vmcb->control.intercept_exceptions,
nested_vmcb->control.intercept);
/* Clear internal status */
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
/*
* Save the old vmcb, so we don't need to pick what we save, but can
* restore everything when a VMEXIT occurs
*/
hsave->save.es = vmcb->save.es;
hsave->save.cs = vmcb->save.cs;
hsave->save.ss = vmcb->save.ss;
hsave->save.ds = vmcb->save.ds;
hsave->save.gdtr = vmcb->save.gdtr;
hsave->save.idtr = vmcb->save.idtr;
hsave->save.efer = svm->vcpu.arch.efer;
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
hsave->save.cr4 = svm->vcpu.arch.cr4;
hsave->save.rflags = vmcb->save.rflags;
hsave->save.rip = svm->next_rip;
hsave->save.rsp = vmcb->save.rsp;
hsave->save.rax = vmcb->save.rax;
if (npt_enabled)
hsave->save.cr3 = vmcb->save.cr3;
else
hsave->save.cr3 = svm->vcpu.arch.cr3;
copy_vmcb_control_area(hsave, vmcb);
if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
svm->vcpu.arch.hflags |= HF_HIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
/* Load the nested guest state */
svm->vmcb->save.es = nested_vmcb->save.es;
svm->vmcb->save.cs = nested_vmcb->save.cs;
svm->vmcb->save.ss = nested_vmcb->save.ss;
svm->vmcb->save.ds = nested_vmcb->save.ds;
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
svm->vmcb->save.rflags = nested_vmcb->save.rflags;
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
} else
kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
/* Guest paging mode is active - reset mmu */
kvm_mmu_reset_context(&svm->vcpu);
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
/* In case we don't even reach vcpu_run, the fields are not updated */
svm->vmcb->save.rax = nested_vmcb->save.rax;
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
svm->vmcb->save.rip = nested_vmcb->save.rip;
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
/* cache intercepts */
svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
svm->nested.intercept = nested_vmcb->control.intercept;
force_new_asid(&svm->vcpu);
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
else
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
/* We only want the cr8 intercept bits of the guest */
svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
}
/*
* We don't want a nested guest to be more powerful than the guest, so
* all intercepts are ORed
*/
svm->vmcb->control.intercept_cr_read |=
nested_vmcb->control.intercept_cr_read;
svm->vmcb->control.intercept_cr_write |=
nested_vmcb->control.intercept_cr_write;
svm->vmcb->control.intercept_dr_read |=
nested_vmcb->control.intercept_dr_read;
svm->vmcb->control.intercept_dr_write |=
nested_vmcb->control.intercept_dr_write;
svm->vmcb->control.intercept_exceptions |=
nested_vmcb->control.intercept_exceptions;
svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
nested_svm_unmap(page);
/* nested_vmcb is our indicator if nested SVM is activated */
svm->nested.vmcb = vmcb_gpa;
enable_gif(svm);
return true;
}
static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
{
to_vmcb->save.fs = from_vmcb->save.fs;
to_vmcb->save.gs = from_vmcb->save.gs;
to_vmcb->save.tr = from_vmcb->save.tr;
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
to_vmcb->save.star = from_vmcb->save.star;
to_vmcb->save.lstar = from_vmcb->save.lstar;
to_vmcb->save.cstar = from_vmcb->save.cstar;
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}
static int vmload_interception(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct page *page;
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
if (!nested_vmcb)
return 1;
nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
nested_svm_unmap(page);
return 1;
}
static int vmsave_interception(struct vcpu_svm *svm)
{
struct vmcb *nested_vmcb;
struct page *page;
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
if (!nested_vmcb)
return 1;
nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
nested_svm_unmap(page);
return 1;
}
static int vmrun_interception(struct vcpu_svm *svm)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
if (!nested_svm_vmrun(svm))
return 1;
if (!nested_svm_vmrun_msrpm(svm))
goto failed;
return 1;
failed:
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
return 1;
}
static int stgi_interception(struct vcpu_svm *svm)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
enable_gif(svm);
return 1;
}
static int clgi_interception(struct vcpu_svm *svm)
{
if (nested_svm_check_permissions(svm))
return 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
disable_gif(svm);
/* After a CLGI no interrupts should come */
svm_clear_vintr(svm);
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
return 1;
}
static int invlpga_interception(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
vcpu->arch.regs[VCPU_REGS_RAX]);
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
return 1;
}
static int skinit_interception(struct vcpu_svm *svm)
{
trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int invalid_op_interception(struct vcpu_svm *svm)
{
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
static int task_switch_interception(struct vcpu_svm *svm)
{
u16 tss_selector;
int reason;
int int_type = svm->vmcb->control.exit_int_info &
SVM_EXITINTINFO_TYPE_MASK;
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
uint32_t type =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
uint32_t idt_v =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
tss_selector = (u16)svm->vmcb->control.exit_info_1;
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
reason = TASK_SWITCH_IRET;
else if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
reason = TASK_SWITCH_JMP;
else if (idt_v)
reason = TASK_SWITCH_GATE;
else
reason = TASK_SWITCH_CALL;
if (reason == TASK_SWITCH_GATE) {
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = false;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
kvm_clear_exception_queue(&svm->vcpu);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_clear_interrupt_queue(&svm->vcpu);
break;
default:
break;
}
}
if (reason != TASK_SWITCH_GATE ||
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
(int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
skip_emulated_instruction(&svm->vcpu);
return kvm_task_switch(&svm->vcpu, tss_selector, reason);
}
static int cpuid_interception(struct vcpu_svm *svm)
{
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
kvm_emulate_cpuid(&svm->vcpu);
return 1;
}
static int iret_interception(struct vcpu_svm *svm)
{
++svm->vcpu.stat.nmi_window_exits;
svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
svm->vcpu.arch.hflags |= HF_IRET_MASK;
return 1;
}
static int invlpg_interception(struct vcpu_svm *svm)
{
if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
return 1;
}
static int emulate_on_interception(struct vcpu_svm *svm)
{
if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
return 1;
}
static int cr8_write_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
/* instruction emulation calls kvm_set_cr8() */
emulate_instruction(&svm->vcpu, 0, 0, 0);
if (irqchip_in_kernel(svm->vcpu.kvm)) {
svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
return 1;
}
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
return 1;
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (ecx) {
case MSR_IA32_TSC: {
u64 tsc_offset;
if (is_nested(svm))
tsc_offset = svm->nested.hsave->control.tsc_offset;
else
tsc_offset = svm->vmcb->control.tsc_offset;
*data = tsc_offset + native_read_tsc();
break;
}
case MSR_K6_STAR:
*data = svm->vmcb->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
*data = svm->vmcb->save.lstar;
break;
case MSR_CSTAR:
*data = svm->vmcb->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
*data = svm->vmcb->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
*data = svm->vmcb->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
*data = svm->vmcb->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
*data = svm->sysenter_eip;
break;
case MSR_IA32_SYSENTER_ESP:
*data = svm->sysenter_esp;
break;
/*
* Nobody will change the following 5 values in the VMCB so we can
* safely return them on rdmsr. They will always be 0 until LBRV is
* implemented.
*/
case MSR_IA32_DEBUGCTLMSR:
*data = svm->vmcb->save.dbgctl;
break;
case MSR_IA32_LASTBRANCHFROMIP:
*data = svm->vmcb->save.br_from;
break;
case MSR_IA32_LASTBRANCHTOIP:
*data = svm->vmcb->save.br_to;
break;
case MSR_IA32_LASTINTFROMIP:
*data = svm->vmcb->save.last_excp_from;
break;
case MSR_IA32_LASTINTTOIP:
*data = svm->vmcb->save.last_excp_to;
break;
case MSR_VM_HSAVE_PA:
*data = svm->nested.hsave_msr;
break;
case MSR_VM_CR:
*data = svm->nested.vm_cr_msr;
break;
case MSR_IA32_UCODE_REV:
*data = 0x01000065;
break;
default:
return kvm_get_msr_common(vcpu, ecx, data);
}
return 0;
}
static int rdmsr_interception(struct vcpu_svm *svm)
{
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u64 data;
if (svm_get_msr(&svm->vcpu, ecx, &data)) {
trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(&svm->vcpu, 0);
} else {
trace_kvm_msr_read(ecx, data);
svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
skip_emulated_instruction(&svm->vcpu);
}
return 1;
}
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
struct vcpu_svm *svm = to_svm(vcpu);
int svm_dis, chg_mask;
if (data & ~SVM_VM_CR_VALID_MASK)
return 1;
chg_mask = SVM_VM_CR_VALID_MASK;
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
svm->nested.vm_cr_msr &= ~chg_mask;
svm->nested.vm_cr_msr |= (data & chg_mask);
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
/* check for svm_disable while efer.svme is set */
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
return 1;
return 0;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (ecx) {
case MSR_IA32_TSC: {
u64 tsc_offset = data - native_read_tsc();
u64 g_tsc_offset = 0;
if (is_nested(svm)) {
g_tsc_offset = svm->vmcb->control.tsc_offset -
svm->nested.hsave->control.tsc_offset;
svm->nested.hsave->control.tsc_offset = tsc_offset;
}
svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
break;
}
case MSR_K6_STAR:
svm->vmcb->save.star = data;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
svm->vmcb->save.lstar = data;
break;
case MSR_CSTAR:
svm->vmcb->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
svm->vmcb->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
svm->vmcb->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
svm->vmcb->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
svm->sysenter_eip = data;
svm->vmcb->save.sysenter_eip = data;
break;
case MSR_IA32_SYSENTER_ESP:
svm->sysenter_esp = data;
svm->vmcb->save.sysenter_esp = data;
break;
case MSR_IA32_DEBUGCTLMSR:
if (!svm_has(SVM_FEATURE_LBRV)) {
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
__func__, data);
break;
}
if (data & DEBUGCTL_RESERVED_BITS)
return 1;
svm->vmcb->save.dbgctl = data;
if (data & (1ULL<<0))
svm_enable_lbrv(svm);
else
svm_disable_lbrv(svm);
break;
case MSR_VM_HSAVE_PA:
svm->nested.hsave_msr = data;
break;
case MSR_VM_CR:
return svm_set_vm_cr(vcpu, data);
case MSR_VM_IGNNE:
pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
break;
default:
return kvm_set_msr_common(vcpu, ecx, data);
}
return 0;
}
static int wrmsr_interception(struct vcpu_svm *svm)
{
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
if (svm_set_msr(&svm->vcpu, ecx, data)) {
trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(&svm->vcpu, 0);
} else {
trace_kvm_msr_write(ecx, data);
skip_emulated_instruction(&svm->vcpu);
}
return 1;
}
static int msr_interception(struct vcpu_svm *svm)
{
if (svm->vmcb->control.exit_info_1)
return wrmsr_interception(svm);
else
return rdmsr_interception(svm);
}
static int interrupt_window_interception(struct vcpu_svm *svm)
{
struct kvm_run *kvm_run = svm->vcpu.run;
svm_clear_vintr(svm);
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (!irqchip_in_kernel(svm->vcpu.kvm) &&
kvm_run->request_interrupt_window &&
!kvm_cpu_has_interrupt(&svm->vcpu)) {
++svm->vcpu.stat.irq_window_exits;
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
}
return 1;
}
static int pause_interception(struct vcpu_svm *svm)
{
kvm_vcpu_on_spin(&(svm->vcpu));
return 1;
}
static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_READ_CR0] = emulate_on_interception,
[SVM_EXIT_READ_CR3] = emulate_on_interception,
[SVM_EXIT_READ_CR4] = emulate_on_interception,
[SVM_EXIT_READ_CR8] = emulate_on_interception,
[SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
[SVM_EXIT_WRITE_CR0] = emulate_on_interception,
[SVM_EXIT_WRITE_CR3] = emulate_on_interception,
[SVM_EXIT_WRITE_CR4] = emulate_on_interception,
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
[SVM_EXIT_READ_DR0] = emulate_on_interception,
[SVM_EXIT_READ_DR1] = emulate_on_interception,
[SVM_EXIT_READ_DR2] = emulate_on_interception,
[SVM_EXIT_READ_DR3] = emulate_on_interception,
[SVM_EXIT_READ_DR4] = emulate_on_interception,
[SVM_EXIT_READ_DR5] = emulate_on_interception,
[SVM_EXIT_READ_DR6] = emulate_on_interception,
[SVM_EXIT_READ_DR7] = emulate_on_interception,
[SVM_EXIT_WRITE_DR0] = emulate_on_interception,
[SVM_EXIT_WRITE_DR1] = emulate_on_interception,
[SVM_EXIT_WRITE_DR2] = emulate_on_interception,
[SVM_EXIT_WRITE_DR3] = emulate_on_interception,
[SVM_EXIT_WRITE_DR4] = emulate_on_interception,
[SVM_EXIT_WRITE_DR5] = emulate_on_interception,
[SVM_EXIT_WRITE_DR6] = emulate_on_interception,
[SVM_EXIT_WRITE_DR7] = emulate_on_interception,
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
[SVM_EXIT_INTR] = intr_interception,
[SVM_EXIT_NMI] = nmi_interception,
[SVM_EXIT_SMI] = nop_on_interception,
[SVM_EXIT_INIT] = nop_on_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_IRET] = iret_interception,
[SVM_EXIT_INVD] = emulate_on_interception,
[SVM_EXIT_PAUSE] = pause_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = invlpg_interception,
[SVM_EXIT_INVLPGA] = invlpga_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
[SVM_EXIT_VMRUN] = vmrun_interception,
[SVM_EXIT_VMMCALL] = vmmcall_interception,
[SVM_EXIT_VMLOAD] = vmload_interception,
[SVM_EXIT_VMSAVE] = vmsave_interception,
[SVM_EXIT_STGI] = stgi_interception,
[SVM_EXIT_CLGI] = clgi_interception,
[SVM_EXIT_SKINIT] = skinit_interception,
[SVM_EXIT_WBINVD] = emulate_on_interception,
[SVM_EXIT_MONITOR] = invalid_op_interception,
[SVM_EXIT_MWAIT] = invalid_op_interception,
[SVM_EXIT_NPF] = pf_interception,
};
static int handle_exit(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 exit_code = svm->vmcb->control.exit_code;
trace_kvm_exit(exit_code, svm->vmcb->save.rip);
if (unlikely(svm->nested.exit_required)) {
nested_svm_vmexit(svm);
svm->nested.exit_required = false;
return 1;
}
if (is_nested(svm)) {
int vmexit;
trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
svm->vmcb->control.exit_info_1,
svm->vmcb->control.exit_info_2,
svm->vmcb->control.exit_int_info,
svm->vmcb->control.exit_int_info_err);
vmexit = nested_svm_exit_special(svm);
if (vmexit == NESTED_EXIT_CONTINUE)
vmexit = nested_svm_exit_handled(svm);
if (vmexit == NESTED_EXIT_DONE)
return 1;
}
svm_complete_interrupts(svm);
if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
vcpu->arch.cr0 = svm->vmcb->save.cr0;
if (npt_enabled)
vcpu->arch.cr3 = svm->vmcb->save.cr3;
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
kvm_run->fail_entry.hardware_entry_failure_reason
= svm->vmcb->control.exit_code;
return 0;
}
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
"exit_code 0x%x\n",
__func__, svm->vmcb->control.exit_int_info,
exit_code);
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|| !svm_exit_handlers[exit_code]) {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
kvm_run->hw.hardware_exit_reason = exit_code;
return 0;
}
return svm_exit_handlers[exit_code](svm);
}
static void reload_tss(struct kvm_vcpu *vcpu)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
sd->tss_desc->type = 9; /* available 32/64-bit TSS */
load_TR_desc();
}
static void pre_svm_run(struct vcpu_svm *svm)
{
int cpu = raw_smp_processor_id();
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
/* FIXME: handle wraparound of asid_generation */
if (svm->asid_generation != sd->asid_generation)
new_asid(svm, sd);
}
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
vcpu->arch.hflags |= HF_NMI_MASK;
svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
++vcpu->stat.nmi_injections;
}
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
{
struct vmcb_control_area *control;
trace_kvm_inj_virq(irq);
++svm->vcpu.stat.irq_injections;
control = &svm->vmcb->control;
control->int_vector = irq;
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}
static void svm_set_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
BUG_ON(!(gif_set(svm)));
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
return;
if (irr == -1)
return;
if (tpr >= irr)
svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
}
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (masked) {
svm->vcpu.arch.hflags |= HF_NMI_MASK;
svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
} else {
svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
}
}
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
int ret;
if (!gif_set(svm) ||
(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
return 0;
ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
if (is_nested(svm))
return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
return ret;
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
* 1, because that's a separate STGI/VMRUN intercept. The next time we
* get that intercept, this function will be called again though and
* we'll get the vintr intercept.
*/
if (gif_set(svm) && nested_svm_intr(svm)) {
svm_set_vintr(svm);
svm_inject_irq(svm, 0x0);
}
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
== HF_NMI_MASK)
return; /* IRET will cause a vm exit */
/*
* Something prevents NMI from been injected. Single step over possible
* problem (IRET or exception injection or interrupt shadow)
*/
if (gif_set(svm) && nested_svm_nmi(svm)) {
svm->nmi_singlestep = true;
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(vcpu);
}
}
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
return 0;
}
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
force_new_asid(vcpu);
}
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
return;
if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
kvm_set_cr8(vcpu, cr8);
}
}
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr8;
if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
return;
cr8 = kvm_get_cr8(vcpu);
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}
static void svm_complete_interrupts(struct vcpu_svm *svm)
{
u8 vector;
int type;
u32 exitintinfo = svm->vmcb->control.exit_int_info;
unsigned int3_injected = svm->int3_injected;
svm->int3_injected = 0;
if (svm->vcpu.arch.hflags & HF_IRET_MASK)
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
return;
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = true;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
if (is_nested(svm))
break;
/*
* In case of software exceptions, do not reinject the vector,
* but re-execute the instruction instead. Rewind RIP first
* if we emulated INT3 before.
*/
if (kvm_exception_is_soft(vector)) {
if (vector == BP_VECTOR && int3_injected &&
kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
kvm_rip_write(&svm->vcpu,
kvm_rip_read(&svm->vcpu) -
int3_injected);
break;
}
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
u32 err = svm->vmcb->control.exit_int_info_err;
kvm_queue_exception_e(&svm->vcpu, vector, err);
} else
kvm_queue_exception(&svm->vcpu, vector);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_queue_interrupt(&svm->vcpu, vector, false);
break;
default:
break;
}
}
#ifdef CONFIG_X86_64
#define R "r"
#else
#define R "e"
#endif
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u16 fs_selector;
u16 gs_selector;
u16 ldt_selector;
/*
* A vmexit emulation is required before the vcpu can be executed
* again.
*/
if (unlikely(svm->nested.exit_required))
return;
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
pre_svm_run(svm);
sync_lapic_to_cr8(vcpu);
save_host_msrs(vcpu);
fs_selector = kvm_read_fs();
gs_selector = kvm_read_gs();
ldt_selector = kvm_read_ldt();
svm->vmcb->save.cr2 = vcpu->arch.cr2;
/* required for live migration with NPT */
if (npt_enabled)
svm->vmcb->save.cr3 = vcpu->arch.cr3;
clgi();
local_irq_enable();
asm volatile (
"push %%"R"bp; \n\t"
"mov %c[rbx](%[svm]), %%"R"bx \n\t"
"mov %c[rcx](%[svm]), %%"R"cx \n\t"
"mov %c[rdx](%[svm]), %%"R"dx \n\t"
"mov %c[rsi](%[svm]), %%"R"si \n\t"
"mov %c[rdi](%[svm]), %%"R"di \n\t"
"mov %c[rbp](%[svm]), %%"R"bp \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%[svm]), %%r8 \n\t"
"mov %c[r9](%[svm]), %%r9 \n\t"
"mov %c[r10](%[svm]), %%r10 \n\t"
"mov %c[r11](%[svm]), %%r11 \n\t"
"mov %c[r12](%[svm]), %%r12 \n\t"
"mov %c[r13](%[svm]), %%r13 \n\t"
"mov %c[r14](%[svm]), %%r14 \n\t"
"mov %c[r15](%[svm]), %%r15 \n\t"
#endif
/* Enter guest mode */
"push %%"R"ax \n\t"
"mov %c[vmcb](%[svm]), %%"R"ax \n\t"
__ex(SVM_VMLOAD) "\n\t"
__ex(SVM_VMRUN) "\n\t"
__ex(SVM_VMSAVE) "\n\t"
"pop %%"R"ax \n\t"
/* Save guest registers, load host registers */
"mov %%"R"bx, %c[rbx](%[svm]) \n\t"
"mov %%"R"cx, %c[rcx](%[svm]) \n\t"
"mov %%"R"dx, %c[rdx](%[svm]) \n\t"
"mov %%"R"si, %c[rsi](%[svm]) \n\t"
"mov %%"R"di, %c[rdi](%[svm]) \n\t"
"mov %%"R"bp, %c[rbp](%[svm]) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%[svm]) \n\t"
"mov %%r9, %c[r9](%[svm]) \n\t"
"mov %%r10, %c[r10](%[svm]) \n\t"
"mov %%r11, %c[r11](%[svm]) \n\t"
"mov %%r12, %c[r12](%[svm]) \n\t"
"mov %%r13, %c[r13](%[svm]) \n\t"
"mov %%r14, %c[r14](%[svm]) \n\t"
"mov %%r15, %c[r15](%[svm]) \n\t"
#endif
"pop %%"R"bp"
:
: [svm]"a"(svm),
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
[rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
, [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
#endif
: "cc", "memory"
, R"bx", R"cx", R"dx", R"si", R"di"
#ifdef CONFIG_X86_64
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
#endif
);
vcpu->arch.cr2 = svm->vmcb->save.cr2;
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
kvm_load_fs(fs_selector);
kvm_load_gs(gs_selector);
kvm_load_ldt(ldt_selector);
load_host_msrs(vcpu);
reload_tss(vcpu);
local_irq_disable();
stgi();
sync_cr8_to_lapic(vcpu);
svm->next_rip = 0;
if (npt_enabled) {
vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
}
}
#undef R
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (npt_enabled) {
svm->vmcb->control.nested_cr3 = root;
force_new_asid(vcpu);
return;
}
svm->vmcb->save.cr3 = root;
force_new_asid(vcpu);
}
static int is_disabled(void)
{
u64 vm_cr;
rdmsrl(MSR_VM_CR, vm_cr);
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
return 1;
return 0;
}
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xd9;
}
static void svm_check_processor_compat(void *rtn)
{
*(int *)rtn = 0;
}
static bool svm_cpu_has_accelerated_tpr(void)
{
return false;
}
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
return PT64_ROOT_LEVEL;
#else
return PT32E_ROOT_LEVEL;
#endif
}
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
return 0;
}
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
{
}
static const struct trace_print_flags svm_exit_reasons_str[] = {
{ SVM_EXIT_READ_CR0, "read_cr0" },
{ SVM_EXIT_READ_CR3, "read_cr3" },
{ SVM_EXIT_READ_CR4, "read_cr4" },
{ SVM_EXIT_READ_CR8, "read_cr8" },
{ SVM_EXIT_WRITE_CR0, "write_cr0" },
{ SVM_EXIT_WRITE_CR3, "write_cr3" },
{ SVM_EXIT_WRITE_CR4, "write_cr4" },
{ SVM_EXIT_WRITE_CR8, "write_cr8" },
{ SVM_EXIT_READ_DR0, "read_dr0" },
{ SVM_EXIT_READ_DR1, "read_dr1" },
{ SVM_EXIT_READ_DR2, "read_dr2" },
{ SVM_EXIT_READ_DR3, "read_dr3" },
{ SVM_EXIT_WRITE_DR0, "write_dr0" },
{ SVM_EXIT_WRITE_DR1, "write_dr1" },
{ SVM_EXIT_WRITE_DR2, "write_dr2" },
{ SVM_EXIT_WRITE_DR3, "write_dr3" },
{ SVM_EXIT_WRITE_DR5, "write_dr5" },
{ SVM_EXIT_WRITE_DR7, "write_dr7" },
{ SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
{ SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
{ SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
{ SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
{ SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
{ SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
{ SVM_EXIT_INTR, "interrupt" },
{ SVM_EXIT_NMI, "nmi" },
{ SVM_EXIT_SMI, "smi" },
{ SVM_EXIT_INIT, "init" },
{ SVM_EXIT_VINTR, "vintr" },
{ SVM_EXIT_CPUID, "cpuid" },
{ SVM_EXIT_INVD, "invd" },
{ SVM_EXIT_HLT, "hlt" },
{ SVM_EXIT_INVLPG, "invlpg" },
{ SVM_EXIT_INVLPGA, "invlpga" },
{ SVM_EXIT_IOIO, "io" },
{ SVM_EXIT_MSR, "msr" },
{ SVM_EXIT_TASK_SWITCH, "task_switch" },
{ SVM_EXIT_SHUTDOWN, "shutdown" },
{ SVM_EXIT_VMRUN, "vmrun" },
{ SVM_EXIT_VMMCALL, "hypercall" },
{ SVM_EXIT_VMLOAD, "vmload" },
{ SVM_EXIT_VMSAVE, "vmsave" },
{ SVM_EXIT_STGI, "stgi" },
{ SVM_EXIT_CLGI, "clgi" },
{ SVM_EXIT_SKINIT, "skinit" },
{ SVM_EXIT_WBINVD, "wbinvd" },
{ SVM_EXIT_MONITOR, "monitor" },
{ SVM_EXIT_MWAIT, "mwait" },
{ SVM_EXIT_NPF, "npf" },
{ -1, NULL }
};
static int svm_get_lpage_level(void)
{
return PT_PDPE_LEVEL;
}
static bool svm_rdtscp_supported(void)
{
return false;
}
static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
if (is_nested(svm))
svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
update_cr0_intercept(svm);
}
static struct kvm_x86_ops svm_x86_ops = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
.hardware_setup = svm_hardware_setup,
.hardware_unsetup = svm_hardware_unsetup,
.check_processor_compatibility = svm_check_processor_compat,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
.vcpu_create = svm_create_vcpu,
.vcpu_free = svm_free_vcpu,
.vcpu_reset = svm_vcpu_reset,
.prepare_guest_switch = svm_prepare_guest_switch,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.set_guest_debug = svm_guest_debug,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cpl = svm_get_cpl,
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
.set_cr0 = svm_set_cr0,
.set_cr3 = svm_set_cr3,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.get_dr = svm_get_dr,
.set_dr = svm_set_dr,
.cache_reg = svm_cache_reg,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.fpu_activate = svm_fpu_activate,
.fpu_deactivate = svm_fpu_deactivate,
.tlb_flush = svm_flush_tlb,
.run = svm_vcpu_run,
.handle_exit = handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = svm_set_interrupt_shadow,
.get_interrupt_shadow = svm_get_interrupt_shadow,
.patch_hypercall = svm_patch_hypercall,
.set_irq = svm_set_irq,
.set_nmi = svm_inject_nmi,
.queue_exception = svm_queue_exception,
.interrupt_allowed = svm_interrupt_allowed,
.nmi_allowed = svm_nmi_allowed,
.get_nmi_mask = svm_get_nmi_mask,
.set_nmi_mask = svm_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_tss_addr = svm_set_tss_addr,
.get_tdp_level = get_npt_level,
.get_mt_mask = svm_get_mt_mask,
.exit_reasons_str = svm_exit_reasons_str,
.get_lpage_level = svm_get_lpage_level,
.cpuid_update = svm_cpuid_update,
.rdtscp_supported = svm_rdtscp_supported,
};
static int __init svm_init(void)
{
return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
THIS_MODULE);
}
static void __exit svm_exit(void)
{
kvm_exit();
}
module_init(svm_init)
module_exit(svm_exit)