/* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $
* arch/sparc64/kernel/process.c
*
* Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/compat.h>
#include <linux/tick.h>
#include <linux/init.h>
#include <asm/oplib.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include <asm/fpumacro.h>
#include <asm/head.h>
#include <asm/cpudata.h>
#include <asm/mmu_context.h>
#include <asm/unistd.h>
#include <asm/hypervisor.h>
/* #define VERBOSE_SHOWREGS */
static void sparc64_yield(void)
{
if (tlb_type != hypervisor)
return;
clear_thread_flag(TIF_POLLING_NRFLAG);
smp_mb__after_clear_bit();
while (!need_resched()) {
unsigned long pstate;
/* Disable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"andn %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
if (!need_resched())
sun4v_cpu_yield();
/* Re-enable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"or %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
}
set_thread_flag(TIF_POLLING_NRFLAG);
}
/* The idle loop on sparc64. */
void cpu_idle(void)
{
set_thread_flag(TIF_POLLING_NRFLAG);
while(1) {
tick_nohz_stop_sched_tick();
while (!need_resched())
sparc64_yield();
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
extern char reboot_command [];
extern void (*prom_palette)(int);
extern void (*prom_keyboard)(void);
void machine_halt(void)
{
if (!serial_console && prom_palette)
prom_palette (1);
if (prom_keyboard)
prom_keyboard();
prom_halt();
panic("Halt failed!");
}
void machine_alt_power_off(void)
{
if (!serial_console && prom_palette)
prom_palette(1);
if (prom_keyboard)
prom_keyboard();
prom_halt_power_off();
panic("Power-off failed!");
}
void machine_restart(char * cmd)
{
char *p;
p = strchr (reboot_command, '\n');
if (p) *p = 0;
if (!serial_console && prom_palette)
prom_palette (1);
if (prom_keyboard)
prom_keyboard();
if (cmd)
prom_reboot(cmd);
if (*reboot_command)
prom_reboot(reboot_command);
prom_reboot("");
panic("Reboot failed!");
}
#ifdef CONFIG_COMPAT
static void show_regwindow32(struct pt_regs *regs)
{
struct reg_window32 __user *rw;
struct reg_window32 r_w;
mm_segment_t old_fs;
__asm__ __volatile__ ("flushw");
rw = compat_ptr((unsigned)regs->u_regs[14]);
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
set_fs (old_fs);
printk("l0: %08x l1: %08x l2: %08x l3: %08x "
"l4: %08x l5: %08x l6: %08x l7: %08x\n",
r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
printk("i0: %08x i1: %08x i2: %08x i3: %08x "
"i4: %08x i5: %08x i6: %08x i7: %08x\n",
r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
}
#else
#define show_regwindow32(regs) do { } while (0)
#endif
static void show_regwindow(struct pt_regs *regs)
{
struct reg_window __user *rw;
struct reg_window *rwk;
struct reg_window r_w;
mm_segment_t old_fs;
if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
__asm__ __volatile__ ("flushw");
rw = (struct reg_window __user *)
(regs->u_regs[14] + STACK_BIAS);
rwk = (struct reg_window *)
(regs->u_regs[14] + STACK_BIAS);
if (!(regs->tstate & TSTATE_PRIV)) {
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
rwk = &r_w;
set_fs (old_fs);
}
} else {
show_regwindow32(regs);
return;
}
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
if (regs->tstate & TSTATE_PRIV)
print_symbol("I7: <%s>\n", rwk->ins[7]);
}
void show_stackframe(struct sparc_stackf *sf)
{
unsigned long size;
unsigned long *stk;
int i;
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n"
"l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n"
"i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n",
sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n"
"x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n",
(unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
sf->xxargs[0]);
size = ((unsigned long)sf->fp) - ((unsigned long)sf);
size -= STACKFRAME_SZ;
stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
i = 0;
do {
printk("s%d: %016lx\n", i++, *stk++);
} while ((size -= sizeof(unsigned long)));
}
void show_stackframe32(struct sparc_stackf32 *sf)
{
unsigned long size;
unsigned *stk;
int i;
printk("l0: %08x l1: %08x l2: %08x l3: %08x\n",
sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]);
printk("l4: %08x l5: %08x l6: %08x l7: %08x\n",
sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
printk("i0: %08x i1: %08x i2: %08x i3: %08x\n",
sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]);
printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n",
sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc);
printk("sp: %08x x0: %08x x1: %08x x2: %08x\n"
"x3: %08x x4: %08x x5: %08x xx: %08x\n",
sf->structptr, sf->xargs[0], sf->xargs[1],
sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
sf->xxargs[0]);
size = ((unsigned long)sf->fp) - ((unsigned long)sf);
size -= STACKFRAME32_SZ;
stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ);
i = 0;
do {
printk("s%d: %08x\n", i++, *stk++);
} while ((size -= sizeof(unsigned)));
}
#ifdef CONFIG_SMP
static DEFINE_SPINLOCK(regdump_lock);
#endif
void __show_regs(struct pt_regs * regs)
{
#ifdef CONFIG_SMP
unsigned long flags;
/* Protect against xcall ipis which might lead to livelock on the lock */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (flags)
: "i" (PSTATE_IE));
spin_lock(®dump_lock);
#endif
printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
regs->tpc, regs->tnpc, regs->y, print_tainted());
print_symbol("TPC: <%s>\n", regs->tpc);
printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
regs->u_regs[3]);
printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
regs->u_regs[7]);
printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
regs->u_regs[11]);
printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
regs->u_regs[15]);
print_symbol("RPC: <%s>\n", regs->u_regs[15]);
show_regwindow(regs);
#ifdef CONFIG_SMP
spin_unlock(®dump_lock);
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (flags));
#endif
}
#ifdef VERBOSE_SHOWREGS
static void idump_from_user (unsigned int *pc)
{
int i;
int code;
if((((unsigned long) pc) & 3))
return;
pc -= 3;
for(i = -3; i < 6; i++) {
get_user(code, pc);
printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
pc++;
}
printk("\n");
}
#endif
void show_regs(struct pt_regs *regs)
{
#ifdef VERBOSE_SHOWREGS
extern long etrap, etraptl1;
#endif
__show_regs(regs);
#if 0
#ifdef CONFIG_SMP
{
extern void smp_report_regs(void);
smp_report_regs();
}
#endif
#endif
#ifdef VERBOSE_SHOWREGS
if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
regs->u_regs[14] >= (long)current - PAGE_SIZE &&
regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
printk ("*********parent**********\n");
__show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
printk ("*********endpar**********\n");
}
#endif
}
void show_regs32(struct pt_regs32 *regs)
{
printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr,
regs->pc, regs->npc, regs->y, print_tainted());
printk("g0: %08x g1: %08x g2: %08x g3: %08x ",
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
regs->u_regs[3]);
printk("g4: %08x g5: %08x g6: %08x g7: %08x\n",
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
regs->u_regs[7]);
printk("o0: %08x o1: %08x o2: %08x o3: %08x ",
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
regs->u_regs[11]);
printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n",
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
regs->u_regs[15]);
}
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct thread_info *ti = task_thread_info(tsk);
unsigned long ret = 0xdeadbeefUL;
if (ti && ti->ksp) {
unsigned long *sp;
sp = (unsigned long *)(ti->ksp + STACK_BIAS);
if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
sp[14]) {
unsigned long *fp;
fp = (unsigned long *)(sp[14] + STACK_BIAS);
if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
ret = fp[15];
}
}
return ret;
}
/* Free current thread data structures etc.. */
void exit_thread(void)
{
struct thread_info *t = current_thread_info();
if (t->utraps) {
if (t->utraps[0] < 2)
kfree (t->utraps);
else
t->utraps[0]--;
}
if (test_and_clear_thread_flag(TIF_PERFCTR)) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
write_pcr(0);
}
}
void flush_thread(void)
{
struct thread_info *t = current_thread_info();
struct mm_struct *mm;
if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
clear_ti_thread_flag(t, TIF_ABI_PENDING);
if (test_ti_thread_flag(t, TIF_32BIT))
clear_ti_thread_flag(t, TIF_32BIT);
else
set_ti_thread_flag(t, TIF_32BIT);
}
mm = t->task->mm;
if (mm)
tsb_context_switch(mm);
set_thread_wsaved(0);
/* Turn off performance counters if on. */
if (test_and_clear_thread_flag(TIF_PERFCTR)) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
write_pcr(0);
}
/* Clear FPU register state. */
t->fpsaved[0] = 0;
if (get_thread_current_ds() != ASI_AIUS)
set_fs(USER_DS);
/* Init new signal delivery disposition. */
clear_thread_flag(TIF_NEWSIGNALS);
}
/* It's a bit more tricky when 64-bit tasks are involved... */
static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
{
unsigned long fp, distance, rval;
if (!(test_thread_flag(TIF_32BIT))) {
csp += STACK_BIAS;
psp += STACK_BIAS;
__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
fp += STACK_BIAS;
} else
__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
/* Now 8-byte align the stack as this is mandatory in the
* Sparc ABI due to how register windows work. This hides
* the restriction from thread libraries etc. -DaveM
*/
csp &= ~7UL;
distance = fp - psp;
rval = (csp - distance);
if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
rval = 0;
else if (test_thread_flag(TIF_32BIT)) {
if (put_user(((u32)csp),
&(((struct reg_window32 __user *)rval)->ins[6])))
rval = 0;
} else {
if (put_user(((u64)csp - STACK_BIAS),
&(((struct reg_window __user *)rval)->ins[6])))
rval = 0;
else
rval = rval - STACK_BIAS;
}
return rval;
}
/* Standard stuff. */
static inline void shift_window_buffer(int first_win, int last_win,
struct thread_info *t)
{
int i;
for (i = first_win; i < last_win; i++) {
t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
memcpy(&t->reg_window[i], &t->reg_window[i+1],
sizeof(struct reg_window));
}
}
void synchronize_user_stack(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
flush_user_windows();
if ((window = get_thread_wsaved()) != 0) {
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (!copy_to_user((char __user *)sp, rwin, winsize)) {
shift_window_buffer(window, get_thread_wsaved() - 1, t);
set_thread_wsaved(get_thread_wsaved() - 1);
}
} while (window--);
}
}
static void stack_unaligned(unsigned long sp)
{
siginfo_t info;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *) sp;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void fault_in_user_windows(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
flush_user_windows();
window = get_thread_wsaved();
if (likely(window != 0)) {
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (unlikely(sp & 0x7UL))
stack_unaligned(sp);
if (unlikely(copy_to_user((char __user *)sp,
rwin, winsize)))
goto barf;
} while (window--);
}
set_thread_wsaved(0);
return;
barf:
set_thread_wsaved(window + 1);
do_exit(SIGILL);
}
asmlinkage long sparc_do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size)
{
int __user *parent_tid_ptr, *child_tid_ptr;
#ifdef CONFIG_COMPAT
if (test_thread_flag(TIF_32BIT)) {
parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
} else
#endif
{
parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
}
return do_fork(clone_flags, stack_start,
regs, stack_size,
parent_tid_ptr, child_tid_ptr);
}
/* Copy a Sparc thread. The fork() return value conventions
* under SunOS are nothing short of bletcherous:
* Parent --> %o0 == childs pid, %o1 == 0
* Child --> %o0 == parents pid, %o1 == 1
*/
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *t = task_thread_info(p);
char *child_trap_frame;
/* Calculate offset to stack_frame & pt_regs */
child_trap_frame = task_stack_page(p) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ));
memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ));
t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
t->new_child = 1;
t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf));
t->fpsaved[0] = 0;
if (regs->tstate & TSTATE_PRIV) {
/* Special case, if we are spawning a kernel thread from
* a userspace task (via KMOD, NFS, or similar) we must
* disable performance counters in the child because the
* address space and protection realm are changing.
*/
if (t->flags & _TIF_PERFCTR) {
t->user_cntd0 = t->user_cntd1 = NULL;
t->pcr_reg = 0;
t->flags &= ~_TIF_PERFCTR;
}
t->kregs->u_regs[UREG_FP] = t->ksp;
t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
flush_register_windows();
memcpy((void *)(t->ksp + STACK_BIAS),
(void *)(regs->u_regs[UREG_FP] + STACK_BIAS),
sizeof(struct sparc_stackf));
t->kregs->u_regs[UREG_G6] = (unsigned long) t;
t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
} else {
if (t->flags & _TIF_32BIT) {
sp &= 0x00000000ffffffffUL;
regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
}
t->kregs->u_regs[UREG_FP] = sp;
t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
if (sp != regs->u_regs[UREG_FP]) {
unsigned long csp;
csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
if (!csp)
return -EFAULT;
t->kregs->u_regs[UREG_FP] = csp;
}
if (t->utraps)
t->utraps[0]++;
}
/* Set the return value for the child. */
t->kregs->u_regs[UREG_I0] = current->pid;
t->kregs->u_regs[UREG_I1] = 1;
/* Set the second return value for the parent. */
regs->u_regs[UREG_I1] = 0;
if (clone_flags & CLONE_SETTLS)
t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
return 0;
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be free'd until both the parent and the child have exited.
*/
pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval;
/* If the parent runs before fn(arg) is called by the child,
* the input registers of this function can be clobbered.
* So we stash 'fn' and 'arg' into global registers which
* will not be modified by the parent.
*/
__asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
"mov %5, %%g3\n\t" /* Save ARG into global */
"mov %1, %%g1\n\t" /* Clone syscall nr. */
"mov %2, %%o0\n\t" /* Clone flags. */
"mov 0, %%o1\n\t" /* usp arg == 0 */
"t 0x6d\n\t" /* Linux/Sparc clone(). */
"brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
" mov %%o0, %0\n\t"
"jmpl %%g2, %%o7\n\t" /* Call the function. */
" mov %%g3, %%o0\n\t" /* Set arg in delay. */
"mov %3, %%g1\n\t"
"t 0x6d\n\t" /* Linux/Sparc exit(). */
/* Notreached by child. */
"1:" :
"=r" (retval) :
"i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
"i" (__NR_exit), "r" (fn), "r" (arg) :
"g1", "g2", "g3", "o0", "o1", "memory", "cc");
return retval;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * regs, struct user * dump)
{
/* Only should be used for SunOS and ancient a.out
* SparcLinux binaries... Not worth implementing.
*/
memset(dump, 0, sizeof(struct user));
}
typedef struct {
union {
unsigned int pr_regs[32];
unsigned long pr_dregs[16];
} pr_fr;
unsigned int __unused;
unsigned int pr_fsr;
unsigned char pr_qcnt;
unsigned char pr_q_entrysize;
unsigned char pr_en;
unsigned int pr_q[64];
} elf_fpregset_t32;
/*
* fill in the fpu structure for a core dump.
*/
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
{
unsigned long *kfpregs = current_thread_info()->fpregs;
unsigned long fprs = current_thread_info()->fpsaved[0];
if (test_thread_flag(TIF_32BIT)) {
elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
if (fprs & FPRS_DL)
memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs32->pr_fr.pr_regs[0], 0,
sizeof(unsigned int) * 32);
fpregs32->pr_qcnt = 0;
fpregs32->pr_q_entrysize = 8;
memset(&fpregs32->pr_q[0], 0,
(sizeof(unsigned int) * 64));
if (fprs & FPRS_FEF) {
fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
fpregs32->pr_en = 1;
} else {
fpregs32->pr_fsr = 0;
fpregs32->pr_en = 0;
}
} else {
if(fprs & FPRS_DL)
memcpy(&fpregs->pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[0], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_DU)
memcpy(&fpregs->pr_regs[16], kfpregs+16,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[16], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_FEF) {
fpregs->pr_fsr = current_thread_info()->xfsr[0];
fpregs->pr_gsr = current_thread_info()->gsr[0];
} else {
fpregs->pr_fsr = fpregs->pr_gsr = 0;
}
fpregs->pr_fprs = fprs;
}
return 1;
}
/*
* sparc_execve() executes a new program after the asm stub has set
* things up for us. This should basically do what I want it to.
*/
asmlinkage int sparc_execve(struct pt_regs *regs)
{
int error, base = 0;
char *filename;
/* User register window flush is done by entry.S */
/* Check for indirect call. */
if (regs->u_regs[UREG_G1] == 0)
base = 1;
filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *)
regs->u_regs[base + UREG_I1],
(char __user * __user *)
regs->u_regs[base + UREG_I2], regs);
putname(filename);
if (!error) {
fprs_write(0);
current_thread_info()->xfsr[0] = 0;
current_thread_info()->fpsaved[0] = 0;
regs->tstate &= ~TSTATE_PEF;
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
out:
return error;
}
unsigned long get_wchan(struct task_struct *task)
{
unsigned long pc, fp, bias = 0;
unsigned long thread_info_base;
struct reg_window *rw;
unsigned long ret = 0;
int count = 0;
if (!task || task == current ||
task->state == TASK_RUNNING)
goto out;
thread_info_base = (unsigned long) task_stack_page(task);
bias = STACK_BIAS;
fp = task_thread_info(task)->ksp + bias;
do {
/* Bogus frame pointer? */
if (fp < (thread_info_base + sizeof(struct thread_info)) ||
fp >= (thread_info_base + THREAD_SIZE))
break;
rw = (struct reg_window *) fp;
pc = rw->ins[7];
if (!in_sched_functions(pc)) {
ret = pc;
goto out;
}
fp = rw->ins[6] + bias;
} while (++count < 16);
out:
return ret;
}