/* $Id: pci.c,v 1.39 2002/01/05 01:13:43 davem Exp $
* pci.c: UltraSparc PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/pbm.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/ebus.h>
#include <asm/isa.h>
unsigned long pci_memspace_mask = 0xffffffffUL;
#ifndef CONFIG_PCI
/* A "nop" PCI implementation. */
asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
#else
/* List of all PCI controllers found in the system. */
struct pci_controller_info *pci_controller_root = NULL;
/* Each PCI controller found gets a unique index. */
int pci_num_controllers = 0;
/* At boot time the user can give the kernel a command
* line option which controls if and how PCI devices
* are reordered at PCI bus probing time.
*/
int pci_device_reorder = 0;
volatile int pci_poke_in_progress;
volatile int pci_poke_cpu = -1;
volatile int pci_poke_faulted;
static DEFINE_SPINLOCK(pci_poke_lock);
void pci_config_read8(u8 *addr, u8 *ret)
{
unsigned long flags;
u8 byte;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduba [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (byte)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = byte;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read16(u16 *addr, u16 *ret)
{
unsigned long flags;
u16 word;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduha [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (word)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = word;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read32(u32 *addr, u32 *ret)
{
unsigned long flags;
u32 dword;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduwa [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (dword)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = dword;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write8(u8 *addr, u8 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stba %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write16(u16 *addr, u16 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stha %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write32(u32 *addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stwa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
/* Probe for all PCI controllers in the system. */
extern void sabre_init(int, char *);
extern void psycho_init(int, char *);
extern void schizo_init(int, char *);
extern void schizo_plus_init(int, char *);
extern void tomatillo_init(int, char *);
static struct {
char *model_name;
void (*init)(int, char *);
} pci_controller_table[] __initdata = {
{ "SUNW,sabre", sabre_init },
{ "pci108e,a000", sabre_init },
{ "pci108e,a001", sabre_init },
{ "SUNW,psycho", psycho_init },
{ "pci108e,8000", psycho_init },
{ "SUNW,schizo", schizo_init },
{ "pci108e,8001", schizo_init },
{ "SUNW,schizo+", schizo_plus_init },
{ "pci108e,8002", schizo_plus_init },
{ "SUNW,tomatillo", tomatillo_init },
{ "pci108e,a801", tomatillo_init },
};
#define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
sizeof(pci_controller_table[0]))
static int __init pci_controller_init(char *model_name, int namelen, int node)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
pci_controller_table[i].init(node, model_name);
return 1;
}
}
printk("PCI: Warning unknown controller, model name [%s]\n",
model_name);
printk("PCI: Ignoring controller...\n");
return 0;
}
static int __init pci_is_controller(char *model_name, int namelen, int node)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
return 1;
}
}
return 0;
}
static int __init pci_controller_scan(int (*handler)(char *, int, int))
{
char namebuf[64];
int node;
int count = 0;
node = prom_getchild(prom_root_node);
while ((node = prom_searchsiblings(node, "pci")) != 0) {
int len;
if ((len = prom_getproperty(node, "model", namebuf, sizeof(namebuf))) > 0 ||
(len = prom_getproperty(node, "compatible", namebuf, sizeof(namebuf))) > 0) {
int item_len = 0;
/* Our value may be a multi-valued string in the
* case of some compatible properties. For sanity,
* only try the first one. */
while (namebuf[item_len] && len) {
len--;
item_len++;
}
if (handler(namebuf, item_len, node))
count++;
}
node = prom_getsibling(node);
if (!node)
break;
}
return count;
}
/* Is there some PCI controller in the system? */
int __init pcic_present(void)
{
return pci_controller_scan(pci_is_controller);
}
/* Find each controller in the system, attach and initialize
* software state structure for each and link into the
* pci_controller_root. Setup the controller enough such
* that bus scanning can be done.
*/
static void __init pci_controller_probe(void)
{
printk("PCI: Probing for controllers.\n");
pci_controller_scan(pci_controller_init);
}
static void __init pci_scan_each_controller_bus(void)
{
struct pci_controller_info *p;
for (p = pci_controller_root; p; p = p->next)
p->scan_bus(p);
}
/* Reorder the pci_dev chain, so that onboard devices come first
* and then come the pluggable cards.
*/
static void __init pci_reorder_devs(void)
{
struct list_head *pci_onboard = &pci_devices;
struct list_head *walk = pci_onboard->next;
while (walk != pci_onboard) {
struct pci_dev *pdev = pci_dev_g(walk);
struct list_head *walk_next = walk->next;
if (pdev->irq && (__irq_ino(pdev->irq) & 0x20)) {
list_del(walk);
list_add(walk, pci_onboard);
}
walk = walk_next;
}
}
extern void clock_probe(void);
extern void power_init(void);
static int __init pcibios_init(void)
{
pci_controller_probe();
if (pci_controller_root == NULL)
return 0;
pci_scan_each_controller_bus();
if (pci_device_reorder)
pci_reorder_devs();
isa_init();
ebus_init();
clock_probe();
power_init();
return 0;
}
subsys_initcall(pcibios_init);
void pcibios_fixup_bus(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
/* Generic PCI bus probing sets these to point at
* &io{port,mem}_resouce which is wrong for us.
*/
pbus->resource[0] = &pbm->io_space;
pbus->resource[1] = &pbm->mem_space;
}
int pci_claim_resource(struct pci_dev *pdev, int resource)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *res = &pdev->resource[resource];
struct resource *root;
if (!pbm)
return -EINVAL;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pbm->parent->resource_adjust(pdev, res, root);
return request_resource(root, res);
}
/*
* Given the PCI bus a device resides on, try to
* find an acceptable resource allocation for a
* specific device resource..
*/
static int pci_assign_bus_resource(const struct pci_bus *bus,
struct pci_dev *dev,
struct resource *res,
unsigned long size,
unsigned long min,
int resno)
{
unsigned int type_mask;
int i;
type_mask = IORESOURCE_IO | IORESOURCE_MEM;
for (i = 0 ; i < 4; i++) {
struct resource *r = bus->resource[i];
if (!r)
continue;
/* type_mask must match */
if ((res->flags ^ r->flags) & type_mask)
continue;
/* Ok, try it out.. */
if (allocate_resource(r, res, size, min, -1, size, NULL, NULL) < 0)
continue;
/* PCI config space updated by caller. */
return 0;
}
return -EBUSY;
}
int pci_assign_resource(struct pci_dev *pdev, int resource)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm = pcp->pbm;
struct resource *res = &pdev->resource[resource];
unsigned long min, size;
int err;
if (res->flags & IORESOURCE_IO)
min = pbm->io_space.start + 0x400UL;
else
min = pbm->mem_space.start;
size = res->end - res->start + 1;
err = pci_assign_bus_resource(pdev->bus, pdev, res, size, min, resource);
if (err < 0) {
printk("PCI: Failed to allocate resource %d for %s\n",
resource, pci_name(pdev));
} else {
/* Update PCI config space. */
pbm->parent->base_address_update(pdev, resource);
}
return err;
}
/* Sort resources by alignment */
void pdev_sort_resources(struct pci_dev *dev, struct resource_list *head)
{
int i;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *r;
struct resource_list *list, *tmp;
unsigned long r_align;
r = &dev->resource[i];
r_align = r->end - r->start;
if (!(r->flags) || r->parent)
continue;
if (!r_align) {
printk(KERN_WARNING "PCI: Ignore bogus resource %d "
"[%lx:%lx] of %s\n",
i, r->start, r->end, pci_name(dev));
continue;
}
r_align = (i < PCI_BRIDGE_RESOURCES) ? r_align + 1 : r->start;
for (list = head; ; list = list->next) {
unsigned long align = 0;
struct resource_list *ln = list->next;
int idx;
if (ln) {
idx = ln->res - &ln->dev->resource[0];
align = (idx < PCI_BRIDGE_RESOURCES) ?
ln->res->end - ln->res->start + 1 :
ln->res->start;
}
if (r_align > align) {
tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
panic("pdev_sort_resources(): "
"kmalloc() failed!\n");
tmp->next = ln;
tmp->res = r;
tmp->dev = dev;
list->next = tmp;
break;
}
}
}
}
void pcibios_update_irq(struct pci_dev *pdev, int irq)
{
}
void pcibios_align_resource(void *data, struct resource *res,
unsigned long size, unsigned long align)
{
}
int pcibios_enable_device(struct pci_dev *pdev, int mask)
{
return 0;
}
void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
struct resource *res)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource zero_res, *root;
zero_res.start = 0;
zero_res.end = 0;
zero_res.flags = res->flags;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pbm->parent->resource_adjust(pdev, &zero_res, root);
region->start = res->start - zero_res.start;
region->end = res->end - zero_res.start;
}
void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
struct pci_bus_region *region)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *root;
res->start = region->start;
res->end = region->end;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pbm->parent->resource_adjust(pdev, res, root);
}
EXPORT_SYMBOL(pcibios_bus_to_resource);
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "onboardfirst")) {
pci_device_reorder = 1;
return NULL;
}
if (!strcmp(str, "noreorder")) {
pci_device_reorder = 0;
return NULL;
}
return str;
}
/* Platform support for /proc/bus/pci/X/Y mmap()s. */
/* If the user uses a host-bridge as the PCI device, he may use
* this to perform a raw mmap() of the I/O or MEM space behind
* that controller.
*
* This can be useful for execution of x86 PCI bios initialization code
* on a PCI card, like the xfree86 int10 stuff does.
*/
static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm;
struct pci_controller_info *p;
unsigned long space_size, user_offset, user_size;
if (!pcp)
return -ENXIO;
pbm = pcp->pbm;
if (!pbm)
return -ENXIO;
p = pbm->parent;
if (p->pbms_same_domain) {
unsigned long lowest, highest;
lowest = ~0UL; highest = 0UL;
if (mmap_state == pci_mmap_io) {
if (p->pbm_A.io_space.flags) {
lowest = p->pbm_A.io_space.start;
highest = p->pbm_A.io_space.end + 1;
}
if (p->pbm_B.io_space.flags) {
if (lowest > p->pbm_B.io_space.start)
lowest = p->pbm_B.io_space.start;
if (highest < p->pbm_B.io_space.end + 1)
highest = p->pbm_B.io_space.end + 1;
}
space_size = highest - lowest;
} else {
if (p->pbm_A.mem_space.flags) {
lowest = p->pbm_A.mem_space.start;
highest = p->pbm_A.mem_space.end + 1;
}
if (p->pbm_B.mem_space.flags) {
if (lowest > p->pbm_B.mem_space.start)
lowest = p->pbm_B.mem_space.start;
if (highest < p->pbm_B.mem_space.end + 1)
highest = p->pbm_B.mem_space.end + 1;
}
space_size = highest - lowest;
}
} else {
if (mmap_state == pci_mmap_io) {
space_size = (pbm->io_space.end -
pbm->io_space.start) + 1;
} else {
space_size = (pbm->mem_space.end -
pbm->mem_space.start) + 1;
}
}
/* Make sure the request is in range. */
user_offset = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
if (user_offset >= space_size ||
(user_offset + user_size) > space_size)
return -EINVAL;
if (p->pbms_same_domain) {
unsigned long lowest = ~0UL;
if (mmap_state == pci_mmap_io) {
if (p->pbm_A.io_space.flags)
lowest = p->pbm_A.io_space.start;
if (p->pbm_B.io_space.flags &&
lowest > p->pbm_B.io_space.start)
lowest = p->pbm_B.io_space.start;
} else {
if (p->pbm_A.mem_space.flags)
lowest = p->pbm_A.mem_space.start;
if (p->pbm_B.mem_space.flags &&
lowest > p->pbm_B.mem_space.start)
lowest = p->pbm_B.mem_space.start;
}
vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT;
} else {
if (mmap_state == pci_mmap_io) {
vma->vm_pgoff = (pbm->io_space.start +
user_offset) >> PAGE_SHIFT;
} else {
vma->vm_pgoff = (pbm->mem_space.start +
user_offset) >> PAGE_SHIFT;
}
}
return 0;
}
/* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
* to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long user32 = user_offset & pci_memspace_mask;
unsigned long largest_base, this_base, addr32;
int i;
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
/* Figure out which base address this is for. */
largest_base = 0UL;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
/* Active? */
if (!rp->flags)
continue;
/* Same type? */
if (i == PCI_ROM_RESOURCE) {
if (mmap_state != pci_mmap_mem)
continue;
} else {
if ((mmap_state == pci_mmap_io &&
(rp->flags & IORESOURCE_IO) == 0) ||
(mmap_state == pci_mmap_mem &&
(rp->flags & IORESOURCE_MEM) == 0))
continue;
}
this_base = rp->start;
addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
if (mmap_state == pci_mmap_io)
addr32 &= 0xffffff;
if (addr32 <= user32 && this_base > largest_base)
largest_base = this_base;
}
if (largest_base == 0UL)
return -EINVAL;
/* Now construct the final physical address. */
if (mmap_state == pci_mmap_io)
vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
else
vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
return 0;
}
/* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
* mapping.
*/
static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= (VM_IO | VM_RESERVED);
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
/* Our io_remap_page_range/io_remap_pfn_range takes care of this,
do nothing. */
}
/* Perform the actual remap of the pages for a PCI device mapping, as appropriate
* for this architecture. The region in the process to map is described by vm_start
* and vm_end members of VMA, the base physical address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_flags(dev, vma, mmap_state);
__pci_mmap_set_pgprot(dev, vma, mmap_state);
ret = io_remap_pfn_range(vma, vma->vm_start,
vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (ret)
return ret;
vma->vm_flags |= VM_IO;
return 0;
}
/* Return the domain nuber for this pci bus */
int pci_domain_nr(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
int ret;
if (pbm == NULL || pbm->parent == NULL) {
ret = -ENXIO;
} else {
struct pci_controller_info *p = pbm->parent;
ret = p->index;
if (p->pbms_same_domain == 0)
ret = ((ret << 1) +
((pbm == &pbm->parent->pbm_B) ? 1 : 0));
}
return ret;
}
EXPORT_SYMBOL(pci_domain_nr);
int pcibios_prep_mwi(struct pci_dev *dev)
{
/* We set correct PCI_CACHE_LINE_SIZE register values for every
* device probed on this platform. So there is nothing to check
* and this always succeeds.
*/
return 0;
}
#endif /* !(CONFIG_PCI) */