/* arch/sparc64/kernel/kprobes.c
*
* Copyright (C) 2004 David S. Miller <davem@davemloft.net>
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <asm/kdebug.h>
#include <asm/signal.h>
#include <asm/cacheflush.h>
#include <asm/uaccess.h>
/* We do not have hardware single-stepping on sparc64.
* So we implement software single-stepping with breakpoint
* traps. The top-level scheme is similar to that used
* in the x86 kprobes implementation.
*
* In the kprobe->ainsn.insn[] array we store the original
* instruction at index zero and a break instruction at
* index one.
*
* When we hit a kprobe we:
* - Run the pre-handler
* - Remember "regs->tnpc" and interrupt level stored in
* "regs->tstate" so we can restore them later
* - Disable PIL interrupts
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
* - Mark that we are actively in a kprobe
*
* At this point we wait for the second breakpoint at
* kprobe->ainsn.insn[1] to hit. When it does we:
* - Run the post-handler
* - Set regs->tpc to "remembered" regs->tnpc stored above,
* restore the PIL interrupt level in "regs->tstate" as well
* - Make any adjustments necessary to regs->tnpc in order
* to handle relative branches correctly. See below.
* - Mark that we are no longer actively in a kprobe.
*/
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
p->ainsn.insn[0] = *p->addr;
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
p->opcode = *p->addr;
return 0;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
*p->addr = BREAKPOINT_INSTRUCTION;
flushi(p->addr);
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flushi(p->addr);
}
static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
}
static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
}
static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = p;
kcb->kprobe_orig_tnpc = regs->tnpc;
kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
}
static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
regs->tstate |= TSTATE_PIL;
/*single step inline, if it a breakpoint instruction*/
if (p->opcode == BREAKPOINT_INSTRUCTION) {
regs->tpc = (unsigned long) p->addr;
regs->tnpc = kcb->kprobe_orig_tnpc;
} else {
regs->tpc = (unsigned long) &p->ainsn.insn[0];
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
}
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
void *addr = (void *) regs->tpc;
int ret = 0;
struct kprobe_ctlblk *kcb;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
if (kprobe_running()) {
p = get_kprobe(addr);
if (p) {
if (kcb->kprobe_status == KPROBE_HIT_SS) {
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
kcb->kprobe_orig_tstate_pil);
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
kcb->kprobe_status = KPROBE_REENTER;
prepare_singlestep(p, regs, kcb);
return 1;
} else {
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/* The breakpoint instruction was removed by
* another cpu right after we hit, no further
* handling of this interrupt is appropriate
*/
ret = 1;
goto no_kprobe;
}
p = __get_cpu_var(current_kprobe);
if (p->break_handler && p->break_handler(p, regs))
goto ss_probe;
}
goto no_kprobe;
}
p = get_kprobe(addr);
if (!p) {
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
set_current_kprobe(p, regs, kcb);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
if (p->pre_handler && p->pre_handler(p, regs))
return 1;
ss_probe:
prepare_singlestep(p, regs, kcb);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
/* If INSN is a relative control transfer instruction,
* return the corrected branch destination value.
*
* The original INSN location was REAL_PC, it actually
* executed at PC and produced destination address NPC.
*/
static unsigned long __kprobes relbranch_fixup(u32 insn, unsigned long real_pc,
unsigned long pc,
unsigned long npc)
{
/* Branch not taken, no mods necessary. */
if (npc == pc + 0x4UL)
return real_pc + 0x4UL;
/* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (npc - pc));
}
return real_pc + 0x4UL;
}
/* If INSN is an instruction which writes it's PC location
* into a destination register, fix that up.
*/
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
unsigned long real_pc)
{
unsigned long *slot = NULL;
/* Simplest cast is call, which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000) {
slot = ®s->u_regs[UREG_I7];
}
/* Jmpl encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = ®s->u_regs[rd];
} else {
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
slot = (unsigned long *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
slot += rd;
}
}
if (slot != NULL)
*slot = real_pc;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the breakpoint
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap.
*/
static void __kprobes resume_execution(struct kprobe *p,
struct pt_regs *regs, struct kprobe_ctlblk *kcb)
{
u32 insn = p->ainsn.insn[0];
regs->tpc = kcb->kprobe_orig_tnpc;
regs->tnpc = relbranch_fixup(insn,
(unsigned long) p->addr,
(unsigned long) &p->ainsn.insn[0],
regs->tnpc);
retpc_fixup(regs, insn, (unsigned long) p->addr);
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
kcb->kprobe_orig_tstate_pil);
}
static inline int post_kprobe_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
resume_execution(cur, regs, kcb);
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
return 1;
}
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the tpc points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->tpc = (unsigned long)cur->addr;
regs->tnpc = kcb->kprobe_orig_tnpc;
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
kcb->kprobe_orig_tstate_pil);
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable_no_resched();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accouting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
entry = search_exception_tables(regs->tpc);
if (entry) {
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
/*
* Wrapper routine to for handling exceptions.
*/
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
int ret = NOTIFY_DONE;
if (args->regs && user_mode(args->regs))
return ret;
switch (val) {
case DIE_DEBUG:
if (kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_DEBUG_2:
if (post_kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_GPF:
case DIE_PAGE_FAULT:
/* kprobe_running() needs smp_processor_id() */
preempt_disable();
if (kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
preempt_enable();
break;
default:
break;
}
return ret;
}
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
struct pt_regs *regs)
{
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
if (user_mode(regs)) {
local_irq_enable();
bad_trap(regs, trap_level);
return;
}
/* trap_level == 0x170 --> ta 0x70
* trap_level == 0x171 --> ta 0x71
*/
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
(trap_level == 0x170) ? "debug" : "debug_2",
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
bad_trap(regs, trap_level);
}
/* Jprobes support. */
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
kcb->jprobe_saved_regs_location = regs;
memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
/* Save a whole stack frame, this gets arguments
* pushed onto the stack after using up all the
* arg registers.
*/
memcpy(&(kcb->jprobe_saved_stack),
(char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
sizeof(kcb->jprobe_saved_stack));
regs->tpc = (unsigned long) jp->entry;
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
regs->tstate |= TSTATE_PIL;
return 1;
}
void __kprobes jprobe_return(void)
{
__asm__ __volatile__(
".globl jprobe_return_trap_instruction\n"
"jprobe_return_trap_instruction:\n\t"
"ta 0x70");
}
extern void jprobe_return_trap_instruction(void);
extern void __show_regs(struct pt_regs * regs);
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
u32 *addr = (u32 *) regs->tpc;
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (addr == (u32 *) jprobe_return_trap_instruction) {
if (kcb->jprobe_saved_regs_location != regs) {
printk("JPROBE: Current regs (%p) does not match "
"saved regs (%p).\n",
regs, kcb->jprobe_saved_regs_location);
printk("JPROBE: Saved registers\n");
__show_regs(kcb->jprobe_saved_regs_location);
printk("JPROBE: Current registers\n");
__show_regs(regs);
BUG();
}
/* Restore old register state. Do pt_regs
* first so that UREG_FP is the original one for
* the stack frame restore.
*/
memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
&(kcb->jprobe_saved_stack),
sizeof(kcb->jprobe_saved_stack));
preempt_enable_no_resched();
return 1;
}
return 0;
}
/* architecture specific initialization */
int arch_init_kprobes(void)
{
return 0;
}