/*
* arch/s390/kernel/time.c
* Time of day based timer functions.
*
* S390 version
* Copyright IBM Corp. 1999, 2008
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
*
* Derived from "arch/i386/kernel/time.c"
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
*/
#define KMSG_COMPONENT "time"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/stop_machine.h>
#include <linux/time.h>
#include <linux/sysdev.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <linux/profile.h>
#include <linux/timex.h>
#include <linux/notifier.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/s390_ext.h>
#include <asm/div64.h>
#include <asm/vdso.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/timer.h>
#include <asm/etr.h>
#include <asm/cio.h>
/* change this if you have some constant time drift */
#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
/*
* Create a small time difference between the timer interrupts
* on the different cpus to avoid lock contention.
*/
#define CPU_DEVIATION (smp_processor_id() << 12)
#define TICK_SIZE tick
u64 sched_clock_base_cc = -1; /* Force to data section. */
static DEFINE_PER_CPU(struct clock_event_device, comparators);
/*
* Scheduler clock - returns current time in nanosec units.
*/
unsigned long long notrace sched_clock(void)
{
return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9;
}
/*
* Monotonic_clock - returns # of nanoseconds passed since time_init()
*/
unsigned long long monotonic_clock(void)
{
return sched_clock();
}
EXPORT_SYMBOL(monotonic_clock);
void tod_to_timeval(__u64 todval, struct timespec *xtime)
{
unsigned long long sec;
sec = todval >> 12;
do_div(sec, 1000000);
xtime->tv_sec = sec;
todval -= (sec * 1000000) << 12;
xtime->tv_nsec = ((todval * 1000) >> 12);
}
void clock_comparator_work(void)
{
struct clock_event_device *cd;
S390_lowcore.clock_comparator = -1ULL;
set_clock_comparator(S390_lowcore.clock_comparator);
cd = &__get_cpu_var(comparators);
cd->event_handler(cd);
}
/*
* Fixup the clock comparator.
*/
static void fixup_clock_comparator(unsigned long long delta)
{
/* If nobody is waiting there's nothing to fix. */
if (S390_lowcore.clock_comparator == -1ULL)
return;
S390_lowcore.clock_comparator += delta;
set_clock_comparator(S390_lowcore.clock_comparator);
}
static int s390_next_event(unsigned long delta,
struct clock_event_device *evt)
{
S390_lowcore.clock_comparator = get_clock() + delta;
set_clock_comparator(S390_lowcore.clock_comparator);
return 0;
}
static void s390_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
}
/*
* Set up lowcore and control register of the current cpu to
* enable TOD clock and clock comparator interrupts.
*/
void init_cpu_timer(void)
{
struct clock_event_device *cd;
int cpu;
S390_lowcore.clock_comparator = -1ULL;
set_clock_comparator(S390_lowcore.clock_comparator);
cpu = smp_processor_id();
cd = &per_cpu(comparators, cpu);
cd->name = "comparator";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
cd->mult = 16777;
cd->shift = 12;
cd->min_delta_ns = 1;
cd->max_delta_ns = LONG_MAX;
cd->rating = 400;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = s390_next_event;
cd->set_mode = s390_set_mode;
clockevents_register_device(cd);
/* Enable clock comparator timer interrupt. */
__ctl_set_bit(0,11);
/* Always allow the timing alert external interrupt. */
__ctl_set_bit(0, 4);
}
static void clock_comparator_interrupt(__u16 code)
{
if (S390_lowcore.clock_comparator == -1ULL)
set_clock_comparator(S390_lowcore.clock_comparator);
}
static void etr_timing_alert(struct etr_irq_parm *);
static void stp_timing_alert(struct stp_irq_parm *);
static void timing_alert_interrupt(__u16 code)
{
if (S390_lowcore.ext_params & 0x00c40000)
etr_timing_alert((struct etr_irq_parm *)
&S390_lowcore.ext_params);
if (S390_lowcore.ext_params & 0x00038000)
stp_timing_alert((struct stp_irq_parm *)
&S390_lowcore.ext_params);
}
static void etr_reset(void);
static void stp_reset(void);
unsigned long read_persistent_clock(void)
{
struct timespec ts;
tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, &ts);
return ts.tv_sec;
}
static cycle_t read_tod_clock(struct clocksource *cs)
{
return get_clock();
}
static struct clocksource clocksource_tod = {
.name = "tod",
.rating = 400,
.read = read_tod_clock,
.mask = -1ULL,
.mult = 1000,
.shift = 12,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
if (clock != &clocksource_tod)
return;
/* Make userspace gettimeofday spin until we're done. */
++vdso_data->tb_update_count;
smp_wmb();
vdso_data->xtime_tod_stamp = clock->cycle_last;
vdso_data->xtime_clock_sec = xtime.tv_sec;
vdso_data->xtime_clock_nsec = xtime.tv_nsec;
vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
smp_wmb();
++vdso_data->tb_update_count;
}
extern struct timezone sys_tz;
void update_vsyscall_tz(void)
{
/* Make userspace gettimeofday spin until we're done. */
++vdso_data->tb_update_count;
smp_wmb();
vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
vdso_data->tz_dsttime = sys_tz.tz_dsttime;
smp_wmb();
++vdso_data->tb_update_count;
}
/*
* Initialize the TOD clock and the CPU timer of
* the boot cpu.
*/
void __init time_init(void)
{
struct timespec ts;
unsigned long flags;
cycle_t now;
/* Reset time synchronization interfaces. */
etr_reset();
stp_reset();
/* request the clock comparator external interrupt */
if (register_external_interrupt(0x1004, clock_comparator_interrupt))
panic("Couldn't request external interrupt 0x1004");
/* request the timing alert external interrupt */
if (register_external_interrupt(0x1406, timing_alert_interrupt))
panic("Couldn't request external interrupt 0x1406");
if (clocksource_register(&clocksource_tod) != 0)
panic("Could not register TOD clock source");
/*
* The TOD clock is an accurate clock. The xtime should be
* initialized in a way that the difference between TOD and
* xtime is reasonably small. Too bad that timekeeping_init
* sets xtime.tv_nsec to zero. In addition the clock source
* change from the jiffies clock source to the TOD clock
* source add another error of up to 1/HZ second. The same
* function sets wall_to_monotonic to a value that is too
* small for /proc/uptime to be accurate.
* Reset xtime and wall_to_monotonic to sane values.
*/
write_seqlock_irqsave(&xtime_lock, flags);
now = get_clock();
tod_to_timeval(now - TOD_UNIX_EPOCH, &xtime);
clocksource_tod.cycle_last = now;
clocksource_tod.raw_time = xtime;
tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &ts);
set_normalized_timespec(&wall_to_monotonic, -ts.tv_sec, -ts.tv_nsec);
write_sequnlock_irqrestore(&xtime_lock, flags);
/* Enable TOD clock interrupts on the boot cpu. */
init_cpu_timer();
/* Enable cpu timer interrupts on the boot cpu. */
vtime_init();
}
/*
* The time is "clock". old is what we think the time is.
* Adjust the value by a multiple of jiffies and add the delta to ntp.
* "delay" is an approximation how long the synchronization took. If
* the time correction is positive, then "delay" is subtracted from
* the time difference and only the remaining part is passed to ntp.
*/
static unsigned long long adjust_time(unsigned long long old,
unsigned long long clock,
unsigned long long delay)
{
unsigned long long delta, ticks;
struct timex adjust;
if (clock > old) {
/* It is later than we thought. */
delta = ticks = clock - old;
delta = ticks = (delta < delay) ? 0 : delta - delay;
delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
adjust.offset = ticks * (1000000 / HZ);
} else {
/* It is earlier than we thought. */
delta = ticks = old - clock;
delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
delta = -delta;
adjust.offset = -ticks * (1000000 / HZ);
}
sched_clock_base_cc += delta;
if (adjust.offset != 0) {
pr_notice("The ETR interface has adjusted the clock "
"by %li microseconds\n", adjust.offset);
adjust.modes = ADJ_OFFSET_SINGLESHOT;
do_adjtimex(&adjust);
}
return delta;
}
static DEFINE_PER_CPU(atomic_t, clock_sync_word);
static DEFINE_MUTEX(clock_sync_mutex);
static unsigned long clock_sync_flags;
#define CLOCK_SYNC_HAS_ETR 0
#define CLOCK_SYNC_HAS_STP 1
#define CLOCK_SYNC_ETR 2
#define CLOCK_SYNC_STP 3
/*
* The synchronous get_clock function. It will write the current clock
* value to the clock pointer and return 0 if the clock is in sync with
* the external time source. If the clock mode is local it will return
* -ENOSYS and -EAGAIN if the clock is not in sync with the external
* reference.
*/
int get_sync_clock(unsigned long long *clock)
{
atomic_t *sw_ptr;
unsigned int sw0, sw1;
sw_ptr = &get_cpu_var(clock_sync_word);
sw0 = atomic_read(sw_ptr);
*clock = get_clock();
sw1 = atomic_read(sw_ptr);
put_cpu_var(clock_sync_sync);
if (sw0 == sw1 && (sw0 & 0x80000000U))
/* Success: time is in sync. */
return 0;
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -ENOSYS;
if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
return -EACCES;
return -EAGAIN;
}
EXPORT_SYMBOL(get_sync_clock);
/*
* Make get_sync_clock return -EAGAIN.
*/
static void disable_sync_clock(void *dummy)
{
atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
/*
* Clear the in-sync bit 2^31. All get_sync_clock calls will
* fail until the sync bit is turned back on. In addition
* increase the "sequence" counter to avoid the race of an
* etr event and the complete recovery against get_sync_clock.
*/
atomic_clear_mask(0x80000000, sw_ptr);
atomic_inc(sw_ptr);
}
/*
* Make get_sync_clock return 0 again.
* Needs to be called from a context disabled for preemption.
*/
static void enable_sync_clock(void)
{
atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
atomic_set_mask(0x80000000, sw_ptr);
}
/*
* Function to check if the clock is in sync.
*/
static inline int check_sync_clock(void)
{
atomic_t *sw_ptr;
int rc;
sw_ptr = &get_cpu_var(clock_sync_word);
rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
put_cpu_var(clock_sync_sync);
return rc;
}
/* Single threaded workqueue used for etr and stp sync events */
static struct workqueue_struct *time_sync_wq;
static void __init time_init_wq(void)
{
if (time_sync_wq)
return;
time_sync_wq = create_singlethread_workqueue("timesync");
stop_machine_create();
}
/*
* External Time Reference (ETR) code.
*/
static int etr_port0_online;
static int etr_port1_online;
static int etr_steai_available;
static int __init early_parse_etr(char *p)
{
if (strncmp(p, "off", 3) == 0)
etr_port0_online = etr_port1_online = 0;
else if (strncmp(p, "port0", 5) == 0)
etr_port0_online = 1;
else if (strncmp(p, "port1", 5) == 0)
etr_port1_online = 1;
else if (strncmp(p, "on", 2) == 0)
etr_port0_online = etr_port1_online = 1;
return 0;
}
early_param("etr", early_parse_etr);
enum etr_event {
ETR_EVENT_PORT0_CHANGE,
ETR_EVENT_PORT1_CHANGE,
ETR_EVENT_PORT_ALERT,
ETR_EVENT_SYNC_CHECK,
ETR_EVENT_SWITCH_LOCAL,
ETR_EVENT_UPDATE,
};
/*
* Valid bit combinations of the eacr register are (x = don't care):
* e0 e1 dp p0 p1 ea es sl
* 0 0 x 0 0 0 0 0 initial, disabled state
* 0 0 x 0 1 1 0 0 port 1 online
* 0 0 x 1 0 1 0 0 port 0 online
* 0 0 x 1 1 1 0 0 both ports online
* 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
* 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
* 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
* 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
* 0 1 x 1 1 1 0 0 both ports online, port 1 usable
* 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
* 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
* 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
* 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
* 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
* 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
* 1 0 x 1 1 1 0 0 both ports online, port 0 usable
* 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
* 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
* 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
* 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
*/
static struct etr_eacr etr_eacr;
static u64 etr_tolec; /* time of last eacr update */
static struct etr_aib etr_port0;
static int etr_port0_uptodate;
static struct etr_aib etr_port1;
static int etr_port1_uptodate;
static unsigned long etr_events;
static struct timer_list etr_timer;
static void etr_timeout(unsigned long dummy);
static void etr_work_fn(struct work_struct *work);
static DEFINE_MUTEX(etr_work_mutex);
static DECLARE_WORK(etr_work, etr_work_fn);
/*
* Reset ETR attachment.
*/
static void etr_reset(void)
{
etr_eacr = (struct etr_eacr) {
.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
.es = 0, .sl = 0 };
if (etr_setr(&etr_eacr) == 0) {
etr_tolec = get_clock();
set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
if (etr_port0_online && etr_port1_online)
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
} else if (etr_port0_online || etr_port1_online) {
pr_warning("The real or virtual hardware system does "
"not provide an ETR interface\n");
etr_port0_online = etr_port1_online = 0;
}
}
static int __init etr_init(void)
{
struct etr_aib aib;
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
return 0;
time_init_wq();
/* Check if this machine has the steai instruction. */
if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
etr_steai_available = 1;
setup_timer(&etr_timer, etr_timeout, 0UL);
if (etr_port0_online) {
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
if (etr_port1_online) {
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
return 0;
}
arch_initcall(etr_init);
/*
* Two sorts of ETR machine checks. The architecture reads:
* "When a machine-check niterruption occurs and if a switch-to-local or
* ETR-sync-check interrupt request is pending but disabled, this pending
* disabled interruption request is indicated and is cleared".
* Which means that we can get etr_switch_to_local events from the machine
* check handler although the interruption condition is disabled. Lovely..
*/
/*
* Switch to local machine check. This is called when the last usable
* ETR port goes inactive. After switch to local the clock is not in sync.
*/
void etr_switch_to_local(void)
{
if (!etr_eacr.sl)
return;
disable_sync_clock(NULL);
set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
/*
* ETR sync check machine check. This is called when the ETR OTE and the
* local clock OTE are farther apart than the ETR sync check tolerance.
* After a ETR sync check the clock is not in sync. The machine check
* is broadcasted to all cpus at the same time.
*/
void etr_sync_check(void)
{
if (!etr_eacr.es)
return;
disable_sync_clock(NULL);
set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
/*
* ETR timing alert. There are two causes:
* 1) port state change, check the usability of the port
* 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
* sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
* or ETR-data word 4 (edf4) has changed.
*/
static void etr_timing_alert(struct etr_irq_parm *intparm)
{
if (intparm->pc0)
/* ETR port 0 state change. */
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
if (intparm->pc1)
/* ETR port 1 state change. */
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
if (intparm->eai)
/*
* ETR port alert on either port 0, 1 or both.
* Both ports are not up-to-date now.
*/
set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
static void etr_timeout(unsigned long dummy)
{
set_bit(ETR_EVENT_UPDATE, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
/*
* Check if the etr mode is pss.
*/
static inline int etr_mode_is_pps(struct etr_eacr eacr)
{
return eacr.es && !eacr.sl;
}
/*
* Check if the etr mode is etr.
*/
static inline int etr_mode_is_etr(struct etr_eacr eacr)
{
return eacr.es && eacr.sl;
}
/*
* Check if the port can be used for TOD synchronization.
* For PPS mode the port has to receive OTEs. For ETR mode
* the port has to receive OTEs, the ETR stepping bit has to
* be zero and the validity bits for data frame 1, 2, and 3
* have to be 1.
*/
static int etr_port_valid(struct etr_aib *aib, int port)
{
unsigned int psc;
/* Check that this port is receiving OTEs. */
if (aib->tsp == 0)
return 0;
psc = port ? aib->esw.psc1 : aib->esw.psc0;
if (psc == etr_lpsc_pps_mode)
return 1;
if (psc == etr_lpsc_operational_step)
return !aib->esw.y && aib->slsw.v1 &&
aib->slsw.v2 && aib->slsw.v3;
return 0;
}
/*
* Check if two ports are on the same network.
*/
static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
{
// FIXME: any other fields we have to compare?
return aib1->edf1.net_id == aib2->edf1.net_id;
}
/*
* Wrapper for etr_stei that converts physical port states
* to logical port states to be consistent with the output
* of stetr (see etr_psc vs. etr_lpsc).
*/
static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
{
BUG_ON(etr_steai(aib, func) != 0);
/* Convert port state to logical port state. */
if (aib->esw.psc0 == 1)
aib->esw.psc0 = 2;
else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
aib->esw.psc0 = 1;
if (aib->esw.psc1 == 1)
aib->esw.psc1 = 2;
else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
aib->esw.psc1 = 1;
}
/*
* Check if the aib a2 is still connected to the same attachment as
* aib a1, the etv values differ by one and a2 is valid.
*/
static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
{
int state_a1, state_a2;
/* Paranoia check: e0/e1 should better be the same. */
if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
a1->esw.eacr.e1 != a2->esw.eacr.e1)
return 0;
/* Still connected to the same etr ? */
state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
if (state_a1 == etr_lpsc_operational_step) {
if (state_a2 != etr_lpsc_operational_step ||
a1->edf1.net_id != a2->edf1.net_id ||
a1->edf1.etr_id != a2->edf1.etr_id ||
a1->edf1.etr_pn != a2->edf1.etr_pn)
return 0;
} else if (state_a2 != etr_lpsc_pps_mode)
return 0;
/* The ETV value of a2 needs to be ETV of a1 + 1. */
if (a1->edf2.etv + 1 != a2->edf2.etv)
return 0;
if (!etr_port_valid(a2, p))
return 0;
return 1;
}
struct clock_sync_data {
atomic_t cpus;
int in_sync;
unsigned long long fixup_cc;
int etr_port;
struct etr_aib *etr_aib;
};
static void clock_sync_cpu(struct clock_sync_data *sync)
{
atomic_dec(&sync->cpus);
enable_sync_clock();
/*
* This looks like a busy wait loop but it isn't. etr_sync_cpus
* is called on all other cpus while the TOD clocks is stopped.
* __udelay will stop the cpu on an enabled wait psw until the
* TOD is running again.
*/
while (sync->in_sync == 0) {
__udelay(1);
/*
* A different cpu changes *in_sync. Therefore use
* barrier() to force memory access.
*/
barrier();
}
if (sync->in_sync != 1)
/* Didn't work. Clear per-cpu in sync bit again. */
disable_sync_clock(NULL);
/*
* This round of TOD syncing is done. Set the clock comparator
* to the next tick and let the processor continue.
*/
fixup_clock_comparator(sync->fixup_cc);
}
/*
* Sync the TOD clock using the port refered to by aibp. This port
* has to be enabled and the other port has to be disabled. The
* last eacr update has to be more than 1.6 seconds in the past.
*/
static int etr_sync_clock(void *data)
{
static int first;
unsigned long long clock, old_clock, delay, delta;
struct clock_sync_data *etr_sync;
struct etr_aib *sync_port, *aib;
int port;
int rc;
etr_sync = data;
if (xchg(&first, 1) == 1) {
/* Slave */
clock_sync_cpu(etr_sync);
return 0;
}
/* Wait until all other cpus entered the sync function. */
while (atomic_read(&etr_sync->cpus) != 0)
cpu_relax();
port = etr_sync->etr_port;
aib = etr_sync->etr_aib;
sync_port = (port == 0) ? &etr_port0 : &etr_port1;
enable_sync_clock();
/* Set clock to next OTE. */
__ctl_set_bit(14, 21);
__ctl_set_bit(0, 29);
clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
old_clock = get_clock();
if (set_clock(clock) == 0) {
__udelay(1); /* Wait for the clock to start. */
__ctl_clear_bit(0, 29);
__ctl_clear_bit(14, 21);
etr_stetr(aib);
/* Adjust Linux timing variables. */
delay = (unsigned long long)
(aib->edf2.etv - sync_port->edf2.etv) << 32;
delta = adjust_time(old_clock, clock, delay);
etr_sync->fixup_cc = delta;
fixup_clock_comparator(delta);
/* Verify that the clock is properly set. */
if (!etr_aib_follows(sync_port, aib, port)) {
/* Didn't work. */
disable_sync_clock(NULL);
etr_sync->in_sync = -EAGAIN;
rc = -EAGAIN;
} else {
etr_sync->in_sync = 1;
rc = 0;
}
} else {
/* Could not set the clock ?!? */
__ctl_clear_bit(0, 29);
__ctl_clear_bit(14, 21);
disable_sync_clock(NULL);
etr_sync->in_sync = -EAGAIN;
rc = -EAGAIN;
}
xchg(&first, 0);
return rc;
}
static int etr_sync_clock_stop(struct etr_aib *aib, int port)
{
struct clock_sync_data etr_sync;
struct etr_aib *sync_port;
int follows;
int rc;
/* Check if the current aib is adjacent to the sync port aib. */
sync_port = (port == 0) ? &etr_port0 : &etr_port1;
follows = etr_aib_follows(sync_port, aib, port);
memcpy(sync_port, aib, sizeof(*aib));
if (!follows)
return -EAGAIN;
memset(&etr_sync, 0, sizeof(etr_sync));
etr_sync.etr_aib = aib;
etr_sync.etr_port = port;
get_online_cpus();
atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
put_online_cpus();
return rc;
}
/*
* Handle the immediate effects of the different events.
* The port change event is used for online/offline changes.
*/
static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
{
if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
eacr.es = 0;
if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
eacr.es = eacr.sl = 0;
if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
etr_port0_uptodate = etr_port1_uptodate = 0;
if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
if (eacr.e0)
/*
* Port change of an enabled port. We have to
* assume that this can have caused an stepping
* port switch.
*/
etr_tolec = get_clock();
eacr.p0 = etr_port0_online;
if (!eacr.p0)
eacr.e0 = 0;
etr_port0_uptodate = 0;
}
if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
if (eacr.e1)
/*
* Port change of an enabled port. We have to
* assume that this can have caused an stepping
* port switch.
*/
etr_tolec = get_clock();
eacr.p1 = etr_port1_online;
if (!eacr.p1)
eacr.e1 = 0;
etr_port1_uptodate = 0;
}
clear_bit(ETR_EVENT_UPDATE, &etr_events);
return eacr;
}
/*
* Set up a timer that expires after the etr_tolec + 1.6 seconds if
* one of the ports needs an update.
*/
static void etr_set_tolec_timeout(unsigned long long now)
{
unsigned long micros;
if ((!etr_eacr.p0 || etr_port0_uptodate) &&
(!etr_eacr.p1 || etr_port1_uptodate))
return;
micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
micros = (micros > 1600000) ? 0 : 1600000 - micros;
mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
}
/*
* Set up a time that expires after 1/2 second.
*/
static void etr_set_sync_timeout(void)
{
mod_timer(&etr_timer, jiffies + HZ/2);
}
/*
* Update the aib information for one or both ports.
*/
static struct etr_eacr etr_handle_update(struct etr_aib *aib,
struct etr_eacr eacr)
{
/* With both ports disabled the aib information is useless. */
if (!eacr.e0 && !eacr.e1)
return eacr;
/* Update port0 or port1 with aib stored in etr_work_fn. */
if (aib->esw.q == 0) {
/* Information for port 0 stored. */
if (eacr.p0 && !etr_port0_uptodate) {
etr_port0 = *aib;
if (etr_port0_online)
etr_port0_uptodate = 1;
}
} else {
/* Information for port 1 stored. */
if (eacr.p1 && !etr_port1_uptodate) {
etr_port1 = *aib;
if (etr_port0_online)
etr_port1_uptodate = 1;
}
}
/*
* Do not try to get the alternate port aib if the clock
* is not in sync yet.
*/
if (!check_sync_clock())
return eacr;
/*
* If steai is available we can get the information about
* the other port immediately. If only stetr is available the
* data-port bit toggle has to be used.
*/
if (etr_steai_available) {
if (eacr.p0 && !etr_port0_uptodate) {
etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
etr_port0_uptodate = 1;
}
if (eacr.p1 && !etr_port1_uptodate) {
etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
etr_port1_uptodate = 1;
}
} else {
/*
* One port was updated above, if the other
* port is not uptodate toggle dp bit.
*/
if ((eacr.p0 && !etr_port0_uptodate) ||
(eacr.p1 && !etr_port1_uptodate))
eacr.dp ^= 1;
else
eacr.dp = 0;
}
return eacr;
}
/*
* Write new etr control register if it differs from the current one.
* Return 1 if etr_tolec has been updated as well.
*/
static void etr_update_eacr(struct etr_eacr eacr)
{
int dp_changed;
if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
/* No change, return. */
return;
/*
* The disable of an active port of the change of the data port
* bit can/will cause a change in the data port.
*/
dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
(etr_eacr.dp ^ eacr.dp) != 0;
etr_eacr = eacr;
etr_setr(&etr_eacr);
if (dp_changed)
etr_tolec = get_clock();
}
/*
* ETR work. In this function you'll find the main logic. In
* particular this is the only function that calls etr_update_eacr(),
* it "controls" the etr control register.
*/
static void etr_work_fn(struct work_struct *work)
{
unsigned long long now;
struct etr_eacr eacr;
struct etr_aib aib;
int sync_port;
/* prevent multiple execution. */
mutex_lock(&etr_work_mutex);
/* Create working copy of etr_eacr. */
eacr = etr_eacr;
/* Check for the different events and their immediate effects. */
eacr = etr_handle_events(eacr);
/* Check if ETR is supposed to be active. */
eacr.ea = eacr.p0 || eacr.p1;
if (!eacr.ea) {
/* Both ports offline. Reset everything. */
eacr.dp = eacr.es = eacr.sl = 0;
on_each_cpu(disable_sync_clock, NULL, 1);
del_timer_sync(&etr_timer);
etr_update_eacr(eacr);
goto out_unlock;
}
/* Store aib to get the current ETR status word. */
BUG_ON(etr_stetr(&aib) != 0);
etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
now = get_clock();
/*
* Update the port information if the last stepping port change
* or data port change is older than 1.6 seconds.
*/
if (now >= etr_tolec + (1600000 << 12))
eacr = etr_handle_update(&aib, eacr);
/*
* Select ports to enable. The prefered synchronization mode is PPS.
* If a port can be enabled depends on a number of things:
* 1) The port needs to be online and uptodate. A port is not
* disabled just because it is not uptodate, but it is only
* enabled if it is uptodate.
* 2) The port needs to have the same mode (pps / etr).
* 3) The port needs to be usable -> etr_port_valid() == 1
* 4) To enable the second port the clock needs to be in sync.
* 5) If both ports are useable and are ETR ports, the network id
* has to be the same.
* The eacr.sl bit is used to indicate etr mode vs. pps mode.
*/
if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
eacr.sl = 0;
eacr.e0 = 1;
if (!etr_mode_is_pps(etr_eacr))
eacr.es = 0;
if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
eacr.e1 = 0;
// FIXME: uptodate checks ?
else if (etr_port0_uptodate && etr_port1_uptodate)
eacr.e1 = 1;
sync_port = (etr_port0_uptodate &&
etr_port_valid(&etr_port0, 0)) ? 0 : -1;
} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
eacr.sl = 0;
eacr.e0 = 0;
eacr.e1 = 1;
if (!etr_mode_is_pps(etr_eacr))
eacr.es = 0;
sync_port = (etr_port1_uptodate &&
etr_port_valid(&etr_port1, 1)) ? 1 : -1;
} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
eacr.sl = 1;
eacr.e0 = 1;
if (!etr_mode_is_etr(etr_eacr))
eacr.es = 0;
if (!eacr.es || !eacr.p1 ||
aib.esw.psc1 != etr_lpsc_operational_alt)
eacr.e1 = 0;
else if (etr_port0_uptodate && etr_port1_uptodate &&
etr_compare_network(&etr_port0, &etr_port1))
eacr.e1 = 1;
sync_port = (etr_port0_uptodate &&
etr_port_valid(&etr_port0, 0)) ? 0 : -1;
} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
eacr.sl = 1;
eacr.e0 = 0;
eacr.e1 = 1;
if (!etr_mode_is_etr(etr_eacr))
eacr.es = 0;
sync_port = (etr_port1_uptodate &&
etr_port_valid(&etr_port1, 1)) ? 1 : -1;
} else {
/* Both ports not usable. */
eacr.es = eacr.sl = 0;
sync_port = -1;
}
/*
* If the clock is in sync just update the eacr and return.
* If there is no valid sync port wait for a port update.
*/
if (check_sync_clock() || sync_port < 0) {
etr_update_eacr(eacr);
etr_set_tolec_timeout(now);
goto out_unlock;
}
/*
* Prepare control register for clock syncing
* (reset data port bit, set sync check control.
*/
eacr.dp = 0;
eacr.es = 1;
/*
* Update eacr and try to synchronize the clock. If the update
* of eacr caused a stepping port switch (or if we have to
* assume that a stepping port switch has occured) or the
* clock syncing failed, reset the sync check control bit
* and set up a timer to try again after 0.5 seconds
*/
etr_update_eacr(eacr);
if (now < etr_tolec + (1600000 << 12) ||
etr_sync_clock_stop(&aib, sync_port) != 0) {
/* Sync failed. Try again in 1/2 second. */
eacr.es = 0;
etr_update_eacr(eacr);
etr_set_sync_timeout();
} else
etr_set_tolec_timeout(now);
out_unlock:
mutex_unlock(&etr_work_mutex);
}
/*
* Sysfs interface functions
*/
static struct sysdev_class etr_sysclass = {
.name = "etr",
};
static struct sys_device etr_port0_dev = {
.id = 0,
.cls = &etr_sysclass,
};
static struct sys_device etr_port1_dev = {
.id = 1,
.cls = &etr_sysclass,
};
/*
* ETR class attributes
*/
static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
{
return sprintf(buf, "%i\n", etr_port0.esw.p);
}
static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
{
char *mode_str;
if (etr_mode_is_pps(etr_eacr))
mode_str = "pps";
else if (etr_mode_is_etr(etr_eacr))
mode_str = "etr";
else
mode_str = "local";
return sprintf(buf, "%s\n", mode_str);
}
static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
/*
* ETR port attributes
*/
static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
{
if (dev == &etr_port0_dev)
return etr_port0_online ? &etr_port0 : NULL;
else
return etr_port1_online ? &etr_port1 : NULL;
}
static ssize_t etr_online_show(struct sys_device *dev,
struct sysdev_attribute *attr,
char *buf)
{
unsigned int online;
online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
return sprintf(buf, "%i\n", online);
}
static ssize_t etr_online_store(struct sys_device *dev,
struct sysdev_attribute *attr,
const char *buf, size_t count)
{
unsigned int value;
value = simple_strtoul(buf, NULL, 0);
if (value != 0 && value != 1)
return -EINVAL;
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
return -EOPNOTSUPP;
mutex_lock(&clock_sync_mutex);
if (dev == &etr_port0_dev) {
if (etr_port0_online == value)
goto out; /* Nothing to do. */
etr_port0_online = value;
if (etr_port0_online && etr_port1_online)
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
else
clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
queue_work(time_sync_wq, &etr_work);
} else {
if (etr_port1_online == value)
goto out; /* Nothing to do. */
etr_port1_online = value;
if (etr_port0_online && etr_port1_online)
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
else
clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
queue_work(time_sync_wq, &etr_work);
}
out:
mutex_unlock(&clock_sync_mutex);
return count;
}
static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
static ssize_t etr_stepping_control_show(struct sys_device *dev,
struct sysdev_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
etr_eacr.e0 : etr_eacr.e1);
}
static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
static ssize_t etr_mode_code_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
if (!etr_port0_online && !etr_port1_online)
/* Status word is not uptodate if both ports are offline. */
return -ENODATA;
return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
etr_port0.esw.psc0 : etr_port0.esw.psc1);
}
static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
static ssize_t etr_untuned_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v1)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf1.u);
}
static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
static ssize_t etr_network_id_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v1)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf1.net_id);
}
static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
static ssize_t etr_id_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v1)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf1.etr_id);
}
static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
static ssize_t etr_port_number_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v1)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf1.etr_pn);
}
static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
static ssize_t etr_coupled_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v3)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf3.c);
}
static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
static ssize_t etr_local_time_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v3)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf3.blto);
}
static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
static ssize_t etr_utc_offset_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct etr_aib *aib = etr_aib_from_dev(dev);
if (!aib || !aib->slsw.v3)
return -ENODATA;
return sprintf(buf, "%i\n", aib->edf3.buo);
}
static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
static struct sysdev_attribute *etr_port_attributes[] = {
&attr_online,
&attr_stepping_control,
&attr_state_code,
&attr_untuned,
&attr_network,
&attr_id,
&attr_port,
&attr_coupled,
&attr_local_time,
&attr_utc_offset,
NULL
};
static int __init etr_register_port(struct sys_device *dev)
{
struct sysdev_attribute **attr;
int rc;
rc = sysdev_register(dev);
if (rc)
goto out;
for (attr = etr_port_attributes; *attr; attr++) {
rc = sysdev_create_file(dev, *attr);
if (rc)
goto out_unreg;
}
return 0;
out_unreg:
for (; attr >= etr_port_attributes; attr--)
sysdev_remove_file(dev, *attr);
sysdev_unregister(dev);
out:
return rc;
}
static void __init etr_unregister_port(struct sys_device *dev)
{
struct sysdev_attribute **attr;
for (attr = etr_port_attributes; *attr; attr++)
sysdev_remove_file(dev, *attr);
sysdev_unregister(dev);
}
static int __init etr_init_sysfs(void)
{
int rc;
rc = sysdev_class_register(&etr_sysclass);
if (rc)
goto out;
rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
if (rc)
goto out_unreg_class;
rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
if (rc)
goto out_remove_stepping_port;
rc = etr_register_port(&etr_port0_dev);
if (rc)
goto out_remove_stepping_mode;
rc = etr_register_port(&etr_port1_dev);
if (rc)
goto out_remove_port0;
return 0;
out_remove_port0:
etr_unregister_port(&etr_port0_dev);
out_remove_stepping_mode:
sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
out_remove_stepping_port:
sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
out_unreg_class:
sysdev_class_unregister(&etr_sysclass);
out:
return rc;
}
device_initcall(etr_init_sysfs);
/*
* Server Time Protocol (STP) code.
*/
static int stp_online;
static struct stp_sstpi stp_info;
static void *stp_page;
static void stp_work_fn(struct work_struct *work);
static DEFINE_MUTEX(stp_work_mutex);
static DECLARE_WORK(stp_work, stp_work_fn);
static struct timer_list stp_timer;
static int __init early_parse_stp(char *p)
{
if (strncmp(p, "off", 3) == 0)
stp_online = 0;
else if (strncmp(p, "on", 2) == 0)
stp_online = 1;
return 0;
}
early_param("stp", early_parse_stp);
/*
* Reset STP attachment.
*/
static void __init stp_reset(void)
{
int rc;
stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
if (rc == 0)
set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
else if (stp_online) {
pr_warning("The real or virtual hardware system does "
"not provide an STP interface\n");
free_page((unsigned long) stp_page);
stp_page = NULL;
stp_online = 0;
}
}
static void stp_timeout(unsigned long dummy)
{
queue_work(time_sync_wq, &stp_work);
}
static int __init stp_init(void)
{
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return 0;
setup_timer(&stp_timer, stp_timeout, 0UL);
time_init_wq();
if (!stp_online)
return 0;
queue_work(time_sync_wq, &stp_work);
return 0;
}
arch_initcall(stp_init);
/*
* STP timing alert. There are three causes:
* 1) timing status change
* 2) link availability change
* 3) time control parameter change
* In all three cases we are only interested in the clock source state.
* If a STP clock source is now available use it.
*/
static void stp_timing_alert(struct stp_irq_parm *intparm)
{
if (intparm->tsc || intparm->lac || intparm->tcpc)
queue_work(time_sync_wq, &stp_work);
}
/*
* STP sync check machine check. This is called when the timing state
* changes from the synchronized state to the unsynchronized state.
* After a STP sync check the clock is not in sync. The machine check
* is broadcasted to all cpus at the same time.
*/
void stp_sync_check(void)
{
disable_sync_clock(NULL);
queue_work(time_sync_wq, &stp_work);
}
/*
* STP island condition machine check. This is called when an attached
* server attempts to communicate over an STP link and the servers
* have matching CTN ids and have a valid stratum-1 configuration
* but the configurations do not match.
*/
void stp_island_check(void)
{
disable_sync_clock(NULL);
queue_work(time_sync_wq, &stp_work);
}
static int stp_sync_clock(void *data)
{
static int first;
unsigned long long old_clock, delta;
struct clock_sync_data *stp_sync;
int rc;
stp_sync = data;
if (xchg(&first, 1) == 1) {
/* Slave */
clock_sync_cpu(stp_sync);
return 0;
}
/* Wait until all other cpus entered the sync function. */
while (atomic_read(&stp_sync->cpus) != 0)
cpu_relax();
enable_sync_clock();
rc = 0;
if (stp_info.todoff[0] || stp_info.todoff[1] ||
stp_info.todoff[2] || stp_info.todoff[3] ||
stp_info.tmd != 2) {
old_clock = get_clock();
rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
if (rc == 0) {
delta = adjust_time(old_clock, get_clock(), 0);
fixup_clock_comparator(delta);
rc = chsc_sstpi(stp_page, &stp_info,
sizeof(struct stp_sstpi));
if (rc == 0 && stp_info.tmd != 2)
rc = -EAGAIN;
}
}
if (rc) {
disable_sync_clock(NULL);
stp_sync->in_sync = -EAGAIN;
} else
stp_sync->in_sync = 1;
xchg(&first, 0);
return 0;
}
/*
* STP work. Check for the STP state and take over the clock
* synchronization if the STP clock source is usable.
*/
static void stp_work_fn(struct work_struct *work)
{
struct clock_sync_data stp_sync;
int rc;
/* prevent multiple execution. */
mutex_lock(&stp_work_mutex);
if (!stp_online) {
chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
del_timer_sync(&stp_timer);
goto out_unlock;
}
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
if (rc)
goto out_unlock;
rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
if (rc || stp_info.c == 0)
goto out_unlock;
/* Skip synchronization if the clock is already in sync. */
if (check_sync_clock())
goto out_unlock;
memset(&stp_sync, 0, sizeof(stp_sync));
get_online_cpus();
atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
put_online_cpus();
if (!check_sync_clock())
/*
* There is a usable clock but the synchonization failed.
* Retry after a second.
*/
mod_timer(&stp_timer, jiffies + HZ);
out_unlock:
mutex_unlock(&stp_work_mutex);
}
/*
* STP class sysfs interface functions
*/
static struct sysdev_class stp_sysclass = {
.name = "stp",
};
static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%016llx\n",
*(unsigned long long *) stp_info.ctnid);
}
static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.ctn);
}
static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x2000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
}
static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x8000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
}
static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
}
static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x0800))
return -ENODATA;
return sprintf(buf, "%i\n", (int) stp_info.tto);
}
static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x4000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
}
static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
stp_time_zone_offset_show, NULL);
static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.tmd);
}
static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.tst);
}
static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
{
return sprintf(buf, "%i\n", stp_online);
}
static ssize_t stp_online_store(struct sysdev_class *class,
const char *buf, size_t count)
{
unsigned int value;
value = simple_strtoul(buf, NULL, 0);
if (value != 0 && value != 1)
return -EINVAL;
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -EOPNOTSUPP;
mutex_lock(&clock_sync_mutex);
stp_online = value;
if (stp_online)
set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
else
clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
queue_work(time_sync_wq, &stp_work);
mutex_unlock(&clock_sync_mutex);
return count;
}
/*
* Can't use SYSDEV_CLASS_ATTR because the attribute should be named
* stp/online but attr_online already exists in this file ..
*/
static struct sysdev_class_attribute attr_stp_online = {
.attr = { .name = "online", .mode = 0600 },
.show = stp_online_show,
.store = stp_online_store,
};
static struct sysdev_class_attribute *stp_attributes[] = {
&attr_ctn_id,
&attr_ctn_type,
&attr_dst_offset,
&attr_leap_seconds,
&attr_stp_online,
&attr_stratum,
&attr_time_offset,
&attr_time_zone_offset,
&attr_timing_mode,
&attr_timing_state,
NULL
};
static int __init stp_init_sysfs(void)
{
struct sysdev_class_attribute **attr;
int rc;
rc = sysdev_class_register(&stp_sysclass);
if (rc)
goto out;
for (attr = stp_attributes; *attr; attr++) {
rc = sysdev_class_create_file(&stp_sysclass, *attr);
if (rc)
goto out_unreg;
}
return 0;
out_unreg:
for (; attr >= stp_attributes; attr--)
sysdev_class_remove_file(&stp_sysclass, *attr);
sysdev_class_unregister(&stp_sysclass);
out:
return rc;
}
device_initcall(stp_init_sysfs);