aboutsummaryrefslogblamecommitdiffstats
path: root/arch/ppc/syslib/prom.c
blob: 482f837fd37359b8dd5dcaab065e6cce1386cb4c (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846














                                                             
























































                                                                         















                                                                                 
    

































                                                                       
                                                  





                                                                 






































































































































































































































































































                                                                                         
                                                 


                                                                          
































































































































































































































































































































































































































                                                                               
                    













































































































































































































































































































                                                                                
   







                                                                

                 


                                                     
                           















                                                                                         
                       




























                                                                                                 
                






















































                                                                                                  
   





















































                                                                                  

                         






                              
    




















































                                                                              
   











































                                                                        
/*
 * Procedures for interfacing to the Open Firmware PROM on
 * Power Macintosh computers.
 *
 * In particular, we are interested in the device tree
 * and in using some of its services (exit, write to stdout).
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996 Paul Mackerras.
 */
#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/bitops.h>

#include <asm/sections.h>
#include <asm/prom.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/bootx.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/bootinfo.h>
#include <asm/btext.h>
#include <asm/pci-bridge.h>
#include <asm/open_pic.h>


struct pci_address {
	unsigned a_hi;
	unsigned a_mid;
	unsigned a_lo;
};

struct pci_reg_property {
	struct pci_address addr;
	unsigned size_hi;
	unsigned size_lo;
};

struct isa_reg_property {
	unsigned space;
	unsigned address;
	unsigned size;
};

typedef unsigned long interpret_func(struct device_node *, unsigned long,
				     int, int);
static interpret_func interpret_pci_props;
static interpret_func interpret_dbdma_props;
static interpret_func interpret_isa_props;
static interpret_func interpret_macio_props;
static interpret_func interpret_root_props;

extern char *klimit;

/* Set for a newworld or CHRP machine */
int use_of_interrupt_tree;
struct device_node *dflt_interrupt_controller;
int num_interrupt_controllers;

extern unsigned int rtas_entry;  /* physical pointer */

extern struct device_node *allnodes;

static unsigned long finish_node(struct device_node *, unsigned long,
				 interpret_func *, int, int);
static unsigned long finish_node_interrupts(struct device_node *, unsigned long);
static struct device_node *find_phandle(phandle);

extern void enter_rtas(void *);
void phys_call_rtas(int, int, int, ...);

extern char cmd_line[512];	/* XXX */
extern boot_infos_t *boot_infos;
unsigned long dev_tree_size;

void
phys_call_rtas(int service, int nargs, int nret, ...)
{
	va_list list;
	union {
		unsigned long words[16];
		double align;
	} u;
	void (*rtas)(void *, unsigned long);
	int i;

	u.words[0] = service;
	u.words[1] = nargs;
	u.words[2] = nret;
	va_start(list, nret);
	for (i = 0; i < nargs; ++i)
		u.words[i+3] = va_arg(list, unsigned long);
	va_end(list);

	rtas = (void (*)(void *, unsigned long)) rtas_entry;
	rtas(&u, rtas_data);
}

/*
 * finish_device_tree is called once things are running normally
 * (i.e. with text and data mapped to the address they were linked at).
 * It traverses the device tree and fills in the name, type,
 * {n_}addrs and {n_}intrs fields of each node.
 */
void __init
finish_device_tree(void)
{
	unsigned long mem = (unsigned long) klimit;
	struct device_node *np;

	/* All CHRPs now use the interrupt tree */
	for (np = allnodes; np != NULL; np = np->allnext) {
		if (get_property(np, "interrupt-parent", NULL)) {
			use_of_interrupt_tree = 1;
			break;
		}
	}

	if (use_of_interrupt_tree) {
		/*
		 * We want to find out here how many interrupt-controller
		 * nodes there are, and if we are booted from BootX,
		 * we need a pointer to the first (and hopefully only)
		 * such node.  But we can't use find_devices here since
		 * np->name has not been set yet.  -- paulus
		 */
		int n = 0;
		char *name, *ic;
		int iclen;

		for (np = allnodes; np != NULL; np = np->allnext) {
			ic = get_property(np, "interrupt-controller", &iclen);
			name = get_property(np, "name", NULL);
			/* checking iclen makes sure we don't get a false
			   match on /chosen.interrupt_controller */
			if ((name != NULL
			     && strcmp(name, "interrupt-controller") == 0)
			    || (ic != NULL && iclen == 0 && strcmp(name, "AppleKiwi"))) {
				if (n == 0)
					dflt_interrupt_controller = np;
				++n;
			}
		}
		num_interrupt_controllers = n;
	}

	mem = finish_node(allnodes, mem, NULL, 1, 1);
	dev_tree_size = mem - (unsigned long) allnodes;
	klimit = (char *) mem;
}

static unsigned long __init
finish_node(struct device_node *np, unsigned long mem_start,
	    interpret_func *ifunc, int naddrc, int nsizec)
{
	struct device_node *child;
	int *ip;

	np->name = get_property(np, "name", NULL);
	np->type = get_property(np, "device_type", NULL);

	if (!np->name)
		np->name = "<NULL>";
	if (!np->type)
		np->type = "<NULL>";

	/* get the device addresses and interrupts */
	if (ifunc != NULL)
		mem_start = ifunc(np, mem_start, naddrc, nsizec);

	if (use_of_interrupt_tree)
		mem_start = finish_node_interrupts(np, mem_start);

	/* Look for #address-cells and #size-cells properties. */
	ip = (int *) get_property(np, "#address-cells", NULL);
	if (ip != NULL)
		naddrc = *ip;
	ip = (int *) get_property(np, "#size-cells", NULL);
	if (ip != NULL)
		nsizec = *ip;

	if (np->parent == NULL)
		ifunc = interpret_root_props;
	else if (np->type == 0)
		ifunc = NULL;
	else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
		ifunc = interpret_pci_props;
	else if (!strcmp(np->type, "dbdma"))
		ifunc = interpret_dbdma_props;
	else if (!strcmp(np->type, "mac-io")
		 || ifunc == interpret_macio_props)
		ifunc = interpret_macio_props;
	else if (!strcmp(np->type, "isa"))
		ifunc = interpret_isa_props;
	else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
		ifunc = interpret_root_props;
	else if (!((ifunc == interpret_dbdma_props
		    || ifunc == interpret_macio_props)
		   && (!strcmp(np->type, "escc")
		       || !strcmp(np->type, "media-bay"))))
		ifunc = NULL;

	/* if we were booted from BootX, convert the full name */
	if (boot_infos
	    && strncmp(np->full_name, "Devices:device-tree", 19) == 0) {
		if (np->full_name[19] == 0) {
			strcpy(np->full_name, "/");
		} else if (np->full_name[19] == ':') {
			char *p = np->full_name + 19;
			np->full_name = p;
			for (; *p; ++p)
				if (*p == ':')
					*p = '/';
		}
	}

	for (child = np->child; child != NULL; child = child->sibling)
		mem_start = finish_node(child, mem_start, ifunc,
					naddrc, nsizec);

	return mem_start;
}

/*
 * Find the interrupt parent of a node.
 */
static struct device_node * __init
intr_parent(struct device_node *p)
{
	phandle *parp;

	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
	if (parp == NULL)
		return p->parent;
	p = find_phandle(*parp);
	if (p != NULL)
		return p;
	/*
	 * On a powermac booted with BootX, we don't get to know the
	 * phandles for any nodes, so find_phandle will return NULL.
	 * Fortunately these machines only have one interrupt controller
	 * so there isn't in fact any ambiguity.  -- paulus
	 */
	if (num_interrupt_controllers == 1)
		p = dflt_interrupt_controller;
	return p;
}

/*
 * Find out the size of each entry of the interrupts property
 * for a node.
 */
static int __init
prom_n_intr_cells(struct device_node *np)
{
	struct device_node *p;
	unsigned int *icp;

	for (p = np; (p = intr_parent(p)) != NULL; ) {
		icp = (unsigned int *)
			get_property(p, "#interrupt-cells", NULL);
		if (icp != NULL)
			return *icp;
		if (get_property(p, "interrupt-controller", NULL) != NULL
		    || get_property(p, "interrupt-map", NULL) != NULL) {
			printk("oops, node %s doesn't have #interrupt-cells\n",
			       p->full_name);
			return 1;
		}
	}
	printk("prom_n_intr_cells failed for %s\n", np->full_name);
	return 1;
}

/*
 * Map an interrupt from a device up to the platform interrupt
 * descriptor.
 */
static int __init
map_interrupt(unsigned int **irq, struct device_node **ictrler,
	      struct device_node *np, unsigned int *ints, int nintrc)
{
	struct device_node *p, *ipar;
	unsigned int *imap, *imask, *ip;
	int i, imaplen, match;
	int newintrc = 1, newaddrc = 1;
	unsigned int *reg;
	int naddrc;

	reg = (unsigned int *) get_property(np, "reg", NULL);
	naddrc = prom_n_addr_cells(np);
	p = intr_parent(np);
	while (p != NULL) {
		if (get_property(p, "interrupt-controller", NULL) != NULL)
			/* this node is an interrupt controller, stop here */
			break;
		imap = (unsigned int *)
			get_property(p, "interrupt-map", &imaplen);
		if (imap == NULL) {
			p = intr_parent(p);
			continue;
		}
		imask = (unsigned int *)
			get_property(p, "interrupt-map-mask", NULL);
		if (imask == NULL) {
			printk("oops, %s has interrupt-map but no mask\n",
			       p->full_name);
			return 0;
		}
		imaplen /= sizeof(unsigned int);
		match = 0;
		ipar = NULL;
		while (imaplen > 0 && !match) {
			/* check the child-interrupt field */
			match = 1;
			for (i = 0; i < naddrc && match; ++i)
				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
			for (; i < naddrc + nintrc && match; ++i)
				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
			imap += naddrc + nintrc;
			imaplen -= naddrc + nintrc;
			/* grab the interrupt parent */
			ipar = find_phandle((phandle) *imap++);
			--imaplen;
			if (ipar == NULL && num_interrupt_controllers == 1)
				/* cope with BootX not giving us phandles */
				ipar = dflt_interrupt_controller;
			if (ipar == NULL) {
				printk("oops, no int parent %x in map of %s\n",
				       imap[-1], p->full_name);
				return 0;
			}
			/* find the parent's # addr and intr cells */
			ip = (unsigned int *)
				get_property(ipar, "#interrupt-cells", NULL);
			if (ip == NULL) {
				printk("oops, no #interrupt-cells on %s\n",
				       ipar->full_name);
				return 0;
			}
			newintrc = *ip;
			ip = (unsigned int *)
				get_property(ipar, "#address-cells", NULL);
			newaddrc = (ip == NULL)? 0: *ip;
			imap += newaddrc + newintrc;
			imaplen -= newaddrc + newintrc;
		}
		if (imaplen < 0) {
			printk("oops, error decoding int-map on %s, len=%d\n",
			       p->full_name, imaplen);
			return 0;
		}
		if (!match) {
			printk("oops, no match in %s int-map for %s\n",
			       p->full_name, np->full_name);
			return 0;
		}
		p = ipar;
		naddrc = newaddrc;
		nintrc = newintrc;
		ints = imap - nintrc;
		reg = ints - naddrc;
	}
	if (p == NULL)
		printk("hmmm, int tree for %s doesn't have ctrler\n",
		       np->full_name);
	*irq = ints;
	*ictrler = p;
	return nintrc;
}

/*
 * New version of finish_node_interrupts.
 */
static unsigned long __init
finish_node_interrupts(struct device_node *np, unsigned long mem_start)
{
	unsigned int *ints;
	int intlen, intrcells;
	int i, j, n, offset;
	unsigned int *irq;
	struct device_node *ic;

	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
	if (ints == NULL)
		return mem_start;
	intrcells = prom_n_intr_cells(np);
	intlen /= intrcells * sizeof(unsigned int);
	np->n_intrs = intlen;
	np->intrs = (struct interrupt_info *) mem_start;
	mem_start += intlen * sizeof(struct interrupt_info);

	for (i = 0; i < intlen; ++i) {
		np->intrs[i].line = 0;
		np->intrs[i].sense = 1;
		n = map_interrupt(&irq, &ic, np, ints, intrcells);
		if (n <= 0)
			continue;
		offset = 0;
		/*
		 * On a CHRP we have an 8259 which is subordinate to
		 * the openpic in the interrupt tree, but we want the
		 * openpic's interrupt numbers offsetted, not the 8259's.
		 * So we apply the offset if the controller is at the
		 * root of the interrupt tree, i.e. has no interrupt-parent.
		 * This doesn't cope with the general case of multiple
		 * cascaded interrupt controllers, but then neither will
		 * irq.c at the moment either.  -- paulus
		 * The G5 triggers that code, I add a machine test. On
		 * those machines, we want to offset interrupts from the
		 * second openpic by 128 -- BenH
		 */
		if (num_interrupt_controllers > 1
		    && ic != NULL
		    && get_property(ic, "interrupt-parent", NULL) == NULL)
			offset = 16;

		np->intrs[i].line = irq[0] + offset;
		if (n > 1)
			np->intrs[i].sense = irq[1];
		if (n > 2) {
			printk("hmmm, got %d intr cells for %s:", n,
			       np->full_name);
			for (j = 0; j < n; ++j)
				printk(" %d", irq[j]);
			printk("\n");
		}
		ints += intrcells;
	}

	return mem_start;
}

/*
 * When BootX makes a copy of the device tree from the MacOS
 * Name Registry, it is in the format we use but all of the pointers
 * are offsets from the start of the tree.
 * This procedure updates the pointers.
 */
void __init
relocate_nodes(void)
{
	unsigned long base;
	struct device_node *np;
	struct property *pp;

#define ADDBASE(x)	(x = (typeof (x))((x)? ((unsigned long)(x) + base): 0))

	base = (unsigned long) boot_infos + boot_infos->deviceTreeOffset;
	allnodes = (struct device_node *)(base + 4);
	for (np = allnodes; np != 0; np = np->allnext) {
		ADDBASE(np->full_name);
		ADDBASE(np->properties);
		ADDBASE(np->parent);
		ADDBASE(np->child);
		ADDBASE(np->sibling);
		ADDBASE(np->allnext);
		for (pp = np->properties; pp != 0; pp = pp->next) {
			ADDBASE(pp->name);
			ADDBASE(pp->value);
			ADDBASE(pp->next);
		}
	}
}

int
prom_n_addr_cells(struct device_node* np)
{
	int* ip;
	do {
		if (np->parent)
			np = np->parent;
		ip = (int *) get_property(np, "#address-cells", NULL);
		if (ip != NULL)
			return *ip;
	} while (np->parent);
	/* No #address-cells property for the root node, default to 1 */
	return 1;
}

int
prom_n_size_cells(struct device_node* np)
{
	int* ip;
	do {
		if (np->parent)
			np = np->parent;
		ip = (int *) get_property(np, "#size-cells", NULL);
		if (ip != NULL)
			return *ip;
	} while (np->parent);
	/* No #size-cells property for the root node, default to 1 */
	return 1;
}

static unsigned long __init
map_addr(struct device_node *np, unsigned long space, unsigned long addr)
{
	int na;
	unsigned int *ranges;
	int rlen = 0;
	unsigned int type;

	type = (space >> 24) & 3;
	if (type == 0)
		return addr;

	while ((np = np->parent) != NULL) {
		if (strcmp(np->type, "pci") != 0)
			continue;
		/* PCI bridge: map the address through the ranges property */
		na = prom_n_addr_cells(np);
		ranges = (unsigned int *) get_property(np, "ranges", &rlen);
		while ((rlen -= (na + 5) * sizeof(unsigned int)) >= 0) {
			if (((ranges[0] >> 24) & 3) == type
			    && ranges[2] <= addr
			    && addr - ranges[2] < ranges[na+4]) {
				/* ok, this matches, translate it */
				addr += ranges[na+2] - ranges[2];
				break;
			}
			ranges += na + 5;
		}
	}
	return addr;
}

static unsigned long __init
interpret_pci_props(struct device_node *np, unsigned long mem_start,
		    int naddrc, int nsizec)
{
	struct address_range *adr;
	struct pci_reg_property *pci_addrs;
	int i, l, *ip;

	pci_addrs = (struct pci_reg_property *)
		get_property(np, "assigned-addresses", &l);
	if (pci_addrs != 0 && l >= sizeof(struct pci_reg_property)) {
		i = 0;
		adr = (struct address_range *) mem_start;
		while ((l -= sizeof(struct pci_reg_property)) >= 0) {
			adr[i].space = pci_addrs[i].addr.a_hi;
			adr[i].address = map_addr(np, pci_addrs[i].addr.a_hi,
						  pci_addrs[i].addr.a_lo);
			adr[i].size = pci_addrs[i].size_lo;
			++i;
		}
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	if (use_of_interrupt_tree)
		return mem_start;

	ip = (int *) get_property(np, "AAPL,interrupts", &l);
	if (ip == 0 && np->parent)
		ip = (int *) get_property(np->parent, "AAPL,interrupts", &l);
	if (ip == 0)
		ip = (int *) get_property(np, "interrupts", &l);
	if (ip != 0) {
		np->intrs = (struct interrupt_info *) mem_start;
		np->n_intrs = l / sizeof(int);
		mem_start += np->n_intrs * sizeof(struct interrupt_info);
		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ip++;
			np->intrs[i].sense = 1;
		}
	}

	return mem_start;
}

static unsigned long __init
interpret_dbdma_props(struct device_node *np, unsigned long mem_start,
		      int naddrc, int nsizec)
{
	struct reg_property *rp;
	struct address_range *adr;
	unsigned long base_address;
	int i, l, *ip;
	struct device_node *db;

	base_address = 0;
	for (db = np->parent; db != NULL; db = db->parent) {
		if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
			base_address = db->addrs[0].address;
			break;
		}
	}

	rp = (struct reg_property *) get_property(np, "reg", &l);
	if (rp != 0 && l >= sizeof(struct reg_property)) {
		i = 0;
		adr = (struct address_range *) mem_start;
		while ((l -= sizeof(struct reg_property)) >= 0) {
			adr[i].space = 2;
			adr[i].address = rp[i].address + base_address;
			adr[i].size = rp[i].size;
			++i;
		}
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	if (use_of_interrupt_tree)
		return mem_start;

	ip = (int *) get_property(np, "AAPL,interrupts", &l);
	if (ip == 0)
		ip = (int *) get_property(np, "interrupts", &l);
	if (ip != 0) {
		np->intrs = (struct interrupt_info *) mem_start;
		np->n_intrs = l / sizeof(int);
		mem_start += np->n_intrs * sizeof(struct interrupt_info);
		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ip++;
			np->intrs[i].sense = 1;
		}
	}

	return mem_start;
}

static unsigned long __init
interpret_macio_props(struct device_node *np, unsigned long mem_start,
		      int naddrc, int nsizec)
{
	struct reg_property *rp;
	struct address_range *adr;
	unsigned long base_address;
	int i, l, *ip;
	struct device_node *db;

	base_address = 0;
	for (db = np->parent; db != NULL; db = db->parent) {
		if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
			base_address = db->addrs[0].address;
			break;
		}
	}

	rp = (struct reg_property *) get_property(np, "reg", &l);
	if (rp != 0 && l >= sizeof(struct reg_property)) {
		i = 0;
		adr = (struct address_range *) mem_start;
		while ((l -= sizeof(struct reg_property)) >= 0) {
			adr[i].space = 2;
			adr[i].address = rp[i].address + base_address;
			adr[i].size = rp[i].size;
			++i;
		}
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	if (use_of_interrupt_tree)
		return mem_start;

	ip = (int *) get_property(np, "interrupts", &l);
	if (ip == 0)
		ip = (int *) get_property(np, "AAPL,interrupts", &l);
	if (ip != 0) {
		np->intrs = (struct interrupt_info *) mem_start;
		np->n_intrs = l / sizeof(int);
		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ip++;
			np->intrs[i].sense = 1;
		}
		mem_start += np->n_intrs * sizeof(struct interrupt_info);
	}

	return mem_start;
}

static unsigned long __init
interpret_isa_props(struct device_node *np, unsigned long mem_start,
		    int naddrc, int nsizec)
{
	struct isa_reg_property *rp;
	struct address_range *adr;
	int i, l, *ip;

	rp = (struct isa_reg_property *) get_property(np, "reg", &l);
	if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
		i = 0;
		adr = (struct address_range *) mem_start;
		while ((l -= sizeof(struct reg_property)) >= 0) {
			adr[i].space = rp[i].space;
			adr[i].address = rp[i].address
				+ (adr[i].space? 0: _ISA_MEM_BASE);
			adr[i].size = rp[i].size;
			++i;
		}
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	if (use_of_interrupt_tree)
		return mem_start;

	ip = (int *) get_property(np, "interrupts", &l);
	if (ip != 0) {
		np->intrs = (struct interrupt_info *) mem_start;
		np->n_intrs = l / (2 * sizeof(int));
		mem_start += np->n_intrs * sizeof(struct interrupt_info);
		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ip++;
			np->intrs[i].sense = *ip++;
		}
	}

	return mem_start;
}

static unsigned long __init
interpret_root_props(struct device_node *np, unsigned long mem_start,
		     int naddrc, int nsizec)
{
	struct address_range *adr;
	int i, l, *ip;
	unsigned int *rp;
	int rpsize = (naddrc + nsizec) * sizeof(unsigned int);

	rp = (unsigned int *) get_property(np, "reg", &l);
	if (rp != 0 && l >= rpsize) {
		i = 0;
		adr = (struct address_range *) mem_start;
		while ((l -= rpsize) >= 0) {
			adr[i].space = (naddrc >= 2? rp[naddrc-2]: 2);
			adr[i].address = rp[naddrc - 1];
			adr[i].size = rp[naddrc + nsizec - 1];
			++i;
			rp += naddrc + nsizec;
		}
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	if (use_of_interrupt_tree)
		return mem_start;

	ip = (int *) get_property(np, "AAPL,interrupts", &l);
	if (ip == 0)
		ip = (int *) get_property(np, "interrupts", &l);
	if (ip != 0) {
		np->intrs = (struct interrupt_info *) mem_start;
		np->n_intrs = l / sizeof(int);
		mem_start += np->n_intrs * sizeof(struct interrupt_info);
		for (i = 0; i < np->n_intrs; ++i) {
			np->intrs[i].line = *ip++;
			np->intrs[i].sense = 1;
		}
	}

	return mem_start;
}

/*
 * Work out the sense (active-low level / active-high edge)
 * of each interrupt from the device tree.
 */
void __init
prom_get_irq_senses(unsigned char *senses, int off, int max)
{
	struct device_node *np;
	int i, j;

	/* default to level-triggered */
	memset(senses, 1, max - off);
	if (!use_of_interrupt_tree)
		return;

	for (np = allnodes; np != 0; np = np->allnext) {
		for (j = 0; j < np->n_intrs; j++) {
			i = np->intrs[j].line;
			if (i >= off && i < max) {
				if (np->intrs[j].sense == 1)
					senses[i-off] = (IRQ_SENSE_LEVEL
						| IRQ_POLARITY_NEGATIVE);
				else
					senses[i-off] = (IRQ_SENSE_EDGE
						| IRQ_POLARITY_POSITIVE);
			}
		}
	}
}

/*
 * Construct and return a list of the device_nodes with a given name.
 */
struct device_node *
find_devices(const char *name)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}

/*
 * Construct and return a list of the device_nodes with a given type.
 */
struct device_node *
find_type_devices(const char *type)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}

/*
 * Returns all nodes linked together
 */
struct device_node *
find_all_nodes(void)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		*prevp = np;
		prevp = &np->next;
	}
	*prevp = NULL;
	return head;
}

/* Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int
device_is_compatible(struct device_node *device, const char *compat)
{
	const char* cp;
	int cplen, l;

	cp = (char *) get_property(device, "compatible", &cplen);
	if (cp == NULL)
		return 0;
	while (cplen > 0) {
		if (strncasecmp(cp, compat, strlen(compat)) == 0)
			return 1;
		l = strlen(cp) + 1;
		cp += l;
		cplen -= l;
	}

	return 0;
}


/*
 * Indicates whether the root node has a given value in its
 * compatible property.
 */
int
machine_is_compatible(const char *compat)
{
	struct device_node *root;

	root = find_path_device("/");
	if (root == 0)
		return 0;
	return device_is_compatible(root, compat);
}

/*
 * Construct and return a list of the device_nodes with a given type
 * and compatible property.
 */
struct device_node *
find_compatible_devices(const char *type, const char *compat)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (type != NULL
		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
			continue;
		if (device_is_compatible(np, compat)) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = NULL;
	return head;
}

/*
 * Find the device_node with a given full_name.
 */
struct device_node *
find_path_device(const char *path)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
			return np;
	return NULL;
}

/*******
 *
 * New implementation of the OF "find" APIs, return a refcounted
 * object, call of_node_put() when done. Currently, still lacks
 * locking as old implementation, this is beeing done for ppc64.
 *
 * Note that property management will need some locking as well,
 * this isn't dealt with yet
 *
 *******/

/**
 *	of_find_node_by_name - Find a node by it's "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np = from ? from->allnext : allnodes;

	for (; np != 0; np = np->allnext)
		if (np->name != 0 && strcasecmp(np->name, name) == 0)
			break;
	if (from)
		of_node_put(from);
	return of_node_get(np);
}

/**
 *	of_find_node_by_type - Find a node by it's "device_type" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np = from ? from->allnext : allnodes;

	for (; np != 0; np = np->allnext)
		if (np->type != 0 && strcasecmp(np->type, type) == 0)
			break;
	if (from)
		of_node_put(from);
	return of_node_get(np);
}

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in it's "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np = from ? from->allnext : allnodes;

	for (; np != 0; np = np->allnext) {
		if (type != NULL
		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
			continue;
		if (device_is_compatible(np, compatible))
			break;
	}
	if (from)
		of_node_put(from);
	return of_node_get(np);
}

/**
 *	of_find_node_by_path - Find a node matching a full OF path
 *	@path:	The full path to match
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
	struct device_node *np = allnodes;

	for (; np != 0; np = np->allnext)
		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
			break;
	return of_node_get(np);
}

/**
 *	of_find_all_nodes - Get next node in global list
 *	@prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	return of_node_get(prev ? prev->allnext : allnodes);
}

/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	return node ? of_node_get(node->parent) : NULL;
}

/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
				      struct device_node *prev)
{
	struct device_node *next = prev ? prev->sibling : node->child;

	for (; next != 0; next = next->sibling)
		if (of_node_get(next))
			break;
	if (prev)
		of_node_put(prev);
	return next;
}

/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns the node itself or NULL if gone. Current implementation
 *	does nothing as we don't yet do dynamic node allocation on ppc32
 */
struct device_node *of_node_get(struct device_node *node)
{
	return node;
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Current implementation does nothing as we don't yet do dynamic node
 *	allocation on ppc32
 */
void  of_node_put(struct device_node *node)
{
}

/*
 * Find the device_node with a given phandle.
 */
static struct device_node * __init
find_phandle(phandle ph)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->node == ph)
			return np;
	return NULL;
}

/*
 * Find a property with a given name for a given node
 * and return the value.
 */
unsigned char *
get_property(struct device_node *np, const char *name, int *lenp)
{
	struct property *pp;

	for (pp = np->properties; pp != 0; pp = pp->next)
		if (pp->name != NULL && strcmp(pp->name, name) == 0) {
			if (lenp != 0)
				*lenp = pp->length;
			return pp->value;
		}
	return NULL;
}

/*
 * Add a property to a node
 */
int
prom_add_property(struct device_node* np, struct property* prop)
{
	struct property **next = &np->properties;

	prop->next = NULL;
	while (*next)
		next = &(*next)->next;
	*next = prop;

	return 0;
}

/* I quickly hacked that one, check against spec ! */
static inline unsigned long
bus_space_to_resource_flags(unsigned int bus_space)
{
	u8 space = (bus_space >> 24) & 0xf;
	if (space == 0)
		space = 0x02;
	if (space == 0x02)
		return IORESOURCE_MEM;
	else if (space == 0x01)
		return IORESOURCE_IO;
	else {
		printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
		    	bus_space);
		return 0;
	}
}

static struct resource*
find_parent_pci_resource(struct pci_dev* pdev, struct address_range *range)
{
	unsigned long mask;
	int i;

	/* Check this one */
	mask = bus_space_to_resource_flags(range->space);
	for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
		if ((pdev->resource[i].flags & mask) == mask &&
			pdev->resource[i].start <= range->address &&
			pdev->resource[i].end > range->address) {
				if ((range->address + range->size - 1) > pdev->resource[i].end) {
					/* Add better message */
					printk(KERN_WARNING "PCI/OF resource overlap !\n");
					return NULL;
				}
				break;
			}
	}
	if (i == DEVICE_COUNT_RESOURCE)
		return NULL;
	return &pdev->resource[i];
}

/*
 * Request an OF device resource. Currently handles child of PCI devices,
 * or other nodes attached to the root node. Ultimately, put some
 * link to resources in the OF node.
 */
struct resource*
request_OF_resource(struct device_node* node, int index, const char* name_postfix)
{
	struct pci_dev* pcidev;
	u8 pci_bus, pci_devfn;
	unsigned long iomask;
	struct device_node* nd;
	struct resource* parent;
	struct resource *res = NULL;
	int nlen, plen;

	if (index >= node->n_addrs)
		goto fail;

	/* Sanity check on bus space */
	iomask = bus_space_to_resource_flags(node->addrs[index].space);
	if (iomask & IORESOURCE_MEM)
		parent = &iomem_resource;
	else if (iomask & IORESOURCE_IO)
		parent = &ioport_resource;
	else
		goto fail;

	/* Find a PCI parent if any */
	nd = node;
	pcidev = NULL;
	while(nd) {
		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
			pcidev = pci_find_slot(pci_bus, pci_devfn);
		if (pcidev) break;
		nd = nd->parent;
	}
	if (pcidev)
		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
	if (!parent) {
		printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
			node->name);
		goto fail;
	}

	res = __request_region(parent, node->addrs[index].address, node->addrs[index].size, NULL);
	if (!res)
		goto fail;
	nlen = strlen(node->name);
	plen = name_postfix ? strlen(name_postfix) : 0;
	res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
	if (res->name) {
		strcpy((char *)res->name, node->name);
		if (plen)
			strcpy((char *)res->name+nlen, name_postfix);
	}
	return res;
fail:
	return NULL;
}

int
release_OF_resource(struct device_node* node, int index)
{
	struct pci_dev* pcidev;
	u8 pci_bus, pci_devfn;
	unsigned long iomask, start, end;
	struct device_node* nd;
	struct resource* parent;
	struct resource *res = NULL;

	if (index >= node->n_addrs)
		return -EINVAL;

	/* Sanity check on bus space */
	iomask = bus_space_to_resource_flags(node->addrs[index].space);
	if (iomask & IORESOURCE_MEM)
		parent = &iomem_resource;
	else if (iomask & IORESOURCE_IO)
		parent = &ioport_resource;
	else
		return -EINVAL;

	/* Find a PCI parent if any */
	nd = node;
	pcidev = NULL;
	while(nd) {
		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
			pcidev = pci_find_slot(pci_bus, pci_devfn);
		if (pcidev) break;
		nd = nd->parent;
	}
	if (pcidev)
		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
	if (!parent) {
		printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
			node->name);
		return -ENODEV;
	}

	/* Find us in the parent and its childs */
	res = parent->child;
	start = node->addrs[index].address;
	end = start + node->addrs[index].size - 1;
	while (res) {
		if (res->start == start && res->end == end &&
		    (res->flags & IORESOURCE_BUSY))
		    	break;
		if (res->start <= start && res->end >= end)
			res = res->child;
		else
			res = res->sibling;
	}
	if (!res)
		return -ENODEV;

	kfree(res->name);
	res->name = NULL;
	release_resource(res);
	kfree(res);

	return 0;
}

#if 0
void
print_properties(struct device_node *np)
{
	struct property *pp;
	char *cp;
	int i, n;

	for (pp = np->properties; pp != 0; pp = pp->next) {
		printk(KERN_INFO "%s", pp->name);
		for (i = strlen(pp->name); i < 16; ++i)
			printk(" ");
		cp = (char *) pp->value;
		for (i = pp->length; i > 0; --i, ++cp)
			if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
			    || (i == 1 && *cp != 0))
				break;
		if (i == 0 && pp->length > 1) {
			/* looks like a string */
			printk(" %s\n", (char *) pp->value);
		} else {
			/* dump it in hex */
			n = pp->length;
			if (n > 64)
				n = 64;
			if (pp->length % 4 == 0) {
				unsigned int *p = (unsigned int *) pp->value;

				n /= 4;
				for (i = 0; i < n; ++i) {
					if (i != 0 && (i % 4) == 0)
						printk("\n                ");
					printk(" %08x", *p++);
				}
			} else {
				unsigned char *bp = pp->value;

				for (i = 0; i < n; ++i) {
					if (i != 0 && (i % 16) == 0)
						printk("\n                ");
					printk(" %02x", *bp++);
				}
			}
			printk("\n");
			if (pp->length > 64)
				printk("                 ... (length = %d)\n",
				       pp->length);
		}
	}
}
#endif

static DEFINE_SPINLOCK(rtas_lock);

/* this can be called after setup -- Cort */
int
call_rtas(const char *service, int nargs, int nret,
	  unsigned long *outputs, ...)
{
	va_list list;
	int i;
	unsigned long s;
	struct device_node *rtas;
	int *tokp;
	union {
		unsigned long words[16];
		double align;
	} u;

	rtas = find_devices("rtas");
	if (rtas == NULL)
		return -1;
	tokp = (int *) get_property(rtas, service, NULL);
	if (tokp == NULL) {
		printk(KERN_ERR "No RTAS service called %s\n", service);
		return -1;
	}
	u.words[0] = *tokp;
	u.words[1] = nargs;
	u.words[2] = nret;
	va_start(list, outputs);
	for (i = 0; i < nargs; ++i)
		u.words[i+3] = va_arg(list, unsigned long);
	va_end(list);

	/*
	 * RTAS doesn't use floating point.
	 * Or at least, according to the CHRP spec we enter RTAS
	 * with FP disabled, and it doesn't change the FP registers.
	 *  -- paulus.
	 */
	spin_lock_irqsave(&rtas_lock, s);
	enter_rtas((void *)__pa(&u));
	spin_unlock_irqrestore(&rtas_lock, s);

	if (nret > 1 && outputs != NULL)
		for (i = 0; i < nret-1; ++i)
			outputs[i] = u.words[i+nargs+4];
	return u.words[nargs+3];
}