/*
* Board setup routines for the Radstone PPC7D boards.
*
* Author: James Chapman <jchapman@katalix.com>
*
* Based on code done by Rabeeh Khoury - rabeeh@galileo.co.il
* Based on code done by - Mark A. Greer <mgreer@mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
/* Radstone PPC7D boards are rugged VME boards with PPC 7447A CPUs,
* Discovery-II, dual gigabit ethernet, dual PMC, USB, keyboard/mouse,
* 4 serial ports, 2 high speed serial ports (MPSCs) and optional
* SCSI / VGA.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/reboot.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/serial.h>
#include <linux/tty.h> /* for linux/serial_core.h */
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/mv643xx.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/time.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/vga.h>
#include <asm/open_pic.h>
#include <asm/i8259.h>
#include <asm/todc.h>
#include <asm/bootinfo.h>
#include <asm/mpc10x.h>
#include <asm/pci-bridge.h>
#include <asm/mv64x60.h>
#include "radstone_ppc7d.h"
#undef DEBUG
#define PPC7D_RST_PIN 17 /* GPP17 */
extern u32 mv64360_irq_base;
extern spinlock_t rtc_lock;
static struct mv64x60_handle bh;
static int ppc7d_has_alma;
extern void gen550_progress(char *, unsigned short);
extern void gen550_init(int, struct uart_port *);
/* FIXME - move to h file */
extern int ds1337_do_command(int id, int cmd, void *arg);
#define DS1337_GET_DATE 0
#define DS1337_SET_DATE 1
/* residual data */
unsigned char __res[sizeof(bd_t)];
/*****************************************************************************
* Serial port code
*****************************************************************************/
#if defined(CONFIG_KGDB) || defined(CONFIG_SERIAL_TEXT_DEBUG)
static void __init ppc7d_early_serial_map(void)
{
#if defined(CONFIG_SERIAL_MPSC_CONSOLE)
mv64x60_progress_init(CONFIG_MV64X60_NEW_BASE);
#elif defined(CONFIG_SERIAL_8250)
struct uart_port serial_req;
/* Setup serial port access */
memset(&serial_req, 0, sizeof(serial_req));
serial_req.uartclk = UART_CLK;
serial_req.irq = 4;
serial_req.flags = STD_COM_FLAGS;
serial_req.iotype = UPIO_MEM;
serial_req.membase = (u_char *) PPC7D_SERIAL_0;
gen550_init(0, &serial_req);
if (early_serial_setup(&serial_req) != 0)
printk(KERN_ERR "Early serial init of port 0 failed\n");
/* Assume early_serial_setup() doesn't modify serial_req */
serial_req.line = 1;
serial_req.irq = 3;
serial_req.membase = (u_char *) PPC7D_SERIAL_1;
gen550_init(1, &serial_req);
if (early_serial_setup(&serial_req) != 0)
printk(KERN_ERR "Early serial init of port 1 failed\n");
#else
#error CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG has no supported CONFIG_SERIAL_XXX
#endif
}
#endif /* CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG */
/*****************************************************************************
* Low-level board support code
*****************************************************************************/
static unsigned long __init ppc7d_find_end_of_memory(void)
{
bd_t *bp = (bd_t *) __res;
if (bp->bi_memsize)
return bp->bi_memsize;
return (256 * 1024 * 1024);
}
static void __init ppc7d_map_io(void)
{
/* remove temporary mapping */
mtspr(SPRN_DBAT3U, 0x00000000);
mtspr(SPRN_DBAT3L, 0x00000000);
io_block_mapping(0xe8000000, 0xe8000000, 0x08000000, _PAGE_IO);
io_block_mapping(0xfe000000, 0xfe000000, 0x02000000, _PAGE_IO);
}
static void ppc7d_restart(char *cmd)
{
u32 data;
/* Disable GPP17 interrupt */
data = mv64x60_read(&bh, MV64x60_GPP_INTR_MASK);
data &= ~(1 << PPC7D_RST_PIN);
mv64x60_write(&bh, MV64x60_GPP_INTR_MASK, data);
/* Configure MPP17 as GPP */
data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2);
data &= ~(0x0000000f << 4);
mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data);
/* Enable pin GPP17 for output */
data = mv64x60_read(&bh, MV64x60_GPP_IO_CNTL);
data |= (1 << PPC7D_RST_PIN);
mv64x60_write(&bh, MV64x60_GPP_IO_CNTL, data);
/* Toggle GPP9 pin to reset the board */
mv64x60_write(&bh, MV64x60_GPP_VALUE_CLR, 1 << PPC7D_RST_PIN);
mv64x60_write(&bh, MV64x60_GPP_VALUE_SET, 1 << PPC7D_RST_PIN);
for (;;) ; /* Spin until reset happens */
/* NOTREACHED */
}
static void ppc7d_power_off(void)
{
u32 data;
local_irq_disable();
/* Ensure that internal MV643XX watchdog is disabled.
* The Disco watchdog uses MPP17 on this hardware.
*/
data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2);
data &= ~(0x0000000f << 4);
mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data);
data = mv64x60_read(&bh, MV64x60_WDT_WDC);
if (data & 0x80000000) {
mv64x60_write(&bh, MV64x60_WDT_WDC, 1 << 24);
mv64x60_write(&bh, MV64x60_WDT_WDC, 2 << 24);
}
for (;;) ; /* No way to shut power off with software */
/* NOTREACHED */
}
static void ppc7d_halt(void)
{
ppc7d_power_off();
/* NOTREACHED */
}
static unsigned long ppc7d_led_no_pulse;
static int __init ppc7d_led_pulse_disable(char *str)
{
ppc7d_led_no_pulse = 1;
return 1;
}
/* This kernel option disables the heartbeat pulsing of a board LED */
__setup("ledoff", ppc7d_led_pulse_disable);
static void ppc7d_heartbeat(void)
{
u32 data32;
u8 data8;
static int max706_wdog = 0;
/* Unfortunately we can't access the LED control registers
* during early init because they're on the CPLD which is the
* other side of a PCI bridge which goes unreachable during
* PCI scan. So write the LEDs only if the MV64360 watchdog is
* enabled (i.e. userspace apps are running so kernel is up)..
*/
data32 = mv64x60_read(&bh, MV64x60_WDT_WDC);
if (data32 & 0x80000000) {
/* Enable MAX706 watchdog if not done already */
if (!max706_wdog) {
outb(3, PPC7D_CPLD_RESET);
max706_wdog = 1;
}
/* Hit the MAX706 watchdog */
outb(0, PPC7D_CPLD_WATCHDOG_TRIG);
/* Pulse LED DS219 if not disabled */
if (!ppc7d_led_no_pulse) {
static int led_on = 0;
data8 = inb(PPC7D_CPLD_LEDS);
if (led_on)
data8 &= ~PPC7D_CPLD_LEDS_DS219_MASK;
else
data8 |= PPC7D_CPLD_LEDS_DS219_MASK;
outb(data8, PPC7D_CPLD_LEDS);
led_on = !led_on;
}
}
ppc_md.heartbeat_count = ppc_md.heartbeat_reset;
}
static int ppc7d_show_cpuinfo(struct seq_file *m)
{
u8 val;
u8 val1, val2;
static int flash_sizes[4] = { 64, 32, 0, 16 };
static int flash_banks[4] = { 4, 3, 2, 1 };
static int sdram_bank_sizes[4] = { 128, 256, 512, 1 };
int sdram_num_banks = 2;
static char *pci_modes[] = { "PCI33", "PCI66",
"Unknown", "Unknown",
"PCIX33", "PCIX66",
"PCIX100", "PCIX133"
};
seq_printf(m, "vendor\t\t: Radstone Technology\n");
seq_printf(m, "machine\t\t: PPC7D\n");
val = inb(PPC7D_CPLD_BOARD_REVISION);
val1 = (val & PPC7D_CPLD_BOARD_REVISION_NUMBER_MASK) >> 5;
val2 = (val & PPC7D_CPLD_BOARD_REVISION_LETTER_MASK);
seq_printf(m, "revision\t: %hd%c%c\n",
val1,
(val2 <= 0x18) ? 'A' + val2 : 'Y',
(val2 > 0x18) ? 'A' + (val2 - 0x19) : ' ');
val = inb(PPC7D_CPLD_MOTHERBOARD_TYPE);
val1 = val & PPC7D_CPLD_MB_TYPE_PLL_MASK;
val2 = val & (PPC7D_CPLD_MB_TYPE_ECC_FITTED_MASK |
PPC7D_CPLD_MB_TYPE_ECC_ENABLE_MASK);
seq_printf(m, "bus speed\t: %dMHz\n",
(val1 == PPC7D_CPLD_MB_TYPE_PLL_133) ? 133 :
(val1 == PPC7D_CPLD_MB_TYPE_PLL_100) ? 100 :
(val1 == PPC7D_CPLD_MB_TYPE_PLL_64) ? 64 : 0);
val = inb(PPC7D_CPLD_MEM_CONFIG);
if (val & PPC7D_CPLD_SDRAM_BANK_NUM_MASK) sdram_num_banks--;
val = inb(PPC7D_CPLD_MEM_CONFIG_EXTEND);
val1 = (val & PPC7D_CPLD_SDRAM_BANK_SIZE_MASK) >> 6;
seq_printf(m, "SDRAM\t\t: %d banks of %d%c, total %d%c",
sdram_num_banks,
sdram_bank_sizes[val1],
(sdram_bank_sizes[val1] < 128) ? 'G' : 'M',
sdram_num_banks * sdram_bank_sizes[val1],
(sdram_bank_sizes[val1] < 128) ? 'G' : 'M');
if (val2 & PPC7D_CPLD_MB_TYPE_ECC_FITTED_MASK) {
seq_printf(m, " [ECC %sabled]",
(val2 & PPC7D_CPLD_MB_TYPE_ECC_ENABLE_MASK) ? "en" :
"dis");
}
seq_printf(m, "\n");
val1 = (val & PPC7D_CPLD_FLASH_DEV_SIZE_MASK);
val2 = (val & PPC7D_CPLD_FLASH_BANK_NUM_MASK) >> 2;
seq_printf(m, "FLASH\t\t: %d banks of %dM, total %dM\n",
flash_banks[val2], flash_sizes[val1],
flash_banks[val2] * flash_sizes[val1]);
val = inb(PPC7D_CPLD_FLASH_WRITE_CNTL);
val1 = inb(PPC7D_CPLD_SW_FLASH_WRITE_PROTECT);
seq_printf(m, " write links\t: %s%s%s%s\n",
(val & PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK) ? "WRITE " : "",
(val & PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK) ? "BOOT " : "",
(val & PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK) ? "USER " : "",
(val & (PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK |
PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK |
PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK)) ==
0 ? "NONE" : "");
seq_printf(m, " write sector h/w enables: %s%s%s%s%s\n",
(val & PPD7D_CPLD_FLASH_CNTL_RECO_WR_MASK) ? "RECOVERY " :
"",
(val & PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK) ? "BOOT " : "",
(val & PPD7D_CPLD_FLASH_CNTL_USER_WR_MASK) ? "USER " : "",
(val1 & PPC7D_CPLD_FLASH_CNTL_NVRAM_PROT_MASK) ? "NVRAM " :
"",
(((val &
(PPD7D_CPLD_FLASH_CNTL_RECO_WR_MASK |
PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK |
PPD7D_CPLD_FLASH_CNTL_BOOT_WR_MASK)) == 0)
&& ((val1 & PPC7D_CPLD_FLASH_CNTL_NVRAM_PROT_MASK) ==
0)) ? "NONE" : "");
val1 =
inb(PPC7D_CPLD_SW_FLASH_WRITE_PROTECT) &
(PPC7D_CPLD_SW_FLASH_WRPROT_SYSBOOT_MASK |
PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK);
seq_printf(m, " software sector enables: %s%s%s\n",
(val1 & PPC7D_CPLD_SW_FLASH_WRPROT_SYSBOOT_MASK) ? "SYSBOOT "
: "",
(val1 & PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK) ? "USER " : "",
(val1 == 0) ? "NONE " : "");
seq_printf(m, "Boot options\t: %s%s%s%s\n",
(val & PPC7D_CPLD_FLASH_CNTL_ALTBOOT_LINK_MASK) ?
"ALTERNATE " : "",
(val & PPC7D_CPLD_FLASH_CNTL_VMEBOOT_LINK_MASK) ? "VME " :
"",
(val & PPC7D_CPLD_FLASH_CNTL_RECBOOT_LINK_MASK) ? "RECOVERY "
: "",
((val &
(PPC7D_CPLD_FLASH_CNTL_ALTBOOT_LINK_MASK |
PPC7D_CPLD_FLASH_CNTL_VMEBOOT_LINK_MASK |
PPC7D_CPLD_FLASH_CNTL_RECBOOT_LINK_MASK)) ==
0) ? "NONE" : "");
val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_1);
seq_printf(m, "Fitted modules\t: %s%s%s%s\n",
(val & PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK) ? "" : "PMC1 ",
(val & PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK) ? "" : "PMC2 ",
(val & PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK) ? "AFIX " : "",
((val & (PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK |
PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK |
PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK)) ==
(PPC7D_CPLD_EQPT_PRES_1_PMC1_MASK |
PPC7D_CPLD_EQPT_PRES_1_PMC2_MASK)) ? "NONE" : "");
if (val & PPC7D_CPLD_EQPT_PRES_1_AFIX_MASK) {
static const char *ids[] = {
"unknown",
"1553 (Dual Channel)",
"1553 (Single Channel)",
"8-bit SCSI + VGA",
"16-bit SCSI + VGA",
"1553 (Single Channel with sideband)",
"1553 (Dual Channel with sideband)",
NULL
};
u8 id = __raw_readb((void *)PPC7D_AFIX_REG_BASE + 0x03);
seq_printf(m, "AFIX module\t: 0x%hx [%s]\n", id,
id < 7 ? ids[id] : "unknown");
}
val = inb(PPC7D_CPLD_PCI_CONFIG);
val1 = (val & PPC7D_CPLD_PCI_CONFIG_PCI0_MASK) >> 4;
val2 = (val & PPC7D_CPLD_PCI_CONFIG_PCI1_MASK);
seq_printf(m, "PCI#0\t\t: %s\nPCI#1\t\t: %s\n",
pci_modes[val1], pci_modes[val2]);
val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_2);
seq_printf(m, "PMC1\t\t: %s\nPMC2\t\t: %s\n",
(val & PPC7D_CPLD_EQPT_PRES_3_PMC1_V_MASK) ? "3.3v" : "5v",
(val & PPC7D_CPLD_EQPT_PRES_3_PMC2_V_MASK) ? "3.3v" : "5v");
seq_printf(m, "PMC power source: %s\n",
(val & PPC7D_CPLD_EQPT_PRES_3_PMC_POWER_MASK) ? "VME" :
"internal");
val = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_4);
val2 = inb(PPC7D_CPLD_EQUIPMENT_PRESENT_2);
seq_printf(m, "Fit options\t: %s%s%s%s%s%s%s\n",
(val & PPC7D_CPLD_EQPT_PRES_4_LPT_MASK) ? "LPT " : "",
(val & PPC7D_CPLD_EQPT_PRES_4_PS2_FITTED) ? "PS2 " : "",
(val & PPC7D_CPLD_EQPT_PRES_4_USB2_FITTED) ? "USB2 " : "",
(val2 & PPC7D_CPLD_EQPT_PRES_2_UNIVERSE_MASK) ? "VME " : "",
(val2 & PPC7D_CPLD_EQPT_PRES_2_COM36_MASK) ? "COM3-6 " : "",
(val2 & PPC7D_CPLD_EQPT_PRES_2_GIGE_MASK) ? "eth0 " : "",
(val2 & PPC7D_CPLD_EQPT_PRES_2_DUALGIGE_MASK) ? "eth1 " :
"");
val = inb(PPC7D_CPLD_ID_LINK);
val1 = val & (PPC7D_CPLD_ID_LINK_E6_MASK |
PPC7D_CPLD_ID_LINK_E7_MASK |
PPC7D_CPLD_ID_LINK_E12_MASK |
PPC7D_CPLD_ID_LINK_E13_MASK);
val = inb(PPC7D_CPLD_FLASH_WRITE_CNTL) &
(PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK |
PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK |
PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK);
seq_printf(m, "Board links present: %s%s%s%s%s%s%s%s\n",
(val1 & PPC7D_CPLD_ID_LINK_E6_MASK) ? "E6 " : "",
(val1 & PPC7D_CPLD_ID_LINK_E7_MASK) ? "E7 " : "",
(val & PPD7D_CPLD_FLASH_CNTL_WR_LINK_MASK) ? "E9 " : "",
(val & PPD7D_CPLD_FLASH_CNTL_BOOT_LINK_MASK) ? "E10 " : "",
(val & PPD7D_CPLD_FLASH_CNTL_USER_LINK_MASK) ? "E11 " : "",
(val1 & PPC7D_CPLD_ID_LINK_E12_MASK) ? "E12 " : "",
(val1 & PPC7D_CPLD_ID_LINK_E13_MASK) ? "E13 " : "",
((val == 0) && (val1 == 0)) ? "NONE" : "");
val = inb(PPC7D_CPLD_WDOG_RESETSW_MASK);
seq_printf(m, "Front panel reset switch: %sabled\n",
(val & PPC7D_CPLD_WDOG_RESETSW_MASK) ? "dis" : "en");
return 0;
}
static void __init ppc7d_calibrate_decr(void)
{
ulong freq;
freq = 100000000 / 4;
pr_debug("time_init: decrementer frequency = %lu.%.6lu MHz\n",
freq / 1000000, freq % 1000000);
tb_ticks_per_jiffy = freq / HZ;
tb_to_us = mulhwu_scale_factor(freq, 1000000);
}
/*****************************************************************************
* Interrupt stuff
*****************************************************************************/
static irqreturn_t ppc7d_i8259_intr(int irq, void *dev_id)
{
u32 temp = mv64x60_read(&bh, MV64x60_GPP_INTR_CAUSE);
if (temp & (1 << 28)) {
i8259_irq();
mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, temp & (~(1 << 28)));
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/*
* Each interrupt cause is assigned an IRQ number.
* Southbridge has 16*2 (two 8259's) interrupts.
* Discovery-II has 96 interrupts (cause-hi, cause-lo, gpp x 32).
* If multiple interrupts are pending, get_irq() returns the
* lowest pending irq number first.
*
*
* IRQ # Source Trig Active
* =============================================================
*
* Southbridge
* -----------
* IRQ # Source Trig
* =============================================================
* 0 ISA High Resolution Counter Edge
* 1 Keyboard Edge
* 2 Cascade From (IRQ 8-15) Edge
* 3 Com 2 (Uart 2) Edge
* 4 Com 1 (Uart 1) Edge
* 5 PCI Int D/AFIX IRQZ ID4 (2,7) Level
* 6 GPIO Level
* 7 LPT Edge
* 8 RTC Alarm Edge
* 9 PCI Int A/PMC 2/AFIX IRQW ID1 (2,0) Level
* 10 PCI Int B/PMC 1/AFIX IRQX ID2 (2,1) Level
* 11 USB2 Level
* 12 Mouse Edge
* 13 Reserved internally by Ali M1535+
* 14 PCI Int C/VME/AFIX IRQY ID3 (2,6) Level
* 15 COM 5/6 Level
*
* 16..112 Discovery-II...
*
* MPP28 Southbridge Edge High
*
*
* Interrupts are cascaded through to the Discovery-II.
*
* PCI ---
* \
* CPLD --> ALI1535 -------> DISCOVERY-II
* INTF MPP28
*/
static void __init ppc7d_init_irq(void)
{
int irq;
pr_debug("%s\n", __FUNCTION__);
i8259_init(0, 0);
mv64360_init_irq();
/* IRQs 5,6,9,10,11,14,15 are level sensitive */
irq_desc[5].status |= IRQ_LEVEL;
irq_desc[6].status |= IRQ_LEVEL;
irq_desc[9].status |= IRQ_LEVEL;
irq_desc[10].status |= IRQ_LEVEL;
irq_desc[11].status |= IRQ_LEVEL;
irq_desc[14].status |= IRQ_LEVEL;
irq_desc[15].status |= IRQ_LEVEL;
/* GPP28 is edge triggered */
irq_desc[mv64360_irq_base + MV64x60_IRQ_GPP28].status &= ~IRQ_LEVEL;
}
static u32 ppc7d_irq_canonicalize(u32 irq)
{
if ((irq >= 16) && (irq < (16 + 96)))
irq -= 16;
return irq;
}
static int ppc7d_get_irq(void)
{
int irq;
irq = mv64360_get_irq();
if (irq == (mv64360_irq_base + MV64x60_IRQ_GPP28))
irq = i8259_irq();
return irq;
}
/*
* 9 PCI Int A/PMC 2/AFIX IRQW ID1 (2,0) Level
* 10 PCI Int B/PMC 1/AFIX IRQX ID2 (2,1) Level
* 14 PCI Int C/VME/AFIX IRQY ID3 (2,6) Level
* 5 PCI Int D/AFIX IRQZ ID4 (2,7) Level
*/
static int __init ppc7d_map_irq(struct pci_dev *dev, unsigned char idsel,
unsigned char pin)
{
static const char pci_irq_table[][4] =
/*
* PCI IDSEL/INTPIN->INTLINE
* A B C D
*/
{
{10, 14, 5, 9}, /* IDSEL 10 - PMC2 / AFIX IRQW */
{9, 10, 14, 5}, /* IDSEL 11 - PMC1 / AFIX IRQX */
{5, 9, 10, 14}, /* IDSEL 12 - AFIX IRQY */
{14, 5, 9, 10}, /* IDSEL 13 - AFIX IRQZ */
};
const long min_idsel = 10, max_idsel = 14, irqs_per_slot = 4;
pr_debug("%s: %04x/%04x/%x: idsel=%hx pin=%hu\n", __FUNCTION__,
dev->vendor, dev->device, PCI_FUNC(dev->devfn), idsel, pin);
return PCI_IRQ_TABLE_LOOKUP;
}
void __init ppc7d_intr_setup(void)
{
u32 data;
/*
* Define GPP 28 interrupt polarity as active high
* input signal and level triggered
*/
data = mv64x60_read(&bh, MV64x60_GPP_LEVEL_CNTL);
data &= ~(1 << 28);
mv64x60_write(&bh, MV64x60_GPP_LEVEL_CNTL, data);
data = mv64x60_read(&bh, MV64x60_GPP_IO_CNTL);
data &= ~(1 << 28);
mv64x60_write(&bh, MV64x60_GPP_IO_CNTL, data);
/* Config GPP intr ctlr to respond to level trigger */
data = mv64x60_read(&bh, MV64x60_COMM_ARBITER_CNTL);
data |= (1 << 10);
mv64x60_write(&bh, MV64x60_COMM_ARBITER_CNTL, data);
/* XXXX Erranum FEr PCI-#8 */
data = mv64x60_read(&bh, MV64x60_PCI0_CMD);
data &= ~((1 << 5) | (1 << 9));
mv64x60_write(&bh, MV64x60_PCI0_CMD, data);
data = mv64x60_read(&bh, MV64x60_PCI1_CMD);
data &= ~((1 << 5) | (1 << 9));
mv64x60_write(&bh, MV64x60_PCI1_CMD, data);
/*
* Dismiss and then enable interrupt on GPP interrupt cause
* for CPU #0
*/
mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~(1 << 28));
data = mv64x60_read(&bh, MV64x60_GPP_INTR_MASK);
data |= (1 << 28);
mv64x60_write(&bh, MV64x60_GPP_INTR_MASK, data);
/*
* Dismiss and then enable interrupt on CPU #0 high cause reg
* BIT27 summarizes GPP interrupts 23-31
*/
mv64x60_write(&bh, MV64360_IC_MAIN_CAUSE_HI, ~(1 << 27));
data = mv64x60_read(&bh, MV64360_IC_CPU0_INTR_MASK_HI);
data |= (1 << 27);
mv64x60_write(&bh, MV64360_IC_CPU0_INTR_MASK_HI, data);
}
/*****************************************************************************
* Platform device data fixup routines.
*****************************************************************************/
#if defined(CONFIG_SERIAL_MPSC)
static void __init ppc7d_fixup_mpsc_pdata(struct platform_device *pdev)
{
struct mpsc_pdata *pdata;
pdata = (struct mpsc_pdata *)pdev->dev.platform_data;
pdata->max_idle = 40;
pdata->default_baud = PPC7D_DEFAULT_BAUD;
pdata->brg_clk_src = PPC7D_MPSC_CLK_SRC;
pdata->brg_clk_freq = PPC7D_MPSC_CLK_FREQ;
return;
}
#endif
#if defined(CONFIG_MV643XX_ETH)
static void __init ppc7d_fixup_eth_pdata(struct platform_device *pdev)
{
struct mv643xx_eth_platform_data *eth_pd;
static u16 phy_addr[] = {
PPC7D_ETH0_PHY_ADDR,
PPC7D_ETH1_PHY_ADDR,
PPC7D_ETH2_PHY_ADDR,
};
int i;
eth_pd = pdev->dev.platform_data;
eth_pd->force_phy_addr = 1;
eth_pd->phy_addr = phy_addr[pdev->id];
eth_pd->tx_queue_size = PPC7D_ETH_TX_QUEUE_SIZE;
eth_pd->rx_queue_size = PPC7D_ETH_RX_QUEUE_SIZE;
/* Adjust IRQ by mv64360_irq_base */
for (i = 0; i < pdev->num_resources; i++) {
struct resource *r = &pdev->resource[i];
if (r->flags & IORESOURCE_IRQ) {
r->start += mv64360_irq_base;
r->end += mv64360_irq_base;
pr_debug("%s, uses IRQ %d\n", pdev->name,
(int)r->start);
}
}
}
#endif
#if defined(CONFIG_I2C_MV64XXX)
static void __init
ppc7d_fixup_i2c_pdata(struct platform_device *pdev)
{
struct mv64xxx_i2c_pdata *pdata;
int i;
pdata = pdev->dev.platform_data;
if (pdata == NULL) {
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (pdata == NULL)
return;
pdev->dev.platform_data = pdata;
}
/* divisors M=8, N=3 for 100kHz I2C from 133MHz system clock */
pdata->freq_m = 8;
pdata->freq_n = 3;
pdata->timeout = 500;
pdata->retries = 3;
/* Adjust IRQ by mv64360_irq_base */
for (i = 0; i < pdev->num_resources; i++) {
struct resource *r = &pdev->resource[i];
if (r->flags & IORESOURCE_IRQ) {
r->start += mv64360_irq_base;
r->end += mv64360_irq_base;
pr_debug("%s, uses IRQ %d\n", pdev->name, (int) r->start);
}
}
}
#endif
static int ppc7d_platform_notify(struct device *dev)
{
static struct {
char *bus_id;
void ((*rtn) (struct platform_device * pdev));
} dev_map[] = {
#if defined(CONFIG_SERIAL_MPSC)
{ MPSC_CTLR_NAME ".0", ppc7d_fixup_mpsc_pdata },
{ MPSC_CTLR_NAME ".1", ppc7d_fixup_mpsc_pdata },
#endif
#if defined(CONFIG_MV643XX_ETH)
{ MV643XX_ETH_NAME ".0", ppc7d_fixup_eth_pdata },
{ MV643XX_ETH_NAME ".1", ppc7d_fixup_eth_pdata },
{ MV643XX_ETH_NAME ".2", ppc7d_fixup_eth_pdata },
#endif
#if defined(CONFIG_I2C_MV64XXX)
{ MV64XXX_I2C_CTLR_NAME ".0", ppc7d_fixup_i2c_pdata },
#endif
};
struct platform_device *pdev;
int i;
if (dev && dev->bus_id)
for (i = 0; i < ARRAY_SIZE(dev_map); i++)
if (!strncmp(dev->bus_id, dev_map[i].bus_id,
BUS_ID_SIZE)) {
pdev = container_of(dev,
struct platform_device,
dev);
dev_map[i].rtn(pdev);
}
return 0;
}
/*****************************************************************************
* PCI device fixups.
* These aren't really fixups per se. They are used to init devices as they
* are found during PCI scan.
*
* The PPC7D has an HB8 PCI-X bridge which must be set up during a PCI
* scan in order to find other devices on its secondary side.
*****************************************************************************/
static void __init ppc7d_fixup_hb8(struct pci_dev *dev)
{
u16 val16;
if (dev->bus->number == 0) {
pr_debug("PCI: HB8 init\n");
pci_write_config_byte(dev, 0x1c,
((PPC7D_PCI0_IO_START_PCI_ADDR & 0xf000)
>> 8) | 0x01);
pci_write_config_byte(dev, 0x1d,
(((PPC7D_PCI0_IO_START_PCI_ADDR +
PPC7D_PCI0_IO_SIZE -
1) & 0xf000) >> 8) | 0x01);
pci_write_config_word(dev, 0x30,
PPC7D_PCI0_IO_START_PCI_ADDR >> 16);
pci_write_config_word(dev, 0x32,
((PPC7D_PCI0_IO_START_PCI_ADDR +
PPC7D_PCI0_IO_SIZE -
1) >> 16) & 0xffff);
pci_write_config_word(dev, 0x20,
PPC7D_PCI0_MEM0_START_PCI_LO_ADDR >> 16);
pci_write_config_word(dev, 0x22,
((PPC7D_PCI0_MEM0_START_PCI_LO_ADDR +
PPC7D_PCI0_MEM0_SIZE -
1) >> 16) & 0xffff);
pci_write_config_word(dev, 0x24, 0);
pci_write_config_word(dev, 0x26, 0);
pci_write_config_dword(dev, 0x28, 0);
pci_write_config_dword(dev, 0x2c, 0);
pci_read_config_word(dev, 0x3e, &val16);
val16 |= ((1 << 5) | (1 << 1)); /* signal master aborts and
* SERR to primary
*/
val16 &= ~(1 << 2); /* ISA disable, so all ISA
* ports forwarded to secondary
*/
pci_write_config_word(dev, 0x3e, val16);
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HINT, 0x0028, ppc7d_fixup_hb8);
/* This should perhaps be a separate driver as we're actually initializing
* the chip for this board here. It's hardly a fixup...
*/
static void __init ppc7d_fixup_ali1535(struct pci_dev *dev)
{
pr_debug("PCI: ALI1535 init\n");
if (dev->bus->number == 1) {
/* Configure the ISA Port Settings */
pci_write_config_byte(dev, 0x43, 0x00);
/* Disable PCI Interrupt polling mode */
pci_write_config_byte(dev, 0x45, 0x00);
/* Multifunction pin select INTFJ -> INTF */
pci_write_config_byte(dev, 0x78, 0x00);
/* Set PCI INT -> IRQ Routing control in for external
* pins south bridge.
*/
pci_write_config_byte(dev, 0x48, 0x31); /* [7-4] INT B -> IRQ10
* [3-0] INT A -> IRQ9
*/
pci_write_config_byte(dev, 0x49, 0x5D); /* [7-4] INT D -> IRQ5
* [3-0] INT C -> IRQ14
*/
/* PPC7D setup */
/* NEC USB device on IRQ 11 (INTE) - INTF disabled */
pci_write_config_byte(dev, 0x4A, 0x09);
/* GPIO on IRQ 6 */
pci_write_config_byte(dev, 0x76, 0x07);
/* SIRQ I (COMS 5/6) use IRQ line 15.
* Positive (not subtractive) address decode.
*/
pci_write_config_byte(dev, 0x44, 0x0f);
/* SIRQ II disabled */
pci_write_config_byte(dev, 0x75, 0x0);
/* On board USB and RTC disabled */
pci_write_config_word(dev, 0x52, (1 << 14));
pci_write_config_byte(dev, 0x74, 0x00);
/* On board IDE disabled */
pci_write_config_byte(dev, 0x58, 0x00);
/* Decode 32-bit addresses */
pci_write_config_byte(dev, 0x5b, 0);
/* Disable docking IO */
pci_write_config_word(dev, 0x5c, 0x0000);
/* Disable modem, enable sound */
pci_write_config_byte(dev, 0x77, (1 << 6));
/* Disable hot-docking mode */
pci_write_config_byte(dev, 0x7d, 0x00);
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AL, 0x1533, ppc7d_fixup_ali1535);
static int ppc7d_pci_exclude_device(u8 bus, u8 devfn)
{
/* Early versions of this board were fitted with IBM ALMA
* PCI-VME bridge chips. The PCI config space of these devices
* was not set up correctly and causes PCI scan problems.
*/
if ((bus == 1) && (PCI_SLOT(devfn) == 4) && ppc7d_has_alma)
return PCIBIOS_DEVICE_NOT_FOUND;
return mv64x60_pci_exclude_device(bus, devfn);
}
/* This hook is called when each PCI bus is probed.
*/
static void ppc7d_pci_fixup_bus(struct pci_bus *bus)
{
pr_debug("PCI BUS %hu: %lx/%lx %lx/%lx %lx/%lx %lx/%lx\n",
bus->number,
bus->resource[0] ? bus->resource[0]->start : 0,
bus->resource[0] ? bus->resource[0]->end : 0,
bus->resource[1] ? bus->resource[1]->start : 0,
bus->resource[1] ? bus->resource[1]->end : 0,
bus->resource[2] ? bus->resource[2]->start : 0,
bus->resource[2] ? bus->resource[2]->end : 0,
bus->resource[3] ? bus->resource[3]->start : 0,
bus->resource[3] ? bus->resource[3]->end : 0);
if ((bus->number == 1) && (bus->resource[2] != NULL)) {
/* Hide PCI window 2 of Bus 1 which is used only to
* map legacy ISA memory space.
*/
bus->resource[2]->start = 0;
bus->resource[2]->end = 0;
bus->resource[2]->flags = 0;
}
}
/*****************************************************************************
* Board device setup code
*****************************************************************************/
void __init ppc7d_setup_peripherals(void)
{
u32 val32;
/* Set up windows for boot CS */
mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN,
PPC7D_BOOT_WINDOW_BASE, PPC7D_BOOT_WINDOW_SIZE,
0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
/* Boot firmware configures the following DevCS addresses.
* DevCS0 - board control/status
* DevCS1 - test registers
* DevCS2 - AFIX port/address registers (for identifying)
* DevCS3 - FLASH
*
* We don't use DevCS0, DevCS1.
*/
val32 = mv64x60_read(&bh, MV64360_CPU_BAR_ENABLE);
val32 |= ((1 << 4) | (1 << 5));
mv64x60_write(&bh, MV64360_CPU_BAR_ENABLE, val32);
mv64x60_write(&bh, MV64x60_CPU2DEV_0_BASE, 0);
mv64x60_write(&bh, MV64x60_CPU2DEV_0_SIZE, 0);
mv64x60_write(&bh, MV64x60_CPU2DEV_1_BASE, 0);
mv64x60_write(&bh, MV64x60_CPU2DEV_1_SIZE, 0);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_2_WIN,
PPC7D_AFIX_REG_BASE, PPC7D_AFIX_REG_SIZE, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_2_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_3_WIN,
PPC7D_FLASH_BASE, PPC7D_FLASH_SIZE_ACTUAL, 0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_3_WIN);
mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN,
PPC7D_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE,
0);
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
/* Set up Enet->SRAM window */
mv64x60_set_32bit_window(&bh, MV64x60_ENET2MEM_4_WIN,
PPC7D_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE,
0x2);
bh.ci->enable_window_32bit(&bh, MV64x60_ENET2MEM_4_WIN);
/* Give enet r/w access to memory region */
val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_0);
val32 |= (0x3 << (4 << 1));
mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_0, val32);
val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_1);
val32 |= (0x3 << (4 << 1));
mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_1, val32);
val32 = mv64x60_read(&bh, MV64360_ENET2MEM_ACC_PROT_2);
val32 |= (0x3 << (4 << 1));
mv64x60_write(&bh, MV64360_ENET2MEM_ACC_PROT_2, val32);
val32 = mv64x60_read(&bh, MV64x60_TIMR_CNTR_0_3_CNTL);
val32 &= ~((1 << 0) | (1 << 8) | (1 << 16) | (1 << 24));
mv64x60_write(&bh, MV64x60_TIMR_CNTR_0_3_CNTL, val32);
/* Enumerate pci bus.
*
* We scan PCI#0 first (the bus with the HB8 and other
* on-board peripherals). We must configure the 64360 before
* each scan, according to the bus number assignments. Busses
* are assigned incrementally, starting at 0. PCI#0 is
* usually assigned bus#0, the secondary side of the HB8 gets
* bus#1 and PCI#1 (second PMC site) gets bus#2. However, if
* any PMC card has a PCI bridge, these bus assignments will
* change.
*/
/* Turn off PCI retries */
val32 = mv64x60_read(&bh, MV64x60_CPU_CONFIG);
val32 |= (1 << 17);
mv64x60_write(&bh, MV64x60_CPU_CONFIG, val32);
/* Scan PCI#0 */
mv64x60_set_bus(&bh, 0, 0);
bh.hose_a->first_busno = 0;
bh.hose_a->last_busno = 0xff;
bh.hose_a->last_busno = pciauto_bus_scan(bh.hose_a, 0);
printk(KERN_INFO "PCI#0: first=%d last=%d\n",
bh.hose_a->first_busno, bh.hose_a->last_busno);
/* Scan PCI#1 */
bh.hose_b->first_busno = bh.hose_a->last_busno + 1;
mv64x60_set_bus(&bh, 1, bh.hose_b->first_busno);
bh.hose_b->last_busno = 0xff;
bh.hose_b->last_busno = pciauto_bus_scan(bh.hose_b,
bh.hose_b->first_busno);
printk(KERN_INFO "PCI#1: first=%d last=%d\n",
bh.hose_b->first_busno, bh.hose_b->last_busno);
/* Turn on PCI retries */
val32 = mv64x60_read(&bh, MV64x60_CPU_CONFIG);
val32 &= ~(1 << 17);
mv64x60_write(&bh, MV64x60_CPU_CONFIG, val32);
/* Setup interrupts */
ppc7d_intr_setup();
}
static void __init ppc7d_setup_bridge(void)
{
struct mv64x60_setup_info si;
int i;
u32 temp;
mv64360_irq_base = 16; /* first 16 intrs are 2 x 8259's */
memset(&si, 0, sizeof(si));
si.phys_reg_base = CONFIG_MV64X60_NEW_BASE;
si.pci_0.enable_bus = 1;
si.pci_0.pci_io.cpu_base = PPC7D_PCI0_IO_START_PROC_ADDR;
si.pci_0.pci_io.pci_base_hi = 0;
si.pci_0.pci_io.pci_base_lo = PPC7D_PCI0_IO_START_PCI_ADDR;
si.pci_0.pci_io.size = PPC7D_PCI0_IO_SIZE;
si.pci_0.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_0.pci_mem[0].cpu_base = PPC7D_PCI0_MEM0_START_PROC_ADDR;
si.pci_0.pci_mem[0].pci_base_hi = PPC7D_PCI0_MEM0_START_PCI_HI_ADDR;
si.pci_0.pci_mem[0].pci_base_lo = PPC7D_PCI0_MEM0_START_PCI_LO_ADDR;
si.pci_0.pci_mem[0].size = PPC7D_PCI0_MEM0_SIZE;
si.pci_0.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_0.pci_mem[1].cpu_base = PPC7D_PCI0_MEM1_START_PROC_ADDR;
si.pci_0.pci_mem[1].pci_base_hi = PPC7D_PCI0_MEM1_START_PCI_HI_ADDR;
si.pci_0.pci_mem[1].pci_base_lo = PPC7D_PCI0_MEM1_START_PCI_LO_ADDR;
si.pci_0.pci_mem[1].size = PPC7D_PCI0_MEM1_SIZE;
si.pci_0.pci_mem[1].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_0.pci_cmd_bits = 0;
si.pci_0.latency_timer = 0x80;
si.pci_1.enable_bus = 1;
si.pci_1.pci_io.cpu_base = PPC7D_PCI1_IO_START_PROC_ADDR;
si.pci_1.pci_io.pci_base_hi = 0;
si.pci_1.pci_io.pci_base_lo = PPC7D_PCI1_IO_START_PCI_ADDR;
si.pci_1.pci_io.size = PPC7D_PCI1_IO_SIZE;
si.pci_1.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_1.pci_mem[0].cpu_base = PPC7D_PCI1_MEM0_START_PROC_ADDR;
si.pci_1.pci_mem[0].pci_base_hi = PPC7D_PCI1_MEM0_START_PCI_HI_ADDR;
si.pci_1.pci_mem[0].pci_base_lo = PPC7D_PCI1_MEM0_START_PCI_LO_ADDR;
si.pci_1.pci_mem[0].size = PPC7D_PCI1_MEM0_SIZE;
si.pci_1.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_1.pci_mem[1].cpu_base = PPC7D_PCI1_MEM1_START_PROC_ADDR;
si.pci_1.pci_mem[1].pci_base_hi = PPC7D_PCI1_MEM1_START_PCI_HI_ADDR;
si.pci_1.pci_mem[1].pci_base_lo = PPC7D_PCI1_MEM1_START_PCI_LO_ADDR;
si.pci_1.pci_mem[1].size = PPC7D_PCI1_MEM1_SIZE;
si.pci_1.pci_mem[1].swap = MV64x60_CPU2PCI_SWAP_NONE;
si.pci_1.pci_cmd_bits = 0;
si.pci_1.latency_timer = 0x80;
/* Don't clear the SRAM window since we use it for debug */
si.window_preserve_mask_32_lo = (1 << MV64x60_CPU2SRAM_WIN);
printk(KERN_INFO "PCI: MV64360 PCI#0 IO at %x, size %x\n",
si.pci_0.pci_io.cpu_base, si.pci_0.pci_io.size);
printk(KERN_INFO "PCI: MV64360 PCI#1 IO at %x, size %x\n",
si.pci_1.pci_io.cpu_base, si.pci_1.pci_io.size);
for (i = 0; i < MV64x60_CPU2MEM_WINDOWS; i++) {
#if defined(CONFIG_NOT_COHERENT_CACHE)
si.cpu_prot_options[i] = 0;
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_NONE;
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_NONE;
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_NONE;
si.pci_0.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_NONE |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_128_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
si.pci_1.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_NONE |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_128_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
#else
si.cpu_prot_options[i] = 0;
/* All PPC7D hardware uses B0 or newer MV64360 silicon which
* does not have snoop bugs.
*/
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_WB;
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_WB;
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_WB;
si.pci_0.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_WB |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_32_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES;
si.pci_1.acc_cntl_options[i] =
MV64360_PCI_ACC_CNTL_SNOOP_WB |
MV64360_PCI_ACC_CNTL_SWAP_NONE |
MV64360_PCI_ACC_CNTL_MBURST_32_BYTES |
MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES;
#endif
}
/* Lookup PCI host bridges */
if (mv64x60_init(&bh, &si))
printk(KERN_ERR "MV64360 initialization failed.\n");
pr_debug("MV64360 regs @ %lx/%p\n", bh.p_base, bh.v_base);
/* Enable WB Cache coherency on SRAM */
temp = mv64x60_read(&bh, MV64360_SRAM_CONFIG);
pr_debug("SRAM_CONFIG: %x\n", temp);
#if defined(CONFIG_NOT_COHERENT_CACHE)
mv64x60_write(&bh, MV64360_SRAM_CONFIG, temp & ~0x2);
#else
mv64x60_write(&bh, MV64360_SRAM_CONFIG, temp | 0x2);
#endif
/* If system operates with internal bus arbiter (CPU master
* control bit8) clear AACK Delay bit [25] in CPU
* configuration register.
*/
temp = mv64x60_read(&bh, MV64x60_CPU_MASTER_CNTL);
if (temp & (1 << 8)) {
temp = mv64x60_read(&bh, MV64x60_CPU_CONFIG);
mv64x60_write(&bh, MV64x60_CPU_CONFIG, (temp & ~(1 << 25)));
}
/* Data and address parity is enabled */
temp = mv64x60_read(&bh, MV64x60_CPU_CONFIG);
mv64x60_write(&bh, MV64x60_CPU_CONFIG,
(temp | (1 << 26) | (1 << 19)));
pci_dram_offset = 0; /* sys mem at same addr on PCI & cpu bus */
ppc_md.pci_swizzle = common_swizzle;
ppc_md.pci_map_irq = ppc7d_map_irq;
ppc_md.pci_exclude_device = ppc7d_pci_exclude_device;
mv64x60_set_bus(&bh, 0, 0);
bh.hose_a->first_busno = 0;
bh.hose_a->last_busno = 0xff;
bh.hose_a->mem_space.start = PPC7D_PCI0_MEM0_START_PCI_LO_ADDR;
bh.hose_a->mem_space.end =
PPC7D_PCI0_MEM0_START_PCI_LO_ADDR + PPC7D_PCI0_MEM0_SIZE;
/* These will be set later, as a result of PCI0 scan */
bh.hose_b->first_busno = 0;
bh.hose_b->last_busno = 0xff;
bh.hose_b->mem_space.start = PPC7D_PCI1_MEM0_START_PCI_LO_ADDR;
bh.hose_b->mem_space.end =
PPC7D_PCI1_MEM0_START_PCI_LO_ADDR + PPC7D_PCI1_MEM0_SIZE;
pr_debug("MV64360: PCI#0 IO decode %08x/%08x IO remap %08x\n",
mv64x60_read(&bh, 0x48), mv64x60_read(&bh, 0x50),
mv64x60_read(&bh, 0xf0));
}
static void __init ppc7d_setup_arch(void)
{
int port;
loops_per_jiffy = 100000000 / HZ;
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start)
ROOT_DEV = Root_RAM0;
else
#endif
#ifdef CONFIG_ROOT_NFS
ROOT_DEV = Root_NFS;
#else
ROOT_DEV = Root_HDA1;
#endif
if ((cur_cpu_spec->cpu_features & CPU_FTR_SPEC7450) ||
(cur_cpu_spec->cpu_features & CPU_FTR_L3CR))
/* 745x is different. We only want to pass along enable. */
_set_L2CR(L2CR_L2E);
else if (cur_cpu_spec->cpu_features & CPU_FTR_L2CR)
/* All modules have 1MB of L2. We also assume that an
* L2 divisor of 3 will work.
*/
_set_L2CR(L2CR_L2E | L2CR_L2SIZ_1MB | L2CR_L2CLK_DIV3
| L2CR_L2RAM_PIPE | L2CR_L2OH_1_0 | L2CR_L2DF);
if (cur_cpu_spec->cpu_features & CPU_FTR_L3CR)
/* No L3 cache */
_set_L3CR(0);
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Lookup PCI host bridges */
if (ppc_md.progress)
ppc_md.progress("ppc7d_setup_arch: calling setup_bridge", 0);
ppc7d_setup_bridge();
ppc7d_setup_peripherals();
/* Disable ethernet. It might have been setup by the bootrom */
for (port = 0; port < 3; port++)
mv64x60_write(&bh, MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port),
0x0000ff00);
/* Clear queue pointers to ensure they are all initialized,
* otherwise since queues 1-7 are unused, they have random
* pointers which look strange in register dumps. Don't bother
* with queue 0 since it will be initialized later.
*/
for (port = 0; port < 3; port++) {
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_1(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_2(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_3(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_4(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_5(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_6(port),
0x00000000);
mv64x60_write(&bh,
MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_7(port),
0x00000000);
}
printk(KERN_INFO "Radstone Technology PPC7D\n");
if (ppc_md.progress)
ppc_md.progress("ppc7d_setup_arch: exit", 0);
}
/* Real Time Clock support.
* PPC7D has a DS1337 accessed by I2C.
*/
static ulong ppc7d_get_rtc_time(void)
{
struct rtc_time tm;
int result;
spin_lock(&rtc_lock);
result = ds1337_do_command(0, DS1337_GET_DATE, &tm);
spin_unlock(&rtc_lock);
if (result == 0)
result = mktime(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
return result;
}
static int ppc7d_set_rtc_time(unsigned long nowtime)
{
struct rtc_time tm;
int result;
spin_lock(&rtc_lock);
to_tm(nowtime, &tm);
result = ds1337_do_command(0, DS1337_SET_DATE, &tm);
spin_unlock(&rtc_lock);
return result;
}
/* This kernel command line parameter can be used to have the target
* wait for a JTAG debugger to attach. Of course, a JTAG debugger
* with hardware breakpoint support can have the target stop at any
* location during init, but this is a convenience feature that makes
* it easier in the common case of loading the code using the ppcboot
* bootloader..
*/
static unsigned long ppc7d_wait_debugger;
static int __init ppc7d_waitdbg(char *str)
{
ppc7d_wait_debugger = 1;
return 1;
}
__setup("waitdbg", ppc7d_waitdbg);
/* Second phase board init, called after other (architecture common)
* low-level services have been initialized.
*/
static void ppc7d_init2(void)
{
unsigned long flags;
u32 data;
u8 data8;
pr_debug("%s: enter\n", __FUNCTION__);
/* Wait for debugger? */
if (ppc7d_wait_debugger) {
printk("Waiting for debugger...\n");
while (readl(&ppc7d_wait_debugger)) ;
}
/* Hook up i8259 interrupt which is connected to GPP28 */
request_irq(mv64360_irq_base + MV64x60_IRQ_GPP28, ppc7d_i8259_intr,
IRQF_DISABLED, "I8259 (GPP28) interrupt", (void *)0);
/* Configure MPP16 as watchdog NMI, MPP17 as watchdog WDE */
spin_lock_irqsave(&mv64x60_lock, flags);
data = mv64x60_read(&bh, MV64x60_MPP_CNTL_2);
data &= ~(0x0000000f << 0);
data |= (0x00000004 << 0);
data &= ~(0x0000000f << 4);
data |= (0x00000004 << 4);
mv64x60_write(&bh, MV64x60_MPP_CNTL_2, data);
spin_unlock_irqrestore(&mv64x60_lock, flags);
/* All LEDs off */
data8 = inb(PPC7D_CPLD_LEDS);
data8 &= ~0x08;
data8 |= 0x07;
outb(data8, PPC7D_CPLD_LEDS);
/* Hook up RTC. We couldn't do this earlier because we need the I2C subsystem */
ppc_md.set_rtc_time = ppc7d_set_rtc_time;
ppc_md.get_rtc_time = ppc7d_get_rtc_time;
pr_debug("%s: exit\n", __FUNCTION__);
}
/* Called from machine_init(), early, before any of the __init functions
* have run. We must init software-configurable pins before other functions
* such as interrupt controllers are initialised.
*/
void __init platform_init(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7)
{
u8 val8;
u8 rev_num;
/* Map 0xe0000000-0xffffffff early because we need access to SRAM
* and the ISA memory space (for serial port) here. This mapping
* is redone properly in ppc7d_map_io() later.
*/
mtspr(SPRN_DBAT3U, 0xe0003fff);
mtspr(SPRN_DBAT3L, 0xe000002a);
/*
* Zero SRAM. Note that this generates parity errors on
* internal data path in SRAM if it's first time accessing it
* after reset.
*
* We do this ASAP to avoid parity errors when reading
* uninitialized SRAM.
*/
memset((void *)PPC7D_INTERNAL_SRAM_BASE, 0, MV64360_SRAM_SIZE);
pr_debug("platform_init: r3-r7: %lx %lx %lx %lx %lx\n",
r3, r4, r5, r6, r7);
parse_bootinfo(find_bootinfo());
/* ASSUMPTION: If both r3 (bd_t pointer) and r6 (cmdline pointer)
* are non-zero, then we should use the board info from the bd_t
* structure and the cmdline pointed to by r6 instead of the
* information from birecs, if any. Otherwise, use the information
* from birecs as discovered by the preceding call to
* parse_bootinfo(). This rule should work with both PPCBoot, which
* uses a bd_t board info structure, and the kernel boot wrapper,
* which uses birecs.
*/
if (r3 && r6) {
bd_t *bp = (bd_t *) __res;
/* copy board info structure */
memcpy((void *)__res, (void *)(r3 + KERNELBASE), sizeof(bd_t));
/* copy command line */
*(char *)(r7 + KERNELBASE) = 0;
strcpy(cmd_line, (char *)(r6 + KERNELBASE));
printk(KERN_INFO "Board info data:-\n");
printk(KERN_INFO " Internal freq: %lu MHz, bus freq: %lu MHz\n",
bp->bi_intfreq, bp->bi_busfreq);
printk(KERN_INFO " Memory: %lx, size %lx\n", bp->bi_memstart,
bp->bi_memsize);
printk(KERN_INFO " Console baudrate: %lu\n", bp->bi_baudrate);
printk(KERN_INFO " Ethernet address: "
"%02x:%02x:%02x:%02x:%02x:%02x\n",
bp->bi_enetaddr[0], bp->bi_enetaddr[1],
bp->bi_enetaddr[2], bp->bi_enetaddr[3],
bp->bi_enetaddr[4], bp->bi_enetaddr[5]);
}
#ifdef CONFIG_BLK_DEV_INITRD
/* take care of initrd if we have one */
if (r4) {
initrd_start = r4 + KERNELBASE;
initrd_end = r5 + KERNELBASE;
printk(KERN_INFO "INITRD @ %lx/%lx\n", initrd_start, initrd_end);
}
#endif /* CONFIG_BLK_DEV_INITRD */
/* Map in board regs, etc. */
isa_io_base = 0xe8000000;
isa_mem_base = 0xe8000000;
pci_dram_offset = 0x00000000;
ISA_DMA_THRESHOLD = 0x00ffffff;
DMA_MODE_READ = 0x44;
DMA_MODE_WRITE = 0x48;
ppc_md.setup_arch = ppc7d_setup_arch;
ppc_md.init = ppc7d_init2;
ppc_md.show_cpuinfo = ppc7d_show_cpuinfo;
/* XXX this is broken... */
ppc_md.irq_canonicalize = ppc7d_irq_canonicalize;
ppc_md.init_IRQ = ppc7d_init_irq;
ppc_md.get_irq = ppc7d_get_irq;
ppc_md.restart = ppc7d_restart;
ppc_md.power_off = ppc7d_power_off;
ppc_md.halt = ppc7d_halt;
ppc_md.find_end_of_memory = ppc7d_find_end_of_memory;
ppc_md.setup_io_mappings = ppc7d_map_io;
ppc_md.time_init = NULL;
ppc_md.set_rtc_time = NULL;
ppc_md.get_rtc_time = NULL;
ppc_md.calibrate_decr = ppc7d_calibrate_decr;
ppc_md.nvram_read_val = NULL;
ppc_md.nvram_write_val = NULL;
ppc_md.heartbeat = ppc7d_heartbeat;
ppc_md.heartbeat_reset = HZ;
ppc_md.heartbeat_count = ppc_md.heartbeat_reset;
ppc_md.pcibios_fixup_bus = ppc7d_pci_fixup_bus;
#if defined(CONFIG_SERIAL_MPSC) || defined(CONFIG_MV643XX_ETH) || \
defined(CONFIG_I2C_MV64XXX)
platform_notify = ppc7d_platform_notify;
#endif
#ifdef CONFIG_SERIAL_MPSC
/* On PPC7D, we must configure MPSC support via CPLD control
* registers.
*/
outb(PPC7D_CPLD_RTS_COM4_SCLK |
PPC7D_CPLD_RTS_COM56_ENABLED, PPC7D_CPLD_RTS);
outb(PPC7D_CPLD_COMS_COM3_TCLKEN |
PPC7D_CPLD_COMS_COM3_TXEN |
PPC7D_CPLD_COMS_COM4_TCLKEN |
PPC7D_CPLD_COMS_COM4_TXEN, PPC7D_CPLD_COMS);
#endif /* CONFIG_SERIAL_MPSC */
#if defined(CONFIG_KGDB) || defined(CONFIG_SERIAL_TEXT_DEBUG)
ppc7d_early_serial_map();
#ifdef CONFIG_SERIAL_TEXT_DEBUG
#if defined(CONFIG_SERIAL_MPSC_CONSOLE)
ppc_md.progress = mv64x60_mpsc_progress;
#elif defined(CONFIG_SERIAL_8250)
ppc_md.progress = gen550_progress;
#else
#error CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG has no supported CONFIG_SERIAL_XXX
#endif /* CONFIG_SERIAL_8250 */
#endif /* CONFIG_SERIAL_TEXT_DEBUG */
#endif /* CONFIG_KGDB || CONFIG_SERIAL_TEXT_DEBUG */
/* Enable write access to user flash. This is necessary for
* flash probe.
*/
val8 = readb((void *)isa_io_base + PPC7D_CPLD_SW_FLASH_WRITE_PROTECT);
writeb(val8 | (PPC7D_CPLD_SW_FLASH_WRPROT_ENABLED &
PPC7D_CPLD_SW_FLASH_WRPROT_USER_MASK),
(void *)isa_io_base + PPC7D_CPLD_SW_FLASH_WRITE_PROTECT);
/* Determine if this board has IBM ALMA VME devices */
val8 = readb((void *)isa_io_base + PPC7D_CPLD_BOARD_REVISION);
rev_num = (val8 & PPC7D_CPLD_BOARD_REVISION_NUMBER_MASK) >> 5;
if (rev_num <= 1)
ppc7d_has_alma = 1;
#ifdef DEBUG
console_printk[0] = 8;
#endif
}