/*
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
*
* Based on the IA-32 version:
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
#include <asm/tlb.h>
#include <linux/sysctl.h>
#define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
#define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
#ifdef CONFIG_PPC_64K_PAGES
#define HUGEPTE_INDEX_SIZE (PMD_SHIFT-HPAGE_SHIFT)
#else
#define HUGEPTE_INDEX_SIZE (PUD_SHIFT-HPAGE_SHIFT)
#endif
#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
#define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
#define HUGEPD_SHIFT (HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
#define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
#define HUGEPD_MASK (~(HUGEPD_SIZE-1))
#define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
* will choke on pointers to hugepte tables, which is handy for
* catching screwups early. */
#define HUGEPD_OK 0x1
typedef struct { unsigned long pd; } hugepd_t;
#define hugepd_none(hpd) ((hpd).pd == 0)
static inline pte_t *hugepd_page(hugepd_t hpd)
{
BUG_ON(!(hpd.pd & HUGEPD_OK));
return (pte_t *)(hpd.pd & ~HUGEPD_OK);
}
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
{
unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
pte_t *dir = hugepd_page(*hpdp);
return dir + idx;
}
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
unsigned long address)
{
pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
GFP_KERNEL|__GFP_REPEAT);
if (! new)
return -ENOMEM;
spin_lock(&mm->page_table_lock);
if (!hugepd_none(*hpdp))
kmem_cache_free(huge_pgtable_cache, new);
else
hpdp->pd = (unsigned long)new | HUGEPD_OK;
spin_unlock(&mm->page_table_lock);
return 0;
}
/* Modelled after find_linux_pte() */
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pg;
pud_t *pu;
BUG_ON(! in_hugepage_area(mm->context, addr));
addr &= HPAGE_MASK;
pg = pgd_offset(mm, addr);
if (!pgd_none(*pg)) {
pu = pud_offset(pg, addr);
if (!pud_none(*pu)) {
#ifdef CONFIG_PPC_64K_PAGES
pmd_t *pm;
pm = pmd_offset(pu, addr);
if (!pmd_none(*pm))
return hugepte_offset((hugepd_t *)pm, addr);
#else
return hugepte_offset((hugepd_t *)pu, addr);
#endif
}
}
return NULL;
}
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pg;
pud_t *pu;
hugepd_t *hpdp = NULL;
BUG_ON(! in_hugepage_area(mm->context, addr));
addr &= HPAGE_MASK;
pg = pgd_offset(mm, addr);
pu = pud_alloc(mm, pg, addr);
if (pu) {
#ifdef CONFIG_PPC_64K_PAGES
pmd_t *pm;
pm = pmd_alloc(mm, pu, addr);
if (pm)
hpdp = (hugepd_t *)pm;
#else
hpdp = (hugepd_t *)pu;
#endif
}
if (! hpdp)
return NULL;
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
return NULL;
return hugepte_offset(hpdp, addr);
}
static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
{
pte_t *hugepte = hugepd_page(*hpdp);
hpdp->pd = 0;
tlb->need_flush = 1;
pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
PGF_CACHENUM_MASK));
}
#ifdef CONFIG_PPC_64K_PAGES
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
unsigned long start;
start = addr;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none(*pmd))
continue;
free_hugepte_range(tlb, (hugepd_t *)pmd);
} while (pmd++, addr = next, addr != end);
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd);
}
#endif
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
unsigned long start;
start = addr;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
#ifdef CONFIG_PPC_64K_PAGES
if (pud_none_or_clear_bad(pud))
continue;
hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
#else
if (pud_none(*pud))
continue;
free_hugepte_range(tlb, (hugepd_t *)pud);
#endif
} while (pud++, addr = next, addr != end);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud);
}
/*
* This function frees user-level page tables of a process.
*
* Must be called with pagetable lock held.
*/
void hugetlb_free_pgd_range(struct mmu_gather **tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
unsigned long start;
/*
* Comments below take from the normal free_pgd_range(). They
* apply here too. The tests against HUGEPD_MASK below are
* essential, because we *don't* test for this at the bottom
* level. Without them we'll attempt to free a hugepte table
* when we unmap just part of it, even if there are other
* active mappings using it.
*
* The next few lines have given us lots of grief...
*
* Why are we testing HUGEPD* at this top level? Because
* often there will be no work to do at all, and we'd prefer
* not to go all the way down to the bottom just to discover
* that.
*
* Why all these "- 1"s? Because 0 represents both the bottom
* of the address space and the top of it (using -1 for the
* top wouldn't help much: the masks would do the wrong thing).
* The rule is that addr 0 and floor 0 refer to the bottom of
* the address space, but end 0 and ceiling 0 refer to the top
* Comparisons need to use "end - 1" and "ceiling - 1" (though
* that end 0 case should be mythical).
*
* Wherever addr is brought up or ceiling brought down, we
* must be careful to reject "the opposite 0" before it
* confuses the subsequent tests. But what about where end is
* brought down by HUGEPD_SIZE below? no, end can't go down to
* 0 there.
*
* Whereas we round start (addr) and ceiling down, by different
* masks at different levels, in order to test whether a table
* now has no other vmas using it, so can be freed, we don't
* bother to round floor or end up - the tests don't need that.
*/
addr &= HUGEPD_MASK;
if (addr < floor) {
addr += HUGEPD_SIZE;
if (!addr)
return;
}
if (ceiling) {
ceiling &= HUGEPD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
end -= HUGEPD_SIZE;
if (addr > end - 1)
return;
start = addr;
pgd = pgd_offset((*tlb)->mm, addr);
do {
BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr));
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
} while (pgd++, addr = next, addr != end);
}
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (pte_present(*ptep)) {
/* We open-code pte_clear because we need to pass the right
* argument to hpte_update (huge / !huge)
*/
unsigned long old = pte_update(ptep, ~0UL);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
flush_tlb_pending();
}
*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
}
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
unsigned long old = pte_update(ptep, ~0UL);
if (old & _PAGE_HASHPTE)
hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
*ptep = __pte(0);
return __pte(old);
}
struct slb_flush_info {
struct mm_struct *mm;
u16 newareas;
};
static void flush_low_segments(void *parm)
{
struct slb_flush_info *fi = parm;
unsigned long i;
BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
if (current->active_mm != fi->mm)
return;
/* Only need to do anything if this CPU is working in the same
* mm as the one which has changed */
/* update the paca copy of the context struct */
get_paca()->context = current->active_mm->context;
asm volatile("isync" : : : "memory");
for (i = 0; i < NUM_LOW_AREAS; i++) {
if (! (fi->newareas & (1U << i)))
continue;
asm volatile("slbie %0"
: : "r" ((i << SID_SHIFT) | SLBIE_C));
}
asm volatile("isync" : : : "memory");
}
static void flush_high_segments(void *parm)
{
struct slb_flush_info *fi = parm;
unsigned long i, j;
BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
if (current->active_mm != fi->mm)
return;
/* Only need to do anything if this CPU is working in the same
* mm as the one which has changed */
/* update the paca copy of the context struct */
get_paca()->context = current->active_mm->context;
asm volatile("isync" : : : "memory");
for (i = 0; i < NUM_HIGH_AREAS; i++) {
if (! (fi->newareas & (1U << i)))
continue;
for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
asm volatile("slbie %0"
:: "r" (((i << HTLB_AREA_SHIFT)
+ (j << SID_SHIFT)) | SLBIE_C));
}
asm volatile("isync" : : : "memory");
}
static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
{
unsigned long start = area << SID_SHIFT;
unsigned long end = (area+1) << SID_SHIFT;
struct vm_area_struct *vma;
BUG_ON(area >= NUM_LOW_AREAS);
/* Check no VMAs are in the region */
vma = find_vma(mm, start);
if (vma && (vma->vm_start < end))
return -EBUSY;
return 0;
}
static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
{
unsigned long start = area << HTLB_AREA_SHIFT;
unsigned long end = (area+1) << HTLB_AREA_SHIFT;
struct vm_area_struct *vma;
BUG_ON(area >= NUM_HIGH_AREAS);
/* Hack, so that each addresses is controlled by exactly one
* of the high or low area bitmaps, the first high area starts
* at 4GB, not 0 */
if (start == 0)
start = 0x100000000UL;
/* Check no VMAs are in the region */
vma = find_vma(mm, start);
if (vma && (vma->vm_start < end))
return -EBUSY;
return 0;
}
static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
{
unsigned long i;
struct slb_flush_info fi;
BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
newareas &= ~(mm->context.low_htlb_areas);
if (! newareas)
return 0; /* The segments we want are already open */
for (i = 0; i < NUM_LOW_AREAS; i++)
if ((1 << i) & newareas)
if (prepare_low_area_for_htlb(mm, i) != 0)
return -EBUSY;
mm->context.low_htlb_areas |= newareas;
/* the context change must make it to memory before the flush,
* so that further SLB misses do the right thing. */
mb();
fi.mm = mm;
fi.newareas = newareas;
on_each_cpu(flush_low_segments, &fi, 0, 1);
return 0;
}
static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
{
struct slb_flush_info fi;
unsigned long i;
BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
!= NUM_HIGH_AREAS);
newareas &= ~(mm->context.high_htlb_areas);
if (! newareas)
return 0; /* The areas we want are already open */
for (i = 0; i < NUM_HIGH_AREAS; i++)
if ((1 << i) & newareas)
if (prepare_high_area_for_htlb(mm, i) != 0)
return -EBUSY;
mm->context.high_htlb_areas |= newareas;
/* update the paca copy of the context struct */
get_paca()->context = mm->context;
/* the context change must make it to memory before the flush,
* so that further SLB misses do the right thing. */
mb();
fi.mm = mm;
fi.newareas = newareas;
on_each_cpu(flush_high_segments, &fi, 0, 1);
return 0;
}
int prepare_hugepage_range(unsigned long addr, unsigned long len)
{
int err = 0;
if ( (addr+len) < addr )
return -EINVAL;
if (addr < 0x100000000UL)
err = open_low_hpage_areas(current->mm,
LOW_ESID_MASK(addr, len));
if ((addr + len) > 0x100000000UL)
err = open_high_hpage_areas(current->mm,
HTLB_AREA_MASK(addr, len));
if (err) {
printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
" failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
addr, len,
LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
return err;
}
return 0;
}
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
pte_t *ptep;
struct page *page;
if (! in_hugepage_area(mm->context, address))
return ERR_PTR(-EINVAL);
ptep = huge_pte_offset(mm, address);
page = pte_page(*ptep);
if (page)
page += (address % HPAGE_SIZE) / PAGE_SIZE;
return page;
}
int pmd_huge(pmd_t pmd)
{
return 0;
}
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
pmd_t *pmd, int write)
{
BUG();
return NULL;
}
/* Because we have an exclusive hugepage region which lies within the
* normal user address space, we have to take special measures to make
* non-huge mmap()s evade the hugepage reserved regions. */
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long start_addr;
if (len > TASK_SIZE)
return -ENOMEM;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (((TASK_SIZE - len) >= addr)
&& (!vma || (addr+len) <= vma->vm_start)
&& !is_hugepage_only_range(mm, addr,len))
return addr;
}
if (len > mm->cached_hole_size) {
start_addr = addr = mm->free_area_cache;
} else {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
}
full_search:
vma = find_vma(mm, addr);
while (TASK_SIZE - len >= addr) {
BUG_ON(vma && (addr >= vma->vm_end));
if (touches_hugepage_low_range(mm, addr, len)) {
addr = ALIGN(addr+1, 1<<SID_SHIFT);
vma = find_vma(mm, addr);
continue;
}
if (touches_hugepage_high_range(mm, addr, len)) {
addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
vma = find_vma(mm, addr);
continue;
}
if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/
mm->free_area_cache = addr + len;
return addr;
}
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;
vma = vma->vm_next;
}
/* Make sure we didn't miss any holes */
if (start_addr != TASK_UNMAPPED_BASE) {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;
goto full_search;
}
return -ENOMEM;
}
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*
* Because we have an exclusive hugepage region which lies within the
* normal user address space, we have to take special measures to make
* non-huge mmap()s evade the hugepage reserved regions.
*/
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma, *prev_vma;
struct mm_struct *mm = current->mm;
unsigned long base = mm->mmap_base, addr = addr0;
unsigned long largest_hole = mm->cached_hole_size;
int first_time = 1;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
/* dont allow allocations above current base */
if (mm->free_area_cache > base)
mm->free_area_cache = base;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start)
&& !is_hugepage_only_range(mm, addr,len))
return addr;
}
if (len <= largest_hole) {
largest_hole = 0;
mm->free_area_cache = base;
}
try_again:
/* make sure it can fit in the remaining address space */
if (mm->free_area_cache < len)
goto fail;
/* either no address requested or cant fit in requested address hole */
addr = (mm->free_area_cache - len) & PAGE_MASK;
do {
hugepage_recheck:
if (touches_hugepage_low_range(mm, addr, len)) {
addr = (addr & ((~0) << SID_SHIFT)) - len;
goto hugepage_recheck;
} else if (touches_hugepage_high_range(mm, addr, len)) {
addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
goto hugepage_recheck;
}
/*
* Lookup failure means no vma is above this address,
* i.e. return with success:
*/
if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
return addr;
/*
* new region fits between prev_vma->vm_end and
* vma->vm_start, use it:
*/
if (addr+len <= vma->vm_start &&
(!prev_vma || (addr >= prev_vma->vm_end))) {
/* remember the address as a hint for next time */
mm->cached_hole_size = largest_hole;
return (mm->free_area_cache = addr);
} else {
/* pull free_area_cache down to the first hole */
if (mm->free_area_cache == vma->vm_end) {
mm->free_area_cache = vma->vm_start;
mm->cached_hole_size = largest_hole;
}
}
/* remember the largest hole we saw so far */
if (addr + largest_hole < vma->vm_start)
largest_hole = vma->vm_start - addr;
/* try just below the current vma->vm_start */
addr = vma->vm_start-len;
} while (len <= vma->vm_start);
fail:
/*
* if hint left us with no space for the requested
* mapping then try again:
*/
if (first_time) {
mm->free_area_cache = base;
largest_hole = 0;
first_time = 0;
goto try_again;
}
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
mm->free_area_cache = TASK_UNMAPPED_BASE;
mm->cached_hole_size = ~0UL;
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
/*
* Restore the topdown base:
*/
mm->free_area_cache = base;
mm->cached_hole_size = ~0UL;
return addr;
}
static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
{
struct vm_area_struct *vma;
vma = find_vma(current->mm, addr);
if (!vma || ((addr + len) <= vma->vm_start))
return 0;
return -ENOMEM;
}
static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
{
unsigned long addr = 0;
struct vm_area_struct *vma;
vma = find_vma(current->mm, addr);
while (addr + len <= 0x100000000UL) {
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
if (! __within_hugepage_low_range(addr, len, segmask)) {
addr = ALIGN(addr+1, 1<<SID_SHIFT);
vma = find_vma(current->mm, addr);
continue;
}
if (!vma || (addr + len) <= vma->vm_start)
return addr;
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
/* Depending on segmask this might not be a confirmed
* hugepage region, so the ALIGN could have skipped
* some VMAs */
vma = find_vma(current->mm, addr);
}
return -ENOMEM;
}
static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
{
unsigned long addr = 0x100000000UL;
struct vm_area_struct *vma;
vma = find_vma(current->mm, addr);
while (addr + len <= TASK_SIZE_USER64) {
BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
if (! __within_hugepage_high_range(addr, len, areamask)) {
addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
vma = find_vma(current->mm, addr);
continue;
}
if (!vma || (addr + len) <= vma->vm_start)
return addr;
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
/* Depending on segmask this might not be a confirmed
* hugepage region, so the ALIGN could have skipped
* some VMAs */
vma = find_vma(current->mm, addr);
}
return -ENOMEM;
}
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
int lastshift;
u16 areamask, curareas;
if (HPAGE_SHIFT == 0)
return -EINVAL;
if (len & ~HPAGE_MASK)
return -EINVAL;
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
return -EINVAL;
/* Paranoia, caller should have dealt with this */
BUG_ON((addr + len) < addr);
if (test_thread_flag(TIF_32BIT)) {
/* Paranoia, caller should have dealt with this */
BUG_ON((addr + len) > 0x100000000UL);
curareas = current->mm->context.low_htlb_areas;
/* First see if we can use the hint address */
if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
areamask = LOW_ESID_MASK(addr, len);
if (open_low_hpage_areas(current->mm, areamask) == 0)
return addr;
}
/* Next see if we can map in the existing low areas */
addr = htlb_get_low_area(len, curareas);
if (addr != -ENOMEM)
return addr;
/* Finally go looking for areas to open */
lastshift = 0;
for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
! lastshift; areamask >>=1) {
if (areamask & 1)
lastshift = 1;
addr = htlb_get_low_area(len, curareas | areamask);
if ((addr != -ENOMEM)
&& open_low_hpage_areas(current->mm, areamask) == 0)
return addr;
}
} else {
curareas = current->mm->context.high_htlb_areas;
/* First see if we can use the hint address */
/* We discourage 64-bit processes from doing hugepage
* mappings below 4GB (must use MAP_FIXED) */
if ((addr >= 0x100000000UL)
&& (htlb_check_hinted_area(addr, len) == 0)) {
areamask = HTLB_AREA_MASK(addr, len);
if (open_high_hpage_areas(current->mm, areamask) == 0)
return addr;
}
/* Next see if we can map in the existing high areas */
addr = htlb_get_high_area(len, curareas);
if (addr != -ENOMEM)
return addr;
/* Finally go looking for areas to open */
lastshift = 0;
for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
! lastshift; areamask >>=1) {
if (areamask & 1)
lastshift = 1;
addr = htlb_get_high_area(len, curareas | areamask);
if ((addr != -ENOMEM)
&& open_high_hpage_areas(current->mm, areamask) == 0)
return addr;
}
}
printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
" enough areas\n");
return -ENOMEM;
}
/*
* Called by asm hashtable.S for doing lazy icache flush
*/
static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
pte_t pte, int trap)
{
struct page *page;
int i;
if (!pfn_valid(pte_pfn(pte)))
return rflags;
page = pte_page(pte);
/* page is dirty */
if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
if (trap == 0x400) {
for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
__flush_dcache_icache(page_address(page+i));
set_bit(PG_arch_1, &page->flags);
} else {
rflags |= HPTE_R_N;
}
}
return rflags;
}
int hash_huge_page(struct mm_struct *mm, unsigned long access,
unsigned long ea, unsigned long vsid, int local,
unsigned long trap)
{
pte_t *ptep;
unsigned long old_pte, new_pte;
unsigned long va, rflags, pa;
long slot;
int err = 1;
ptep = huge_pte_offset(mm, ea);
/* Search the Linux page table for a match with va */
va = (vsid << 28) | (ea & 0x0fffffff);
/*
* If no pte found or not present, send the problem up to
* do_page_fault
*/
if (unlikely(!ptep || pte_none(*ptep)))
goto out;
/*
* Check the user's access rights to the page. If access should be
* prevented then send the problem up to do_page_fault.
*/
if (unlikely(access & ~pte_val(*ptep)))
goto out;
/*
* At this point, we have a pte (old_pte) which can be used to build
* or update an HPTE. There are 2 cases:
*
* 1. There is a valid (present) pte with no associated HPTE (this is
* the most common case)
* 2. There is a valid (present) pte with an associated HPTE. The
* current values of the pp bits in the HPTE prevent access
* because we are doing software DIRTY bit management and the
* page is currently not DIRTY.
*/
do {
old_pte = pte_val(*ptep);
if (old_pte & _PAGE_BUSY)
goto out;
new_pte = old_pte | _PAGE_BUSY |
_PAGE_ACCESSED | _PAGE_HASHPTE;
} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
old_pte, new_pte));
rflags = 0x2 | (!(new_pte & _PAGE_RW));
/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
/* No CPU has hugepages but lacks no execute, so we
* don't need to worry about that case */
rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
trap);
/* Check if pte already has an hpte (case 2) */
if (unlikely(old_pte & _PAGE_HASHPTE)) {
/* There MIGHT be an HPTE for this pte */
unsigned long hash, slot;
hash = hpt_hash(va, HPAGE_SHIFT);
if (old_pte & _PAGE_F_SECOND)
hash = ~hash;
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
slot += (old_pte & _PAGE_F_GIX) >> 12;
if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
local) == -1)
old_pte &= ~_PAGE_HPTEFLAGS;
}
if (likely(!(old_pte & _PAGE_HASHPTE))) {
unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
unsigned long hpte_group;
pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
repeat:
hpte_group = ((hash & htab_hash_mask) *
HPTES_PER_GROUP) & ~0x7UL;
/* clear HPTE slot informations in new PTE */
new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
/* Add in WIMG bits */
/* XXX We should store these in the pte */
/* --BenH: I think they are ... */
rflags |= _PAGE_COHERENT;
/* Insert into the hash table, primary slot */
slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
mmu_huge_psize);
/* Primary is full, try the secondary */
if (unlikely(slot == -1)) {
new_pte |= _PAGE_F_SECOND;
hpte_group = ((~hash & htab_hash_mask) *
HPTES_PER_GROUP) & ~0x7UL;
slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
HPTE_V_SECONDARY,
mmu_huge_psize);
if (slot == -1) {
if (mftb() & 0x1)
hpte_group = ((hash & htab_hash_mask) *
HPTES_PER_GROUP)&~0x7UL;
ppc_md.hpte_remove(hpte_group);
goto repeat;
}
}
if (unlikely(slot == -2))
panic("hash_huge_page: pte_insert failed\n");
new_pte |= (slot << 12) & _PAGE_F_GIX;
}
/*
* No need to use ldarx/stdcx here
*/
*ptep = __pte(new_pte & ~_PAGE_BUSY);
err = 0;
out:
return err;
}
static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
{
memset(addr, 0, kmem_cache_size(cache));
}
static int __init hugetlbpage_init(void)
{
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
return -ENODEV;
huge_pgtable_cache = kmem_cache_create("hugepte_cache",
HUGEPTE_TABLE_SIZE,
HUGEPTE_TABLE_SIZE,
SLAB_HWCACHE_ALIGN |
SLAB_MUST_HWCACHE_ALIGN,
zero_ctor, NULL);
if (! huge_pgtable_cache)
panic("hugetlbpage_init(): could not create hugepte cache\n");
return 0;
}
module_init(hugetlbpage_init);