/*
*
* Common boot and setup code.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/bootmem.h>
#include <asm/io.h>
#include <asm/kdump.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/lmb.h>
#include <asm/firmware.h>
#include <asm/xmon.h>
#include <asm/udbg.h>
#include <asm/kexec.h>
#include "setup.h"
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
int have_of = 1;
int boot_cpuid = 0;
dev_t boot_dev;
u64 ppc64_pft_size;
/* Pick defaults since we might want to patch instructions
* before we've read this from the device tree.
*/
struct ppc64_caches ppc64_caches = {
.dline_size = 0x40,
.log_dline_size = 6,
.iline_size = 0x40,
.log_iline_size = 6
};
EXPORT_SYMBOL_GPL(ppc64_caches);
/*
* These are used in binfmt_elf.c to put aux entries on the stack
* for each elf executable being started.
*/
int dcache_bsize;
int icache_bsize;
int ucache_bsize;
#ifdef CONFIG_SMP
static int smt_enabled_cmdline;
/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
struct device_node *dn;
const char *smt_option;
/* Allow the command line to overrule the OF option */
if (smt_enabled_cmdline)
return;
dn = of_find_node_by_path("/options");
if (dn) {
smt_option = get_property(dn, "ibm,smt-enabled", NULL);
if (smt_option) {
if (!strcmp(smt_option, "on"))
smt_enabled_at_boot = 1;
else if (!strcmp(smt_option, "off"))
smt_enabled_at_boot = 0;
}
}
}
/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
smt_enabled_cmdline = 1;
if (!p)
return 0;
if (!strcmp(p, "on") || !strcmp(p, "1"))
smt_enabled_at_boot = 1;
else if (!strcmp(p, "off") || !strcmp(p, "0"))
smt_enabled_at_boot = 0;
return 0;
}
early_param("smt-enabled", early_smt_enabled);
#else
#define check_smt_enabled()
#endif /* CONFIG_SMP */
/* Put the paca pointer into r13 and SPRG3 */
void __init setup_paca(int cpu)
{
local_paca = &paca[cpu];
mtspr(SPRN_SPRG3, local_paca);
}
/*
* Early initialization entry point. This is called by head.S
* with MMU translation disabled. We rely on the "feature" of
* the CPU that ignores the top 2 bits of the address in real
* mode so we can access kernel globals normally provided we
* only toy with things in the RMO region. From here, we do
* some early parsing of the device-tree to setup out LMB
* data structures, and allocate & initialize the hash table
* and segment tables so we can start running with translation
* enabled.
*
* It is this function which will call the probe() callback of
* the various platform types and copy the matching one to the
* global ppc_md structure. Your platform can eventually do
* some very early initializations from the probe() routine, but
* this is not recommended, be very careful as, for example, the
* device-tree is not accessible via normal means at this point.
*/
void __init early_setup(unsigned long dt_ptr)
{
/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
setup_paca(0);
/* Enable early debugging if any specified (see udbg.h) */
udbg_early_init();
DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
/*
* Do early initializations using the flattened device
* tree, like retreiving the physical memory map or
* calculating/retreiving the hash table size
*/
early_init_devtree(__va(dt_ptr));
/* Now we know the logical id of our boot cpu, setup the paca. */
setup_paca(boot_cpuid);
/* Fix up paca fields required for the boot cpu */
get_paca()->cpu_start = 1;
get_paca()->stab_real = __pa((u64)&initial_stab);
get_paca()->stab_addr = (u64)&initial_stab;
/* Probe the machine type */
probe_machine();
setup_kdump_trampoline();
DBG("Found, Initializing memory management...\n");
/*
* Initialize the MMU Hash table and create the linear mapping
* of memory. Has to be done before stab/slb initialization as
* this is currently where the page size encoding is obtained
*/
htab_initialize();
/*
* Initialize stab / SLB management except on iSeries
*/
if (cpu_has_feature(CPU_FTR_SLB))
slb_initialize();
else if (!firmware_has_feature(FW_FEATURE_ISERIES))
stab_initialize(get_paca()->stab_real);
DBG(" <- early_setup()\n");
}
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
struct paca_struct *lpaca = get_paca();
/* Mark interrupts enabled in PACA */
lpaca->soft_enabled = 0;
/* Initialize hash table for that CPU */
htab_initialize_secondary();
/* Initialize STAB/SLB. We use a virtual address as it works
* in real mode on pSeries and we want a virutal address on
* iSeries anyway
*/
if (cpu_has_feature(CPU_FTR_SLB))
slb_initialize();
else
stab_initialize(lpaca->stab_addr);
}
#endif /* CONFIG_SMP */
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
void smp_release_cpus(void)
{
extern unsigned long __secondary_hold_spinloop;
unsigned long *ptr;
DBG(" -> smp_release_cpus()\n");
/* All secondary cpus are spinning on a common spinloop, release them
* all now so they can start to spin on their individual paca
* spinloops. For non SMP kernels, the secondary cpus never get out
* of the common spinloop.
* This is useless but harmless on iSeries, secondaries are already
* waiting on their paca spinloops. */
ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
- PHYSICAL_START);
*ptr = 1;
mb();
DBG(" <- smp_release_cpus()\n");
}
#endif /* CONFIG_SMP || CONFIG_KEXEC */
/*
* Initialize some remaining members of the ppc64_caches and systemcfg
* structures
* (at least until we get rid of them completely). This is mostly some
* cache informations about the CPU that will be used by cache flush
* routines and/or provided to userland
*/
static void __init initialize_cache_info(void)
{
struct device_node *np;
unsigned long num_cpus = 0;
DBG(" -> initialize_cache_info()\n");
for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
num_cpus += 1;
/* We're assuming *all* of the CPUs have the same
* d-cache and i-cache sizes... -Peter
*/
if ( num_cpus == 1 ) {
const u32 *sizep, *lsizep;
u32 size, lsize;
const char *dc, *ic;
/* Then read cache informations */
if (machine_is(powermac)) {
dc = "d-cache-block-size";
ic = "i-cache-block-size";
} else {
dc = "d-cache-line-size";
ic = "i-cache-line-size";
}
size = 0;
lsize = cur_cpu_spec->dcache_bsize;
sizep = get_property(np, "d-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = get_property(np, dc, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find dcache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
ppc64_caches.dsize = size;
ppc64_caches.dline_size = lsize;
ppc64_caches.log_dline_size = __ilog2(lsize);
ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
size = 0;
lsize = cur_cpu_spec->icache_bsize;
sizep = get_property(np, "i-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = get_property(np, ic, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find icache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
ppc64_caches.isize = size;
ppc64_caches.iline_size = lsize;
ppc64_caches.log_iline_size = __ilog2(lsize);
ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
}
}
DBG(" <- initialize_cache_info()\n");
}
/*
* Do some initial setup of the system. The parameters are those which
* were passed in from the bootloader.
*/
void __init setup_system(void)
{
DBG(" -> setup_system()\n");
/*
* Unflatten the device-tree passed by prom_init or kexec
*/
unflatten_device_tree();
/*
* Fill the ppc64_caches & systemcfg structures with informations
* retrieved from the device-tree.
*/
initialize_cache_info();
/*
* Initialize irq remapping subsystem
*/
irq_early_init();
#ifdef CONFIG_PPC_RTAS
/*
* Initialize RTAS if available
*/
rtas_initialize();
#endif /* CONFIG_PPC_RTAS */
/*
* Check if we have an initrd provided via the device-tree
*/
check_for_initrd();
/*
* Do some platform specific early initializations, that includes
* setting up the hash table pointers. It also sets up some interrupt-mapping
* related options that will be used by finish_device_tree()
*/
ppc_md.init_early();
/*
* We can discover serial ports now since the above did setup the
* hash table management for us, thus ioremap works. We do that early
* so that further code can be debugged
*/
find_legacy_serial_ports();
/*
* Register early console
*/
register_early_udbg_console();
/*
* Initialize xmon
*/
xmon_setup();
check_smt_enabled();
smp_setup_cpu_maps();
#ifdef CONFIG_SMP
/* Release secondary cpus out of their spinloops at 0x60 now that
* we can map physical -> logical CPU ids
*/
smp_release_cpus();
#endif
printk("Starting Linux PPC64 %s\n", init_utsname()->version);
printk("-----------------------------------------------------\n");
printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size());
printk("ppc64_caches.dcache_line_size = 0x%x\n",
ppc64_caches.dline_size);
printk("ppc64_caches.icache_line_size = 0x%x\n",
ppc64_caches.iline_size);
printk("htab_address = 0x%p\n", htab_address);
printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
#if PHYSICAL_START > 0
printk("physical_start = 0x%x\n", PHYSICAL_START);
#endif
printk("-----------------------------------------------------\n");
DBG(" <- setup_system()\n");
}
#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
unsigned int i;
/*
* interrupt stacks must be under 256MB, we cannot afford to take
* SLB misses on them.
*/
for_each_possible_cpu(i) {
softirq_ctx[i] = (struct thread_info *)
__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
hardirq_ctx[i] = (struct thread_info *)
__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
}
}
#else
#define irqstack_early_init()
#endif
/*
* Stack space used when we detect a bad kernel stack pointer, and
* early in SMP boots before relocation is enabled.
*/
static void __init emergency_stack_init(void)
{
unsigned long limit;
unsigned int i;
/*
* Emergency stacks must be under 256MB, we cannot afford to take
* SLB misses on them. The ABI also requires them to be 128-byte
* aligned.
*
* Since we use these as temporary stacks during secondary CPU
* bringup, we need to get at them in real mode. This means they
* must also be within the RMO region.
*/
limit = min(0x10000000UL, lmb.rmo_size);
for_each_possible_cpu(i)
paca[i].emergency_sp =
__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
}
/*
* Called into from start_kernel, after lock_kernel has been called.
* Initializes bootmem, which is unsed to manage page allocation until
* mem_init is called.
*/
void __init setup_arch(char **cmdline_p)
{
ppc64_boot_msg(0x12, "Setup Arch");
*cmdline_p = cmd_line;
/*
* Set cache line size based on type of cpu as a default.
* Systems with OF can look in the properties on the cpu node(s)
* for a possibly more accurate value.
*/
dcache_bsize = ppc64_caches.dline_size;
icache_bsize = ppc64_caches.iline_size;
/* reboot on panic */
panic_timeout = 180;
if (ppc_md.panic)
setup_panic();
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = klimit;
irqstack_early_init();
emergency_stack_init();
stabs_alloc();
/* set up the bootmem stuff with available memory */
do_init_bootmem();
sparse_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
ppc_md.setup_arch();
paging_init();
ppc64_boot_msg(0x15, "Setup Done");
}
/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000
static void ppc64_do_msg(unsigned int src, const char *msg)
{
if (ppc_md.progress) {
char buf[128];
sprintf(buf, "%08X\n", src);
ppc_md.progress(buf, 0);
snprintf(buf, 128, "%s", msg);
ppc_md.progress(buf, 0);
}
}
/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
printk("[boot]%04x %s\n", src, msg);
}
/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
printk("[terminate]%04x %s\n", src, msg);
}
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
}
#ifdef CONFIG_SMP
void __init setup_per_cpu_areas(void)
{
int i;
unsigned long size;
char *ptr;
/* Copy section for each CPU (we discard the original) */
size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
#ifdef CONFIG_MODULES
if (size < PERCPU_ENOUGH_ROOM)
size = PERCPU_ENOUGH_ROOM;
#endif
for_each_possible_cpu(i) {
ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
if (!ptr)
panic("Cannot allocate cpu data for CPU %d\n", i);
paca[i].data_offset = ptr - __per_cpu_start;
memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
}
}
#endif