/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000, 05 by Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2000 by Silicon Graphics, Inc.
* Copyright (C) 2004 by Christoph Hellwig
*
* On SGI IP27 the ARC memory configuration data is completly bogus but
* alternate easier to use mechanisms are available.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/swap.h>
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/highmem.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/sn/arch.h>
#include <asm/sn/hub.h>
#include <asm/sn/klconfig.h>
#include <asm/sn/sn_private.h>
#define SLOT_PFNSHIFT (SLOT_SHIFT - PAGE_SHIFT)
#define PFN_NASIDSHFT (NASID_SHFT - PAGE_SHIFT)
struct node_data *__node_data[MAX_COMPACT_NODES];
EXPORT_SYMBOL(__node_data);
static int fine_mode;
static int is_fine_dirmode(void)
{
return (((LOCAL_HUB_L(NI_STATUS_REV_ID) & NSRI_REGIONSIZE_MASK)
>> NSRI_REGIONSIZE_SHFT) & REGIONSIZE_FINE);
}
static hubreg_t get_region(cnodeid_t cnode)
{
if (fine_mode)
return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_FINEREG_SHFT;
else
return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_COARSEREG_SHFT;
}
static hubreg_t region_mask;
static void gen_region_mask(hubreg_t *region_mask)
{
cnodeid_t cnode;
(*region_mask) = 0;
for_each_online_node(cnode) {
(*region_mask) |= 1ULL << get_region(cnode);
}
}
#define rou_rflag rou_flags
static int router_distance;
static void router_recurse(klrou_t *router_a, klrou_t *router_b, int depth)
{
klrou_t *router;
lboard_t *brd;
int port;
if (router_a->rou_rflag == 1)
return;
if (depth >= router_distance)
return;
router_a->rou_rflag = 1;
for (port = 1; port <= MAX_ROUTER_PORTS; port++) {
if (router_a->rou_port[port].port_nasid == INVALID_NASID)
continue;
brd = (lboard_t *)NODE_OFFSET_TO_K0(
router_a->rou_port[port].port_nasid,
router_a->rou_port[port].port_offset);
if (brd->brd_type == KLTYPE_ROUTER) {
router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]);
if (router == router_b) {
if (depth < router_distance)
router_distance = depth;
}
else
router_recurse(router, router_b, depth + 1);
}
}
router_a->rou_rflag = 0;
}
unsigned char __node_distances[MAX_COMPACT_NODES][MAX_COMPACT_NODES];
static int __init compute_node_distance(nasid_t nasid_a, nasid_t nasid_b)
{
klrou_t *router, *router_a = NULL, *router_b = NULL;
lboard_t *brd, *dest_brd;
cnodeid_t cnode;
nasid_t nasid;
int port;
/* Figure out which routers nodes in question are connected to */
for_each_online_node(cnode) {
nasid = COMPACT_TO_NASID_NODEID(cnode);
if (nasid == -1) continue;
brd = find_lboard_class((lboard_t *)KL_CONFIG_INFO(nasid),
KLTYPE_ROUTER);
if (!brd)
continue;
do {
if (brd->brd_flags & DUPLICATE_BOARD)
continue;
router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]);
router->rou_rflag = 0;
for (port = 1; port <= MAX_ROUTER_PORTS; port++) {
if (router->rou_port[port].port_nasid == INVALID_NASID)
continue;
dest_brd = (lboard_t *)NODE_OFFSET_TO_K0(
router->rou_port[port].port_nasid,
router->rou_port[port].port_offset);
if (dest_brd->brd_type == KLTYPE_IP27) {
if (dest_brd->brd_nasid == nasid_a)
router_a = router;
if (dest_brd->brd_nasid == nasid_b)
router_b = router;
}
}
} while ((brd = find_lboard_class(KLCF_NEXT(brd), KLTYPE_ROUTER)));
}
if (router_a == NULL) {
printk("node_distance: router_a NULL\n");
return -1;
}
if (router_b == NULL) {
printk("node_distance: router_b NULL\n");
return -1;
}
if (nasid_a == nasid_b)
return 0;
if (router_a == router_b)
return 1;
router_distance = 100;
router_recurse(router_a, router_b, 2);
return router_distance;
}
static void __init init_topology_matrix(void)
{
nasid_t nasid, nasid2;
cnodeid_t row, col;
for (row = 0; row < MAX_COMPACT_NODES; row++)
for (col = 0; col < MAX_COMPACT_NODES; col++)
__node_distances[row][col] = -1;
for_each_online_node(row) {
nasid = COMPACT_TO_NASID_NODEID(row);
for_each_online_node(col) {
nasid2 = COMPACT_TO_NASID_NODEID(col);
__node_distances[row][col] =
compute_node_distance(nasid, nasid2);
}
}
}
static void __init dump_topology(void)
{
nasid_t nasid;
cnodeid_t cnode;
lboard_t *brd, *dest_brd;
int port;
int router_num = 0;
klrou_t *router;
cnodeid_t row, col;
printk("************** Topology ********************\n");
printk(" ");
for_each_online_node(col)
printk("%02d ", col);
printk("\n");
for_each_online_node(row) {
printk("%02d ", row);
for_each_online_node(col)
printk("%2d ", node_distance(row, col));
printk("\n");
}
for_each_online_node(cnode) {
nasid = COMPACT_TO_NASID_NODEID(cnode);
if (nasid == -1) continue;
brd = find_lboard_class((lboard_t *)KL_CONFIG_INFO(nasid),
KLTYPE_ROUTER);
if (!brd)
continue;
do {
if (brd->brd_flags & DUPLICATE_BOARD)
continue;
printk("Router %d:", router_num);
router_num++;
router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]);
for (port = 1; port <= MAX_ROUTER_PORTS; port++) {
if (router->rou_port[port].port_nasid == INVALID_NASID)
continue;
dest_brd = (lboard_t *)NODE_OFFSET_TO_K0(
router->rou_port[port].port_nasid,
router->rou_port[port].port_offset);
if (dest_brd->brd_type == KLTYPE_IP27)
printk(" %d", dest_brd->brd_nasid);
if (dest_brd->brd_type == KLTYPE_ROUTER)
printk(" r");
}
printk("\n");
} while ( (brd = find_lboard_class(KLCF_NEXT(brd), KLTYPE_ROUTER)) );
}
}
static unsigned long __init slot_getbasepfn(cnodeid_t cnode, int slot)
{
nasid_t nasid = COMPACT_TO_NASID_NODEID(cnode);
return ((unsigned long)nasid << PFN_NASIDSHFT) | (slot << SLOT_PFNSHIFT);
}
static unsigned long __init slot_psize_compute(cnodeid_t node, int slot)
{
nasid_t nasid;
lboard_t *brd;
klmembnk_t *banks;
unsigned long size;
nasid = COMPACT_TO_NASID_NODEID(node);
/* Find the node board */
brd = find_lboard((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_IP27);
if (!brd)
return 0;
/* Get the memory bank structure */
banks = (klmembnk_t *) find_first_component(brd, KLSTRUCT_MEMBNK);
if (!banks)
return 0;
/* Size in _Megabytes_ */
size = (unsigned long)banks->membnk_bnksz[slot/4];
/* hack for 128 dimm banks */
if (size <= 128) {
if (slot % 4 == 0) {
size <<= 20; /* size in bytes */
return(size >> PAGE_SHIFT);
} else
return 0;
} else {
size /= 4;
size <<= 20;
return size >> PAGE_SHIFT;
}
}
static void __init mlreset(void)
{
int i;
master_nasid = get_nasid();
fine_mode = is_fine_dirmode();
/*
* Probe for all CPUs - this creates the cpumask and sets up the
* mapping tables. We need to do this as early as possible.
*/
#ifdef CONFIG_SMP
cpu_node_probe();
#endif
init_topology_matrix();
dump_topology();
gen_region_mask(®ion_mask);
setup_replication_mask();
/*
* Set all nodes' calias sizes to 8k
*/
for_each_online_node(i) {
nasid_t nasid;
nasid = COMPACT_TO_NASID_NODEID(i);
/*
* Always have node 0 in the region mask, otherwise
* CALIAS accesses get exceptions since the hub
* thinks it is a node 0 address.
*/
REMOTE_HUB_S(nasid, PI_REGION_PRESENT, (region_mask | 1));
#ifdef CONFIG_REPLICATE_EXHANDLERS
REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_8K);
#else
REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_0);
#endif
#ifdef LATER
/*
* Set up all hubs to have a big window pointing at
* widget 0. Memory mode, widget 0, offset 0
*/
REMOTE_HUB_S(nasid, IIO_ITTE(SWIN0_BIGWIN),
((HUB_PIO_MAP_TO_MEM << IIO_ITTE_IOSP_SHIFT) |
(0 << IIO_ITTE_WIDGET_SHIFT)));
#endif
}
}
static void __init szmem(void)
{
unsigned long slot_psize, slot0sz = 0, nodebytes; /* Hack to detect problem configs */
int slot;
cnodeid_t node;
num_physpages = 0;
for_each_online_node(node) {
nodebytes = 0;
for (slot = 0; slot < MAX_MEM_SLOTS; slot++) {
slot_psize = slot_psize_compute(node, slot);
if (slot == 0)
slot0sz = slot_psize;
/*
* We need to refine the hack when we have replicated
* kernel text.
*/
nodebytes += (1LL << SLOT_SHIFT);
if (!slot_psize)
continue;
if ((nodebytes >> PAGE_SHIFT) * (sizeof(struct page)) >
(slot0sz << PAGE_SHIFT)) {
printk("Ignoring slot %d onwards on node %d\n",
slot, node);
slot = MAX_MEM_SLOTS;
continue;
}
num_physpages += slot_psize;
memblock_add_node(PFN_PHYS(slot_getbasepfn(node, slot)),
PFN_PHYS(slot_psize), node);
}
}
}
static void __init node_mem_init(cnodeid_t node)
{
unsigned long slot_firstpfn = slot_getbasepfn(node, 0);
unsigned long slot_freepfn = node_getfirstfree(node);
unsigned long bootmap_size;
unsigned long start_pfn, end_pfn;
get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
/*
* Allocate the node data structures on the node first.
*/
__node_data[node] = __va(slot_freepfn << PAGE_SHIFT);
memset(__node_data[node], 0, PAGE_SIZE);
NODE_DATA(node)->bdata = &bootmem_node_data[node];
NODE_DATA(node)->node_start_pfn = start_pfn;
NODE_DATA(node)->node_spanned_pages = end_pfn - start_pfn;
cpus_clear(hub_data(node)->h_cpus);
slot_freepfn += PFN_UP(sizeof(struct pglist_data) +
sizeof(struct hub_data));
bootmap_size = init_bootmem_node(NODE_DATA(node), slot_freepfn,
start_pfn, end_pfn);
free_bootmem_with_active_regions(node, end_pfn);
reserve_bootmem_node(NODE_DATA(node), slot_firstpfn << PAGE_SHIFT,
((slot_freepfn - slot_firstpfn) << PAGE_SHIFT) + bootmap_size,
BOOTMEM_DEFAULT);
sparse_memory_present_with_active_regions(node);
}
/*
* A node with nothing. We use it to avoid any special casing in
* cpumask_of_node
*/
static struct node_data null_node = {
.hub = {
.h_cpus = CPU_MASK_NONE
}
};
/*
* Currently, the intranode memory hole support assumes that each slot
* contains at least 32 MBytes of memory. We assume all bootmem data
* fits on the first slot.
*/
void __init prom_meminit(void)
{
cnodeid_t node;
mlreset();
szmem();
for (node = 0; node < MAX_COMPACT_NODES; node++) {
if (node_online(node)) {
node_mem_init(node);
continue;
}
__node_data[node] = &null_node;
}
}
void __init prom_free_prom_memory(void)
{
/* We got nothing to free here ... */
}
extern void setup_zero_pages(void);
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES] = {0, };
unsigned node;
pagetable_init();
for_each_online_node(node) {
unsigned long start_pfn, end_pfn;
get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
if (end_pfn > max_low_pfn)
max_low_pfn = end_pfn;
}
zones_size[ZONE_NORMAL] = max_low_pfn;
free_area_init_nodes(zones_size);
}
void __init mem_init(void)
{
unsigned long codesize, datasize, initsize, tmp;
unsigned node;
high_memory = (void *) __va(num_physpages << PAGE_SHIFT);
for_each_online_node(node) {
/*
* This will free up the bootmem, ie, slot 0 memory.
*/
totalram_pages += free_all_bootmem_node(NODE_DATA(node));
}
setup_zero_pages(); /* This comes from node 0 */
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
tmp = nr_free_pages();
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
"%ldk reserved, %ldk data, %ldk init, %ldk highmem)\n",
tmp << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
(num_physpages - tmp) << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10,
totalhigh_pages << (PAGE_SHIFT-10));
}