/*
*
* BRIEF MODULE DESCRIPTION
* The Descriptor Based DMA channel manager that first appeared
* on the Au1550. I started with dma.c, but I think all that is
* left is this initial comment :-)
*
* Copyright 2004 Embedded Edge, LLC
* dan@embeddededge.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/system.h>
#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
/*
* The Descriptor Based DMA supports up to 16 channels.
*
* There are 32 devices defined. We keep an internal structure
* of devices using these channels, along with additional
* information.
*
* We allocate the descriptors and allow access to them through various
* functions. The drivers allocate the data buffers and assign them
* to the descriptors.
*/
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
/* I couldn't find a macro that did this......
*/
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
static int dbdma_initialized=0;
static void au1xxx_dbdma_init(void);
static dbdev_tab_t dbdev_tab[] = {
#ifdef CONFIG_SOC_AU1550
/* UARTS */
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
/* EXT DMA */
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
/* USB DEV */
{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
/* PSC 0 */
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
/* PSC 1 */
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
/* PSC 2 */
{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
/* PSC 3 */
{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
/* MAC 0 */
{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
/* MAC 1 */
{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
#endif /* CONFIG_SOC_AU1550 */
#ifdef CONFIG_SOC_AU1200
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
#endif // CONFIG_SOC_AU1200
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
/* Provide 16 user definable device types */
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
#define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
static dbdev_tab_t *
find_dbdev_id (u32 id)
{
int i;
dbdev_tab_t *p;
for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
p = &dbdev_tab[i];
if (p->dev_id == id)
return p;
}
return NULL;
}
void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
{
return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
}
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
u32
au1xxx_ddma_add_device(dbdev_tab_t *dev)
{
u32 ret = 0;
dbdev_tab_t *p=NULL;
static u16 new_id=0x1000;
p = find_dbdev_id(0);
if ( NULL != p )
{
memcpy(p, dev, sizeof(dbdev_tab_t));
p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id);
ret = p->dev_id;
new_id++;
#if 0
printk("add_device: id:%x flags:%x padd:%x\n",
p->dev_id, p->dev_flags, p->dev_physaddr );
#endif
}
return ret;
}
EXPORT_SYMBOL(au1xxx_ddma_add_device);
/* Allocate a channel and return a non-zero descriptor if successful.
*/
u32
au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
void (*callback)(int, void *, struct pt_regs *), void *callparam)
{
unsigned long flags;
u32 used, chan, rv;
u32 dcp;
int i;
dbdev_tab_t *stp, *dtp;
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
/* We do the intialization on the first channel allocation.
* We have to wait because of the interrupt handler initialization
* which can't be done successfully during board set up.
*/
if (!dbdma_initialized)
au1xxx_dbdma_init();
dbdma_initialized = 1;
if ((stp = find_dbdev_id(srcid)) == NULL) return 0;
if ((dtp = find_dbdev_id(destid)) == NULL) return 0;
used = 0;
rv = 0;
/* Check to see if we can get both channels.
*/
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
(stp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got source */
stp->dev_flags |= DEV_FLAGS_INUSE;
if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
(dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got destination */
dtp->dev_flags |= DEV_FLAGS_INUSE;
}
else {
/* Can't get dest. Release src.
*/
stp->dev_flags &= ~DEV_FLAGS_INUSE;
used++;
}
}
else {
used++;
}
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (!used) {
/* Let's see if we can allocate a channel for it.
*/
ctp = NULL;
chan = 0;
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
for (i=0; i<NUM_DBDMA_CHANS; i++) {
if (chan_tab_ptr[i] == NULL) {
/* If kmalloc fails, it is caught below same
* as a channel not available.
*/
ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
chan_tab_ptr[i] = ctp;
break;
}
}
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (ctp != NULL) {
memset(ctp, 0, sizeof(chan_tab_t));
ctp->chan_index = chan = i;
dcp = DDMA_CHANNEL_BASE;
dcp += (0x0100 * chan);
ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
cp = (au1x_dma_chan_t *)dcp;
ctp->chan_src = stp;
ctp->chan_dest = dtp;
ctp->chan_callback = callback;
ctp->chan_callparam = callparam;
/* Initialize channel configuration.
*/
i = 0;
if (stp->dev_intlevel)
i |= DDMA_CFG_SED;
if (stp->dev_intpolarity)
i |= DDMA_CFG_SP;
if (dtp->dev_intlevel)
i |= DDMA_CFG_DED;
if (dtp->dev_intpolarity)
i |= DDMA_CFG_DP;
if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
(dtp->dev_flags & DEV_FLAGS_SYNC))
i |= DDMA_CFG_SYNC;
cp->ddma_cfg = i;
au_sync();
/* Return a non-zero value that can be used to
* find the channel information in subsequent
* operations.
*/
rv = (u32)(&chan_tab_ptr[chan]);
}
else {
/* Release devices */
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
}
}
return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
/* Set the device width if source or destination is a FIFO.
* Should be 8, 16, or 32 bits.
*/
u32
au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
{
u32 rv;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
rv = 0;
if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
rv = stp->dev_devwidth;
stp->dev_devwidth = bits;
}
if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
rv = dtp->dev_devwidth;
dtp->dev_devwidth = bits;
}
return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
/* Allocate a descriptor ring, initializing as much as possible.
*/
u32
au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
{
int i;
u32 desc_base, srcid, destid;
u32 cmd0, cmd1, src1, dest1;
u32 src0, dest0;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
/* The descriptors must be 32-byte aligned. There is a
* possibility the allocation will give us such an address,
* and if we try that first we are likely to not waste larger
* slabs of memory.
*/
desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
GFP_KERNEL|GFP_DMA);
if (desc_base == 0)
return 0;
if (desc_base & 0x1f) {
/* Lost....do it again, allocate extra, and round
* the address base.
*/
kfree((const void *)desc_base);
i = entries * sizeof(au1x_ddma_desc_t);
i += (sizeof(au1x_ddma_desc_t) - 1);
if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
return 0;
desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
}
dp = (au1x_ddma_desc_t *)desc_base;
/* Keep track of the base descriptor.
*/
ctp->chan_desc_base = dp;
/* Initialize the rings with as much information as we know.
*/
srcid = stp->dev_id;
destid = dtp->dev_id;
cmd0 = cmd1 = src1 = dest1 = 0;
src0 = dest0 = 0;
cmd0 |= DSCR_CMD0_SID(srcid);
cmd0 |= DSCR_CMD0_DID(destid);
cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
/* is it mem to mem transfer? */
if(((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) {
cmd0 |= DSCR_CMD0_MEM;
}
switch (stp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
break;
}
switch (dtp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
break;
}
/* If the device is marked as an in/out FIFO, ensure it is
* set non-coherent.
*/
if (stp->dev_flags & DEV_FLAGS_IN)
cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
if (dtp->dev_flags & DEV_FLAGS_OUT)
cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
/* Set up source1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (stp->dev_tsize) {
case 1:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
break;
case 2:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
break;
case 4:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
break;
case 8:
default:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
break;
}
/* If source input is fifo, set static address.
*/
if (stp->dev_flags & DEV_FLAGS_IN) {
if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
else
src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
}
if (stp->dev_physaddr)
src0 = stp->dev_physaddr;
/* Set up dest1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (dtp->dev_tsize) {
case 1:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
break;
case 2:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
break;
case 4:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
break;
case 8:
default:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
break;
}
/* If destination output is fifo, set static address.
*/
if (dtp->dev_flags & DEV_FLAGS_OUT) {
if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
else
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
}
if (dtp->dev_physaddr)
dest0 = dtp->dev_physaddr;
#if 0
printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
#endif
for (i=0; i<entries; i++) {
dp->dscr_cmd0 = cmd0;
dp->dscr_cmd1 = cmd1;
dp->dscr_source0 = src0;
dp->dscr_source1 = src1;
dp->dscr_dest0 = dest0;
dp->dscr_dest1 = dest1;
dp->dscr_stat = 0;
dp->sw_context = 0;
dp->sw_status = 0;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
dp++;
}
/* Make last descrptor point to the first.
*/
dp--;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
return (u32)(ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
/* Put a source buffer into the DMA ring.
* This updates the source pointer and byte count. Normally used
* for memory to fifo transfers.
*/
u32
_au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V) {
return 0;
}
/* Load up buffer address and byte count.
*/
dp->dscr_source0 = virt_to_phys(buf);
dp->dscr_cmd1 = nbytes;
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
/*
* There is an errata on the Au1200/Au1550 parts that could result
* in "stale" data being DMA'd. It has to do with the snoop logic on
* the dache eviction buffer. NONCOHERENT_IO is on by default for
* these parts. If it is fixedin the future, these dma_cache_inv will
* just be nothing more than empty macros. See io.h.
* */
dma_cache_wback_inv((unsigned long)buf, nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
au_sync();
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
/* Put a destination buffer into the DMA ring.
* This updates the destination pointer and byte count. Normally used
* to place an empty buffer into the ring for fifo to memory transfers.
*/
u32
_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer address and byte count */
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_dest0 = virt_to_phys(buf);
dp->dscr_cmd1 = nbytes;
#if 0
printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
#endif
/*
* There is an errata on the Au1200/Au1550 parts that could result in
* "stale" data being DMA'd. It has to do with the snoop logic on the
* dache eviction buffer. NONCOHERENT_IO is on by default for these
* parts. If it is fixedin the future, these dma_cache_inv will just
* be nothing more than empty macros. See io.h.
* */
dma_cache_inv((unsigned long)buf,nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
au_sync();
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
/* Get a destination buffer into the DMA ring.
* Normally used to get a full buffer from the ring during fifo
* to memory transfers. This does not set the valid bit, you will
* have to put another destination buffer to keep the DMA going.
*/
u32
au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 rv;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->get_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Return buffer address and byte count.
*/
*buf = (void *)(phys_to_virt(dp->dscr_dest0));
*nbytes = dp->dscr_cmd1;
rv = dp->dscr_stat;
/* Get next descriptor pointer.
*/
ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
void
au1xxx_dbdma_stop(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
int halt_timeout = 0;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
au_sync();
while (!(cp->ddma_stat & DDMA_STAT_H)) {
udelay(1);
halt_timeout++;
if (halt_timeout > 100) {
printk("warning: DMA channel won't halt\n");
break;
}
}
/* clear current desc valid and doorbell */
cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
au_sync();
}
EXPORT_SYMBOL(au1xxx_dbdma_stop);
/* Start using the current descriptor pointer. If the dbdma encounters
* a not valid descriptor, it will stop. In this case, we can just
* continue by adding a buffer to the list and starting again.
*/
void
au1xxx_dbdma_start(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
au_sync();
cp->ddma_dbell = 0;
au_sync();
}
EXPORT_SYMBOL(au1xxx_dbdma_start);
void
au1xxx_dbdma_reset(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1xxx_dbdma_stop(chanid);
ctp = *((chan_tab_t **)chanid);
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
/* Run through the descriptors and reset the valid indicator.
*/
dp = ctp->chan_desc_base;
do {
dp->dscr_cmd0 &= ~DSCR_CMD0_V;
/* reset our SW status -- this is used to determine
* if a descriptor is in use by upper level SW. Since
* posting can reset 'V' bit.
*/
dp->sw_status = 0;
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_reset);
u32
au1xxx_get_dma_residue(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
u32 rv;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
/* This is only valid if the channel is stopped.
*/
rv = cp->ddma_bytecnt;
au_sync();
return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
void
au1xxx_dbdma_chan_free(u32 chanid)
{
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
au1xxx_dbdma_stop(chanid);
kfree((void *)ctp->chan_desc_base);
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
chan_tab_ptr[ctp->chan_index] = NULL;
kfree(ctp);
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
static irqreturn_t
dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
u32 intstat;
u32 chan_index;
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1x_dma_chan_t *cp;
intstat = dbdma_gptr->ddma_intstat;
au_sync();
chan_index = au_ffs(intstat) - 1;
ctp = chan_tab_ptr[chan_index];
cp = ctp->chan_ptr;
dp = ctp->cur_ptr;
/* Reset interrupt.
*/
cp->ddma_irq = 0;
au_sync();
if (ctp->chan_callback)
(ctp->chan_callback)(irq, ctp->chan_callparam, regs);
ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
return IRQ_RETVAL(1);
}
static void au1xxx_dbdma_init(void)
{
int irq_nr;
dbdma_gptr->ddma_config = 0;
dbdma_gptr->ddma_throttle = 0;
dbdma_gptr->ddma_inten = 0xffff;
au_sync();
#if defined(CONFIG_SOC_AU1550)
irq_nr = AU1550_DDMA_INT;
#elif defined(CONFIG_SOC_AU1200)
irq_nr = AU1200_DDMA_INT;
#else
#error Unknown Au1x00 SOC
#endif
if (request_irq(irq_nr, dbdma_interrupt, SA_INTERRUPT,
"Au1xxx dbdma", (void *)dbdma_gptr))
printk("Can't get 1550 dbdma irq");
}
void
au1xxx_dbdma_dump(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
dbdev_tab_t *stp, *dtp;
au1x_dma_chan_t *cp;
u32 i = 0;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
cp = ctp->chan_ptr;
printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
printk("desc base %x, get %x, put %x, cur %x\n",
(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
printk("dbdma chan %x\n", (u32)cp);
printk("cfg %08x, desptr %08x, statptr %08x\n",
cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
/* Run through the descriptors
*/
dp = ctp->chan_desc_base;
do {
printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
printk("stat %08x, nxtptr %08x\n",
dp->dscr_stat, dp->dscr_nxtptr);
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
/* Put a descriptor into the DMA ring.
* This updates the source/destination pointers and byte count.
*/
u32
au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 nbytes=0;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer addresses and byte count.
*/
dp->dscr_dest0 = dscr->dscr_dest0;
dp->dscr_source0 = dscr->dscr_source0;
dp->dscr_dest1 = dscr->dscr_dest1;
dp->dscr_source1 = dscr->dscr_source1;
dp->dscr_cmd1 = dscr->dscr_cmd1;
nbytes = dscr->dscr_cmd1;
/* Allow the caller to specifiy if an interrupt is generated */
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */