/*
* pci.c - Low-Level PCI Access in IA-64
*
* Derived from bios32.c of i386 tree.
*
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Bjorn Helgaas <bjorn.helgaas@hp.com>
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Note: Above list of copyright holders is incomplete...
*/
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
/*
* Low-level SAL-based PCI configuration access functions. Note that SAL
* calls are already serialized (via sal_lock), so we don't need another
* synchronization mechanism here.
*/
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
/* SAL 3.2 adds support for extended config space. */
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *value)
{
u64 addr, data = 0;
int mode, result;
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_read(addr, mode, len, &data);
if (result != 0)
return -EINVAL;
*value = (u32) data;
return 0;
}
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 value)
{
u64 addr;
int mode, result;
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_write(addr, mode, len, value);
if (result != 0)
return -EINVAL;
return 0;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
/* Called by ACPI when it finds a new root bus. */
static struct pci_controller * __devinit
alloc_pci_controller (int seg)
{
struct pci_controller *controller;
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
if (!controller)
return NULL;
controller->segment = seg;
controller->node = -1;
return controller;
}
struct pci_root_info {
struct acpi_device *bridge;
struct pci_controller *controller;
char *name;
};
static unsigned int
new_space (u64 phys_base, int sparse)
{
u64 mmio_base;
int i;
if (phys_base == 0)
return 0; /* legacy I/O port space */
mmio_base = (u64) ioremap(phys_base, 0);
for (i = 0; i < num_io_spaces; i++)
if (io_space[i].mmio_base == mmio_base &&
io_space[i].sparse == sparse)
return i;
if (num_io_spaces == MAX_IO_SPACES) {
printk(KERN_ERR "PCI: Too many IO port spaces "
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
return ~0;
}
i = num_io_spaces++;
io_space[i].mmio_base = mmio_base;
io_space[i].sparse = sparse;
return i;
}
static u64 __devinit
add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
{
struct resource *resource;
char *name;
unsigned long base, min, max, base_port;
unsigned int sparse = 0, space_nr, len;
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
if (!resource) {
printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
info->name);
goto out;
}
len = strlen(info->name) + 32;
name = kzalloc(len, GFP_KERNEL);
if (!name) {
printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
info->name);
goto free_resource;
}
min = addr->minimum;
max = min + addr->address_length - 1;
if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
sparse = 1;
space_nr = new_space(addr->translation_offset, sparse);
if (space_nr == ~0)
goto free_name;
base = __pa(io_space[space_nr].mmio_base);
base_port = IO_SPACE_BASE(space_nr);
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
base_port + min, base_port + max);
/*
* The SDM guarantees the legacy 0-64K space is sparse, but if the
* mapping is done by the processor (not the bridge), ACPI may not
* mark it as sparse.
*/
if (space_nr == 0)
sparse = 1;
resource->name = name;
resource->flags = IORESOURCE_MEM;
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
insert_resource(&iomem_resource, resource);
return base_port;
free_name:
kfree(name);
free_resource:
kfree(resource);
out:
return ~0;
}
static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
struct acpi_resource_address64 *addr)
{
acpi_status status;
/*
* We're only interested in _CRS descriptors that are
* - address space descriptors for memory or I/O space
* - non-zero size
* - producers, i.e., the address space is routed downstream,
* not consumed by the bridge itself
*/
status = acpi_resource_to_address64(resource, addr);
if (ACPI_SUCCESS(status) &&
(addr->resource_type == ACPI_MEMORY_RANGE ||
addr->resource_type == ACPI_IO_RANGE) &&
addr->address_length &&
addr->producer_consumer == ACPI_PRODUCER)
return AE_OK;
return AE_ERROR;
}
static acpi_status __devinit
count_window (struct acpi_resource *resource, void *data)
{
unsigned int *windows = (unsigned int *) data;
struct acpi_resource_address64 addr;
acpi_status status;
status = resource_to_window(resource, &addr);
if (ACPI_SUCCESS(status))
(*windows)++;
return AE_OK;
}
static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
{
struct pci_root_info *info = data;
struct pci_window *window;
struct acpi_resource_address64 addr;
acpi_status status;
unsigned long flags, offset = 0;
struct resource *root;
/* Return AE_OK for non-window resources to keep scanning for more */
status = resource_to_window(res, &addr);
if (!ACPI_SUCCESS(status))
return AE_OK;
if (addr.resource_type == ACPI_MEMORY_RANGE) {
flags = IORESOURCE_MEM;
root = &iomem_resource;
offset = addr.translation_offset;
} else if (addr.resource_type == ACPI_IO_RANGE) {
flags = IORESOURCE_IO;
root = &ioport_resource;
offset = add_io_space(info, &addr);
if (offset == ~0)
return AE_OK;
} else
return AE_OK;
window = &info->controller->window[info->controller->windows++];
window->resource.name = info->name;
window->resource.flags = flags;
window->resource.start = addr.minimum + offset;
window->resource.end = window->resource.start + addr.address_length - 1;
window->resource.child = NULL;
window->offset = offset;
if (insert_resource(root, &window->resource)) {
dev_err(&info->bridge->dev,
"can't allocate host bridge window %pR\n",
&window->resource);
} else {
if (offset)
dev_info(&info->bridge->dev, "host bridge window %pR "
"(PCI address [%#llx-%#llx])\n",
&window->resource,
window->resource.start - offset,
window->resource.end - offset);
else
dev_info(&info->bridge->dev,
"host bridge window %pR\n",
&window->resource);
}
return AE_OK;
}
static void __devinit
pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
{
int i;
pci_bus_remove_resources(bus);
for (i = 0; i < ctrl->windows; i++) {
struct resource *res = &ctrl->window[i].resource;
/* HP's firmware has a hack to work around a Windows bug.
* Ignore these tiny memory ranges */
if ((res->flags & IORESOURCE_MEM) &&
(res->end - res->start < 16))
continue;
pci_bus_add_resource(bus, res, 0);
}
}
struct pci_bus * __devinit
pci_acpi_scan_root(struct acpi_pci_root *root)
{
struct acpi_device *device = root->device;
int domain = root->segment;
int bus = root->secondary.start;
struct pci_controller *controller;
unsigned int windows = 0;
struct pci_bus *pbus;
char *name;
int pxm;
controller = alloc_pci_controller(domain);
if (!controller)
goto out1;
controller->acpi_handle = device->handle;
pxm = acpi_get_pxm(controller->acpi_handle);
#ifdef CONFIG_NUMA
if (pxm >= 0)
controller->node = pxm_to_node(pxm);
#endif
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
&windows);
if (windows) {
struct pci_root_info info;
controller->window =
kmalloc_node(sizeof(*controller->window) * windows,
GFP_KERNEL, controller->node);
if (!controller->window)
goto out2;
name = kmalloc(16, GFP_KERNEL);
if (!name)
goto out3;
sprintf(name, "PCI Bus %04x:%02x", domain, bus);
info.bridge = device;
info.controller = controller;
info.name = name;
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
add_window, &info);
}
/*
* See arch/x86/pci/acpi.c.
* The desired pci bus might already be scanned in a quirk. We
* should handle the case here, but it appears that IA64 hasn't
* such quirk. So we just ignore the case now.
*/
pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
return pbus;
out3:
kfree(controller->window);
out2:
kfree(controller);
out1:
return NULL;
}
void pcibios_resource_to_bus(struct pci_dev *dev,
struct pci_bus_region *region, struct resource *res)
{
struct pci_controller *controller = PCI_CONTROLLER(dev);
unsigned long offset = 0;
int i;
for (i = 0; i < controller->windows; i++) {
struct pci_window *window = &controller->window[i];
if (!(window->resource.flags & res->flags))
continue;
if (window->resource.start > res->start)
continue;
if (window->resource.end < res->end)
continue;
offset = window->offset;
break;
}
region->start = res->start - offset;
region->end = res->end - offset;
}
EXPORT_SYMBOL(pcibios_resource_to_bus);
void pcibios_bus_to_resource(struct pci_dev *dev,
struct resource *res, struct pci_bus_region *region)
{
struct pci_controller *controller = PCI_CONTROLLER(dev);
unsigned long offset = 0;
int i;
for (i = 0; i < controller->windows; i++) {
struct pci_window *window = &controller->window[i];
if (!(window->resource.flags & res->flags))
continue;
if (window->resource.start - window->offset > region->start)
continue;
if (window->resource.end - window->offset < region->end)
continue;
offset = window->offset;
break;
}
res->start = region->start + offset;
res->end = region->end + offset;
}
EXPORT_SYMBOL(pcibios_bus_to_resource);
static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
{
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
struct resource *devr = &dev->resource[idx], *busr;
if (!dev->bus)
return 0;
pci_bus_for_each_resource(dev->bus, busr, i) {
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
continue;
if ((devr->start) && (devr->start >= busr->start) &&
(devr->end <= busr->end))
return 1;
}
return 0;
}
static void __devinit
pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
{
struct pci_bus_region region;
int i;
for (i = start; i < limit; i++) {
if (!dev->resource[i].flags)
continue;
region.start = dev->resource[i].start;
region.end = dev->resource[i].end;
pcibios_bus_to_resource(dev, &dev->resource[i], ®ion);
if ((is_valid_resource(dev, i)))
pci_claim_resource(dev, i);
}
}
void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
{
pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
}
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
{
pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
}
/*
* Called after each bus is probed, but before its children are examined.
*/
void __devinit
pcibios_fixup_bus (struct pci_bus *b)
{
struct pci_dev *dev;
if (b->self) {
pci_read_bridge_bases(b);
pcibios_fixup_bridge_resources(b->self);
} else {
pcibios_setup_root_windows(b, b->sysdata);
}
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
platform_pci_fixup_bus(b);
return;
}
void __devinit
pcibios_update_irq (struct pci_dev *dev, int irq)
{
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
/* ??? FIXME -- record old value for shutdown. */
}
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
int ret;
ret = pci_enable_resources(dev, mask);
if (ret < 0)
return ret;
if (!dev->msi_enabled)
return acpi_pci_irq_enable(dev);
return 0;
}
void
pcibios_disable_device (struct pci_dev *dev)
{
BUG_ON(atomic_read(&dev->enable_cnt));
if (!dev->msi_enabled)
acpi_pci_irq_disable(dev);
}
resource_size_t
pcibios_align_resource (void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
/*
* PCI BIOS setup, always defaults to SAL interface
*/
char * __init
pcibios_setup (char *str)
{
return str;
}
int
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
/*
* I/O space cannot be accessed via normal processor loads and
* stores on this platform.
*/
if (mmap_state == pci_mmap_io)
/*
* XXX we could relax this for I/O spaces for which ACPI
* indicates that the space is 1-to-1 mapped. But at the
* moment, we don't support multiple PCI address spaces and
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
*/
return -EINVAL;
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
/*
* If the user requested WC, the kernel uses UC or WC for this region,
* and the chipset supports WC, we can use WC. Otherwise, we have to
* use the same attribute the kernel uses.
*/
if (write_combine &&
((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
(pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
else
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_get_legacy_mem - generic legacy mem routine
* @bus: bus to get legacy memory base address for
*
* Find the base of legacy memory for @bus. This is typically the first
* megabyte of bus address space for @bus or is simply 0 on platforms whose
* chipsets support legacy I/O and memory routing. Returns the base address
* or an error pointer if an error occurred.
*
* This is the ia64 generic version of this routine. Other platforms
* are free to override it with a machine vector.
*/
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
{
return (char *)__IA64_UNCACHED_OFFSET;
}
/**
* pci_mmap_legacy_page_range - map legacy memory space to userland
* @bus: bus whose legacy space we're mapping
* @vma: vma passed in by mmap
*
* Map legacy memory space for this device back to userspace using a machine
* vector to get the base address.
*/
int
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
char *addr;
/* We only support mmap'ing of legacy memory space */
if (mmap_state != pci_mmap_mem)
return -ENOSYS;
/*
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
* for more details.
*/
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
addr = pci_get_legacy_mem(bus);
if (IS_ERR(addr))
return PTR_ERR(addr);
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_legacy_read - read from legacy I/O space
* @bus: bus to read
* @port: legacy port value
* @val: caller allocated storage for returned value
* @size: number of bytes to read
*
* Simply reads @size bytes from @port and puts the result in @val.
*
* Again, this (and the write routine) are generic versions that can be
* overridden by the platform. This is necessary on platforms that don't
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
*/
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
int ret = size;
switch (size) {
case 1:
*val = inb(port);
break;
case 2:
*val = inw(port);
break;
case 4:
*val = inl(port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* ia64_pci_legacy_write - perform a legacy I/O write
* @bus: bus pointer
* @port: port to write
* @val: value to write
* @size: number of bytes to write from @val
*
* Simply writes @size bytes of @val to @port.
*/
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
{
int ret = size;
switch (size) {
case 1:
outb(val, port);
break;
case 2:
outw(val, port);
break;
case 4:
outl(val, port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* set_pci_cacheline_size - determine cacheline size for PCI devices
*
* We want to use the line-size of the outer-most cache. We assume
* that this line-size is the same for all CPUs.
*
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
*/
static void __init set_pci_dfl_cacheline_size(void)
{
unsigned long levels, unique_caches;
long status;
pal_cache_config_info_t cci;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
"(status=%ld)\n", __func__, status);
return;
}
status = ia64_pal_cache_config_info(levels - 1,
/* cache_type (data_or_unified)= */ 2, &cci);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
"(status=%ld)\n", __func__, status);
return;
}
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
}
u64 ia64_dma_get_required_mask(struct device *dev)
{
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
u64 mask;
if (!high_totalram) {
/* convert to mask just covering totalram */
low_totalram = (1 << (fls(low_totalram) - 1));
low_totalram += low_totalram - 1;
mask = low_totalram;
} else {
high_totalram = (1 << (fls(high_totalram) - 1));
high_totalram += high_totalram - 1;
mask = (((u64)high_totalram) << 32) + 0xffffffff;
}
return mask;
}
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
u64 dma_get_required_mask(struct device *dev)
{
return platform_dma_get_required_mask(dev);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
static int __init pcibios_init(void)
{
set_pci_dfl_cacheline_size();
return 0;
}
subsys_initcall(pcibios_init);