aboutsummaryrefslogblamecommitdiffstats
path: root/arch/ia64/kvm/vcpu.c
blob: dce75b70cdd5d9abce6b28d419b5aba6ba97cb0d (plain) (tree)
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091

















































































































                                                                               




















































                                                                          




































































































                                                                          























































































































                                                                               
                                                                            


















                                                                      
                               





















































                                                                                
                          






                                   
                                                                              





























































































































































































































































































































                                                                          















                                                                  





                                                                         
                                                              











                                                                
                        
              
                                                  

                                             

                                        
                                    
                                                                       

                                                                          



























































































































































































































                                                                            








                                                  








                                                 
                                                                  





































































                                                                            





















                                                





































































































































































































































                                                                            






                                                            
 
                                                                           
                                                         











                                                                              










































                                                                   











































                                                       












































                                                         


















































                                                                          






















                                                                 















                                                            

                                                                     


























































































































                                                                            
















                                                   



















































































































































































































































































































                                                                           
                                                                      















































                                                                              

























































                                                                              
                                                     




                                               




                                              
/*
 * kvm_vcpu.c: handling all virtual cpu related thing.
 * Copyright (c) 2005, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 *  Shaofan Li (Susue Li) <susie.li@intel.com>
 *  Yaozu Dong (Eddie Dong) (Eddie.dong@intel.com)
 *  Xuefei Xu (Anthony Xu) (Anthony.xu@intel.com)
 *  Xiantao Zhang <xiantao.zhang@intel.com>
 */

#include <linux/kvm_host.h>
#include <linux/types.h>

#include <asm/processor.h>
#include <asm/ia64regs.h>
#include <asm/gcc_intrin.h>
#include <asm/kregs.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>

#include "asm-offsets.h"
#include "vcpu.h"

/*
 * Special notes:
 * - Index by it/dt/rt sequence
 * - Only existing mode transitions are allowed in this table
 * - RSE is placed at lazy mode when emulating guest partial mode
 * - If gva happens to be rr0 and rr4, only allowed case is identity
 *   mapping (gva=gpa), or panic! (How?)
 */
int mm_switch_table[8][8] = {
	/*  2004/09/12(Kevin): Allow switch to self */
	/*
	 *  (it,dt,rt): (0,0,0) -> (1,1,1)
	 *  This kind of transition usually occurs in the very early
	 *  stage of Linux boot up procedure. Another case is in efi
	 *  and pal calls. (see "arch/ia64/kernel/head.S")
	 *
	 *  (it,dt,rt): (0,0,0) -> (0,1,1)
	 *  This kind of transition is found when OSYa exits efi boot
	 *  service. Due to gva = gpa in this case (Same region),
	 *  data access can be satisfied though itlb entry for physical
	 *  emulation is hit.
	 */
	{SW_SELF, 0,  0,  SW_NOP, 0,  0,  0,  SW_P2V},
	{0,  0,  0,  0,  0,  0,  0,  0},
	{0,  0,  0,  0,  0,  0,  0,  0},
	/*
	 *  (it,dt,rt): (0,1,1) -> (1,1,1)
	 *  This kind of transition is found in OSYa.
	 *
	 *  (it,dt,rt): (0,1,1) -> (0,0,0)
	 *  This kind of transition is found in OSYa
	 */
	{SW_NOP, 0,  0,  SW_SELF, 0,  0,  0,  SW_P2V},
	/* (1,0,0)->(1,1,1) */
	{0,  0,  0,  0,  0,  0,  0,  SW_P2V},
	/*
	 *  (it,dt,rt): (1,0,1) -> (1,1,1)
	 *  This kind of transition usually occurs when Linux returns
	 *  from the low level TLB miss handlers.
	 *  (see "arch/ia64/kernel/ivt.S")
	 */
	{0,  0,  0,  0,  0,  SW_SELF, 0,  SW_P2V},
	{0,  0,  0,  0,  0,  0,  0,  0},
	/*
	 *  (it,dt,rt): (1,1,1) -> (1,0,1)
	 *  This kind of transition usually occurs in Linux low level
	 *  TLB miss handler. (see "arch/ia64/kernel/ivt.S")
	 *
	 *  (it,dt,rt): (1,1,1) -> (0,0,0)
	 *  This kind of transition usually occurs in pal and efi calls,
	 *  which requires running in physical mode.
	 *  (see "arch/ia64/kernel/head.S")
	 *  (1,1,1)->(1,0,0)
	 */

	{SW_V2P, 0,  0,  0,  SW_V2P, SW_V2P, 0,  SW_SELF},
};

void physical_mode_init(struct kvm_vcpu  *vcpu)
{
	vcpu->arch.mode_flags = GUEST_IN_PHY;
}

void switch_to_physical_rid(struct kvm_vcpu *vcpu)
{
	unsigned long psr;

	/* Save original virtual mode rr[0] and rr[4] */
	psr = ia64_clear_ic();
	ia64_set_rr(VRN0<<VRN_SHIFT, vcpu->arch.metaphysical_rr0);
	ia64_srlz_d();
	ia64_set_rr(VRN4<<VRN_SHIFT, vcpu->arch.metaphysical_rr4);
	ia64_srlz_d();

	ia64_set_psr(psr);
	return;
}

void switch_to_virtual_rid(struct kvm_vcpu *vcpu)
{
	unsigned long psr;

	psr = ia64_clear_ic();
	ia64_set_rr(VRN0 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr0);
	ia64_srlz_d();
	ia64_set_rr(VRN4 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr4);
	ia64_srlz_d();
	ia64_set_psr(psr);
	return;
}

static int mm_switch_action(struct ia64_psr opsr, struct ia64_psr npsr)
{
	return mm_switch_table[MODE_IND(opsr)][MODE_IND(npsr)];
}

void switch_mm_mode(struct kvm_vcpu *vcpu, struct ia64_psr old_psr,
					struct ia64_psr new_psr)
{
	int act;
	act = mm_switch_action(old_psr, new_psr);
	switch (act) {
	case SW_V2P:
		/*printk("V -> P mode transition: (0x%lx -> 0x%lx)\n",
		old_psr.val, new_psr.val);*/
		switch_to_physical_rid(vcpu);
		/*
		 * Set rse to enforced lazy, to prevent active rse
		 *save/restor when guest physical mode.
		 */
		vcpu->arch.mode_flags |= GUEST_IN_PHY;
		break;
	case SW_P2V:
		switch_to_virtual_rid(vcpu);
		/*
		 * recover old mode which is saved when entering
		 * guest physical mode
		 */
		vcpu->arch.mode_flags &= ~GUEST_IN_PHY;
		break;
	case SW_SELF:
		break;
	case SW_NOP:
		break;
	default:
		/* Sanity check */
		break;
	}
	return;
}

/*
 * In physical mode, insert tc/tr for region 0 and 4 uses
 * RID[0] and RID[4] which is for physical mode emulation.
 * However what those inserted tc/tr wants is rid for
 * virtual mode. So original virtual rid needs to be restored
 * before insert.
 *
 * Operations which required such switch include:
 *  - insertions (itc.*, itr.*)
 *  - purges (ptc.* and ptr.*)
 *  - tpa
 *  - tak
 *  - thash?, ttag?
 * All above needs actual virtual rid for destination entry.
 */

void check_mm_mode_switch(struct kvm_vcpu *vcpu,  struct ia64_psr old_psr,
					struct ia64_psr new_psr)
{

	if ((old_psr.dt != new_psr.dt)
			|| (old_psr.it != new_psr.it)
			|| (old_psr.rt != new_psr.rt))
		switch_mm_mode(vcpu, old_psr, new_psr);

	return;
}


/*
 * In physical mode, insert tc/tr for region 0 and 4 uses
 * RID[0] and RID[4] which is for physical mode emulation.
 * However what those inserted tc/tr wants is rid for
 * virtual mode. So original virtual rid needs to be restored
 * before insert.
 *
 * Operations which required such switch include:
 *  - insertions (itc.*, itr.*)
 *  - purges (ptc.* and ptr.*)
 *  - tpa
 *  - tak
 *  - thash?, ttag?
 * All above needs actual virtual rid for destination entry.
 */

void prepare_if_physical_mode(struct kvm_vcpu *vcpu)
{
	if (is_physical_mode(vcpu)) {
		vcpu->arch.mode_flags |= GUEST_PHY_EMUL;
		switch_to_virtual_rid(vcpu);
	}
	return;
}

/* Recover always follows prepare */
void recover_if_physical_mode(struct kvm_vcpu *vcpu)
{
	if (is_physical_mode(vcpu))
		switch_to_physical_rid(vcpu);
	vcpu->arch.mode_flags &= ~GUEST_PHY_EMUL;
	return;
}

#define RPT(x)	((u16) &((struct kvm_pt_regs *)0)->x)

static u16 gr_info[32] = {
	0, 	/* r0 is read-only : WE SHOULD NEVER GET THIS */
	RPT(r1), RPT(r2), RPT(r3),
	RPT(r4), RPT(r5), RPT(r6), RPT(r7),
	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
	RPT(r12), RPT(r13), RPT(r14), RPT(r15),
	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
};

#define IA64_FIRST_STACKED_GR   32
#define IA64_FIRST_ROTATING_FR  32

static inline unsigned long
rotate_reg(unsigned long sor, unsigned long rrb, unsigned long reg)
{
	reg += rrb;
	if (reg >= sor)
		reg -= sor;
	return reg;
}

/*
 * Return the (rotated) index for floating point register
 * be in the REGNUM (REGNUM must range from 32-127,
 * result is in the range from 0-95.
 */
static inline unsigned long fph_index(struct kvm_pt_regs *regs,
						long regnum)
{
	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
}

/*
 * The inverse of the above: given bspstore and the number of
 * registers, calculate ar.bsp.
 */
static inline unsigned long *kvm_rse_skip_regs(unsigned long *addr,
							long num_regs)
{
	long delta = ia64_rse_slot_num(addr) + num_regs;
	int i = 0;

	if (num_regs < 0)
		delta -= 0x3e;
	if (delta < 0) {
		while (delta <= -0x3f) {
			i--;
			delta += 0x3f;
		}
	} else {
		while (delta >= 0x3f) {
			i++;
			delta -= 0x3f;
		}
	}

	return addr + num_regs + i;
}

static void get_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
					unsigned long *val, int *nat)
{
	unsigned long *bsp, *addr, *rnat_addr, *bspstore;
	unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
	unsigned long nat_mask;
	unsigned long old_rsc, new_rsc;
	long sof = (regs->cr_ifs) & 0x7f;
	long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
	long ridx = r1 - 32;

	if (ridx < sor)
		ridx = rotate_reg(sor, rrb_gr, ridx);

	old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
	new_rsc = old_rsc&(~(0x3));
	ia64_setreg(_IA64_REG_AR_RSC, new_rsc);

	bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
	bsp = kbs + (regs->loadrs >> 19);

	addr = kvm_rse_skip_regs(bsp, -sof + ridx);
	nat_mask = 1UL << ia64_rse_slot_num(addr);
	rnat_addr = ia64_rse_rnat_addr(addr);

	if (addr >= bspstore) {
		ia64_flushrs();
		ia64_mf();
		bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
	}
	*val = *addr;
	if (nat) {
		if (bspstore < rnat_addr)
			*nat = (int)!!(ia64_getreg(_IA64_REG_AR_RNAT)
							& nat_mask);
		else
			*nat = (int)!!((*rnat_addr) & nat_mask);
		ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
	}
}

void set_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
				unsigned long val, unsigned long nat)
{
	unsigned long *bsp, *bspstore, *addr, *rnat_addr;
	unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
	unsigned long nat_mask;
	unsigned long old_rsc, new_rsc, psr;
	unsigned long rnat;
	long sof = (regs->cr_ifs) & 0x7f;
	long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
	long ridx = r1 - 32;

	if (ridx < sor)
		ridx = rotate_reg(sor, rrb_gr, ridx);

	old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
	/* put RSC to lazy mode, and set loadrs 0 */
	new_rsc = old_rsc & (~0x3fff0003);
	ia64_setreg(_IA64_REG_AR_RSC, new_rsc);
	bsp = kbs + (regs->loadrs >> 19); /* 16 + 3 */

	addr = kvm_rse_skip_regs(bsp, -sof + ridx);
	nat_mask = 1UL << ia64_rse_slot_num(addr);
	rnat_addr = ia64_rse_rnat_addr(addr);

	local_irq_save(psr);
	bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
	if (addr >= bspstore) {

		ia64_flushrs();
		ia64_mf();
		*addr = val;
		bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
		rnat = ia64_getreg(_IA64_REG_AR_RNAT);
		if (bspstore < rnat_addr)
			rnat = rnat & (~nat_mask);
		else
			*rnat_addr = (*rnat_addr)&(~nat_mask);

		ia64_mf();
		ia64_loadrs();
		ia64_setreg(_IA64_REG_AR_RNAT, rnat);
	} else {
		rnat = ia64_getreg(_IA64_REG_AR_RNAT);
		*addr = val;
		if (bspstore < rnat_addr)
			rnat = rnat&(~nat_mask);
		else
			*rnat_addr = (*rnat_addr) & (~nat_mask);

		ia64_setreg(_IA64_REG_AR_BSPSTORE, (unsigned long)bspstore);
		ia64_setreg(_IA64_REG_AR_RNAT, rnat);
	}
	local_irq_restore(psr);
	ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
}

void getreg(unsigned long regnum, unsigned long *val,
				int *nat, struct kvm_pt_regs *regs)
{
	unsigned long addr, *unat;
	if (regnum >= IA64_FIRST_STACKED_GR) {
		get_rse_reg(regs, regnum, val, nat);
		return;
	}

	/*
	 * Now look at registers in [0-31] range and init correct UNAT
	 */
	addr = (unsigned long)regs;
	unat = &regs->eml_unat;

	addr += gr_info[regnum];

	*val  = *(unsigned long *)addr;
	/*
	 * do it only when requested
	 */
	if (nat)
		*nat  = (*unat >> ((addr >> 3) & 0x3f)) & 0x1UL;
}

void setreg(unsigned long regnum, unsigned long val,
			int nat, struct kvm_pt_regs *regs)
{
	unsigned long addr;
	unsigned long bitmask;
	unsigned long *unat;

	/*
	 * First takes care of stacked registers
	 */
	if (regnum >= IA64_FIRST_STACKED_GR) {
		set_rse_reg(regs, regnum, val, nat);
		return;
	}

	/*
	 * Now look at registers in [0-31] range and init correct UNAT
	 */
	addr = (unsigned long)regs;
	unat = &regs->eml_unat;
	/*
	 * add offset from base of struct
	 * and do it !
	 */
	addr += gr_info[regnum];

	*(unsigned long *)addr = val;

	/*
	 * We need to clear the corresponding UNAT bit to fully emulate the load
	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
	 */
	bitmask   = 1UL << ((addr >> 3) & 0x3f);
	if (nat)
		*unat |= bitmask;
	 else
		*unat &= ~bitmask;

}

u64 vcpu_get_gr(struct kvm_vcpu *vcpu, unsigned long reg)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	unsigned long val;

	if (!reg)
		return 0;
	getreg(reg, &val, 0, regs);
	return val;
}

void vcpu_set_gr(struct kvm_vcpu *vcpu, unsigned long reg, u64 value, int nat)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	long sof = (regs->cr_ifs) & 0x7f;

	if (!reg)
		return;
	if (reg >= sof + 32)
		return;
	setreg(reg, value, nat, regs);	/* FIXME: handle NATs later*/
}

void getfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
				struct kvm_pt_regs *regs)
{
	/* Take floating register rotation into consideration*/
	if (regnum >= IA64_FIRST_ROTATING_FR)
		regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);
#define CASE_FIXED_FP(reg)			\
	case  (reg) :				\
		ia64_stf_spill(fpval, reg);	\
	break

	switch (regnum) {
		CASE_FIXED_FP(0);
		CASE_FIXED_FP(1);
		CASE_FIXED_FP(2);
		CASE_FIXED_FP(3);
		CASE_FIXED_FP(4);
		CASE_FIXED_FP(5);

		CASE_FIXED_FP(6);
		CASE_FIXED_FP(7);
		CASE_FIXED_FP(8);
		CASE_FIXED_FP(9);
		CASE_FIXED_FP(10);
		CASE_FIXED_FP(11);

		CASE_FIXED_FP(12);
		CASE_FIXED_FP(13);
		CASE_FIXED_FP(14);
		CASE_FIXED_FP(15);
		CASE_FIXED_FP(16);
		CASE_FIXED_FP(17);
		CASE_FIXED_FP(18);
		CASE_FIXED_FP(19);
		CASE_FIXED_FP(20);
		CASE_FIXED_FP(21);
		CASE_FIXED_FP(22);
		CASE_FIXED_FP(23);
		CASE_FIXED_FP(24);
		CASE_FIXED_FP(25);
		CASE_FIXED_FP(26);
		CASE_FIXED_FP(27);
		CASE_FIXED_FP(28);
		CASE_FIXED_FP(29);
		CASE_FIXED_FP(30);
		CASE_FIXED_FP(31);
		CASE_FIXED_FP(32);
		CASE_FIXED_FP(33);
		CASE_FIXED_FP(34);
		CASE_FIXED_FP(35);
		CASE_FIXED_FP(36);
		CASE_FIXED_FP(37);
		CASE_FIXED_FP(38);
		CASE_FIXED_FP(39);
		CASE_FIXED_FP(40);
		CASE_FIXED_FP(41);
		CASE_FIXED_FP(42);
		CASE_FIXED_FP(43);
		CASE_FIXED_FP(44);
		CASE_FIXED_FP(45);
		CASE_FIXED_FP(46);
		CASE_FIXED_FP(47);
		CASE_FIXED_FP(48);
		CASE_FIXED_FP(49);
		CASE_FIXED_FP(50);
		CASE_FIXED_FP(51);
		CASE_FIXED_FP(52);
		CASE_FIXED_FP(53);
		CASE_FIXED_FP(54);
		CASE_FIXED_FP(55);
		CASE_FIXED_FP(56);
		CASE_FIXED_FP(57);
		CASE_FIXED_FP(58);
		CASE_FIXED_FP(59);
		CASE_FIXED_FP(60);
		CASE_FIXED_FP(61);
		CASE_FIXED_FP(62);
		CASE_FIXED_FP(63);
		CASE_FIXED_FP(64);
		CASE_FIXED_FP(65);
		CASE_FIXED_FP(66);
		CASE_FIXED_FP(67);
		CASE_FIXED_FP(68);
		CASE_FIXED_FP(69);
		CASE_FIXED_FP(70);
		CASE_FIXED_FP(71);
		CASE_FIXED_FP(72);
		CASE_FIXED_FP(73);
		CASE_FIXED_FP(74);
		CASE_FIXED_FP(75);
		CASE_FIXED_FP(76);
		CASE_FIXED_FP(77);
		CASE_FIXED_FP(78);
		CASE_FIXED_FP(79);
		CASE_FIXED_FP(80);
		CASE_FIXED_FP(81);
		CASE_FIXED_FP(82);
		CASE_FIXED_FP(83);
		CASE_FIXED_FP(84);
		CASE_FIXED_FP(85);
		CASE_FIXED_FP(86);
		CASE_FIXED_FP(87);
		CASE_FIXED_FP(88);
		CASE_FIXED_FP(89);
		CASE_FIXED_FP(90);
		CASE_FIXED_FP(91);
		CASE_FIXED_FP(92);
		CASE_FIXED_FP(93);
		CASE_FIXED_FP(94);
		CASE_FIXED_FP(95);
		CASE_FIXED_FP(96);
		CASE_FIXED_FP(97);
		CASE_FIXED_FP(98);
		CASE_FIXED_FP(99);
		CASE_FIXED_FP(100);
		CASE_FIXED_FP(101);
		CASE_FIXED_FP(102);
		CASE_FIXED_FP(103);
		CASE_FIXED_FP(104);
		CASE_FIXED_FP(105);
		CASE_FIXED_FP(106);
		CASE_FIXED_FP(107);
		CASE_FIXED_FP(108);
		CASE_FIXED_FP(109);
		CASE_FIXED_FP(110);
		CASE_FIXED_FP(111);
		CASE_FIXED_FP(112);
		CASE_FIXED_FP(113);
		CASE_FIXED_FP(114);
		CASE_FIXED_FP(115);
		CASE_FIXED_FP(116);
		CASE_FIXED_FP(117);
		CASE_FIXED_FP(118);
		CASE_FIXED_FP(119);
		CASE_FIXED_FP(120);
		CASE_FIXED_FP(121);
		CASE_FIXED_FP(122);
		CASE_FIXED_FP(123);
		CASE_FIXED_FP(124);
		CASE_FIXED_FP(125);
		CASE_FIXED_FP(126);
		CASE_FIXED_FP(127);
	}
#undef CASE_FIXED_FP
}

void setfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
					struct kvm_pt_regs *regs)
{
	/* Take floating register rotation into consideration*/
	if (regnum >= IA64_FIRST_ROTATING_FR)
		regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);

#define CASE_FIXED_FP(reg)			\
	case (reg) :				\
		ia64_ldf_fill(reg, fpval);	\
	break

	switch (regnum) {
		CASE_FIXED_FP(2);
		CASE_FIXED_FP(3);
		CASE_FIXED_FP(4);
		CASE_FIXED_FP(5);

		CASE_FIXED_FP(6);
		CASE_FIXED_FP(7);
		CASE_FIXED_FP(8);
		CASE_FIXED_FP(9);
		CASE_FIXED_FP(10);
		CASE_FIXED_FP(11);

		CASE_FIXED_FP(12);
		CASE_FIXED_FP(13);
		CASE_FIXED_FP(14);
		CASE_FIXED_FP(15);
		CASE_FIXED_FP(16);
		CASE_FIXED_FP(17);
		CASE_FIXED_FP(18);
		CASE_FIXED_FP(19);
		CASE_FIXED_FP(20);
		CASE_FIXED_FP(21);
		CASE_FIXED_FP(22);
		CASE_FIXED_FP(23);
		CASE_FIXED_FP(24);
		CASE_FIXED_FP(25);
		CASE_FIXED_FP(26);
		CASE_FIXED_FP(27);
		CASE_FIXED_FP(28);
		CASE_FIXED_FP(29);
		CASE_FIXED_FP(30);
		CASE_FIXED_FP(31);
		CASE_FIXED_FP(32);
		CASE_FIXED_FP(33);
		CASE_FIXED_FP(34);
		CASE_FIXED_FP(35);
		CASE_FIXED_FP(36);
		CASE_FIXED_FP(37);
		CASE_FIXED_FP(38);
		CASE_FIXED_FP(39);
		CASE_FIXED_FP(40);
		CASE_FIXED_FP(41);
		CASE_FIXED_FP(42);
		CASE_FIXED_FP(43);
		CASE_FIXED_FP(44);
		CASE_FIXED_FP(45);
		CASE_FIXED_FP(46);
		CASE_FIXED_FP(47);
		CASE_FIXED_FP(48);
		CASE_FIXED_FP(49);
		CASE_FIXED_FP(50);
		CASE_FIXED_FP(51);
		CASE_FIXED_FP(52);
		CASE_FIXED_FP(53);
		CASE_FIXED_FP(54);
		CASE_FIXED_FP(55);
		CASE_FIXED_FP(56);
		CASE_FIXED_FP(57);
		CASE_FIXED_FP(58);
		CASE_FIXED_FP(59);
		CASE_FIXED_FP(60);
		CASE_FIXED_FP(61);
		CASE_FIXED_FP(62);
		CASE_FIXED_FP(63);
		CASE_FIXED_FP(64);
		CASE_FIXED_FP(65);
		CASE_FIXED_FP(66);
		CASE_FIXED_FP(67);
		CASE_FIXED_FP(68);
		CASE_FIXED_FP(69);
		CASE_FIXED_FP(70);
		CASE_FIXED_FP(71);
		CASE_FIXED_FP(72);
		CASE_FIXED_FP(73);
		CASE_FIXED_FP(74);
		CASE_FIXED_FP(75);
		CASE_FIXED_FP(76);
		CASE_FIXED_FP(77);
		CASE_FIXED_FP(78);
		CASE_FIXED_FP(79);
		CASE_FIXED_FP(80);
		CASE_FIXED_FP(81);
		CASE_FIXED_FP(82);
		CASE_FIXED_FP(83);
		CASE_FIXED_FP(84);
		CASE_FIXED_FP(85);
		CASE_FIXED_FP(86);
		CASE_FIXED_FP(87);
		CASE_FIXED_FP(88);
		CASE_FIXED_FP(89);
		CASE_FIXED_FP(90);
		CASE_FIXED_FP(91);
		CASE_FIXED_FP(92);
		CASE_FIXED_FP(93);
		CASE_FIXED_FP(94);
		CASE_FIXED_FP(95);
		CASE_FIXED_FP(96);
		CASE_FIXED_FP(97);
		CASE_FIXED_FP(98);
		CASE_FIXED_FP(99);
		CASE_FIXED_FP(100);
		CASE_FIXED_FP(101);
		CASE_FIXED_FP(102);
		CASE_FIXED_FP(103);
		CASE_FIXED_FP(104);
		CASE_FIXED_FP(105);
		CASE_FIXED_FP(106);
		CASE_FIXED_FP(107);
		CASE_FIXED_FP(108);
		CASE_FIXED_FP(109);
		CASE_FIXED_FP(110);
		CASE_FIXED_FP(111);
		CASE_FIXED_FP(112);
		CASE_FIXED_FP(113);
		CASE_FIXED_FP(114);
		CASE_FIXED_FP(115);
		CASE_FIXED_FP(116);
		CASE_FIXED_FP(117);
		CASE_FIXED_FP(118);
		CASE_FIXED_FP(119);
		CASE_FIXED_FP(120);
		CASE_FIXED_FP(121);
		CASE_FIXED_FP(122);
		CASE_FIXED_FP(123);
		CASE_FIXED_FP(124);
		CASE_FIXED_FP(125);
		CASE_FIXED_FP(126);
		CASE_FIXED_FP(127);
	}
}

void vcpu_get_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
						struct ia64_fpreg *val)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);

	getfpreg(reg, val, regs);   /* FIXME: handle NATs later*/
}

void vcpu_set_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
						struct ia64_fpreg *val)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);

	if (reg > 1)
		setfpreg(reg, val, regs);   /* FIXME: handle NATs later*/
}

/*
 * The Altix RTC is mapped specially here for the vmm module
 */
#define SN_RTC_BASE	(u64 *)(KVM_VMM_BASE+(1UL<<KVM_VMM_SHIFT))
static long kvm_get_itc(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
	struct kvm *kvm = (struct kvm *)KVM_VM_BASE;

	if (kvm->arch.is_sn2)
		return (*SN_RTC_BASE);
	else
#endif
		return ia64_getreg(_IA64_REG_AR_ITC);
}

/************************************************************************
 * lsapic timer
 ***********************************************************************/
u64 vcpu_get_itc(struct kvm_vcpu *vcpu)
{
	unsigned long guest_itc;
	guest_itc = VMX(vcpu, itc_offset) + kvm_get_itc(vcpu);

	if (guest_itc >= VMX(vcpu, last_itc)) {
		VMX(vcpu, last_itc) = guest_itc;
		return  guest_itc;
	} else
		return VMX(vcpu, last_itc);
}

static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val);
static void vcpu_set_itc(struct kvm_vcpu *vcpu, u64 val)
{
	struct kvm_vcpu *v;
	struct kvm *kvm;
	int i;
	long itc_offset = val - kvm_get_itc(vcpu);
	unsigned long vitv = VCPU(vcpu, itv);

	kvm = (struct kvm *)KVM_VM_BASE;

	if (kvm_vcpu_is_bsp(vcpu)) {
		for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) {
			v = (struct kvm_vcpu *)((char *)vcpu +
					sizeof(struct kvm_vcpu_data) * i);
			VMX(v, itc_offset) = itc_offset;
			VMX(v, last_itc) = 0;
		}
	}
	VMX(vcpu, last_itc) = 0;
	if (VCPU(vcpu, itm) <= val) {
		VMX(vcpu, itc_check) = 0;
		vcpu_unpend_interrupt(vcpu, vitv);
	} else {
		VMX(vcpu, itc_check) = 1;
		vcpu_set_itm(vcpu, VCPU(vcpu, itm));
	}

}

static inline u64 vcpu_get_itm(struct kvm_vcpu *vcpu)
{
	return ((u64)VCPU(vcpu, itm));
}

static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val)
{
	unsigned long vitv = VCPU(vcpu, itv);
	VCPU(vcpu, itm) = val;

	if (val > vcpu_get_itc(vcpu)) {
		VMX(vcpu, itc_check) = 1;
		vcpu_unpend_interrupt(vcpu, vitv);
		VMX(vcpu, timer_pending) = 0;
	} else
		VMX(vcpu, itc_check) = 0;
}

#define  ITV_VECTOR(itv)    (itv&0xff)
#define  ITV_IRQ_MASK(itv)  (itv&(1<<16))

static inline void vcpu_set_itv(struct kvm_vcpu *vcpu, u64 val)
{
	VCPU(vcpu, itv) = val;
	if (!ITV_IRQ_MASK(val) && vcpu->arch.timer_pending) {
		vcpu_pend_interrupt(vcpu, ITV_VECTOR(val));
		vcpu->arch.timer_pending = 0;
	}
}

static inline void vcpu_set_eoi(struct kvm_vcpu *vcpu, u64 val)
{
	int vec;

	vec = highest_inservice_irq(vcpu);
	if (vec == NULL_VECTOR)
		return;
	VMX(vcpu, insvc[vec >> 6]) &= ~(1UL << (vec & 63));
	VCPU(vcpu, eoi) = 0;
	vcpu->arch.irq_new_pending = 1;

}

/* See Table 5-8 in SDM vol2 for the definition */
int irq_masked(struct kvm_vcpu *vcpu, int h_pending, int h_inservice)
{
	union ia64_tpr vtpr;

	vtpr.val = VCPU(vcpu, tpr);

	if (h_inservice == NMI_VECTOR)
		return IRQ_MASKED_BY_INSVC;

	if (h_pending == NMI_VECTOR) {
		/* Non Maskable Interrupt */
		return IRQ_NO_MASKED;
	}

	if (h_inservice == ExtINT_VECTOR)
		return IRQ_MASKED_BY_INSVC;

	if (h_pending == ExtINT_VECTOR) {
		if (vtpr.mmi) {
			/* mask all external IRQ */
			return IRQ_MASKED_BY_VTPR;
		} else
			return IRQ_NO_MASKED;
	}

	if (is_higher_irq(h_pending, h_inservice)) {
		if (is_higher_class(h_pending, vtpr.mic + (vtpr.mmi << 4)))
			return IRQ_NO_MASKED;
		else
			return IRQ_MASKED_BY_VTPR;
	} else {
		return IRQ_MASKED_BY_INSVC;
	}
}

void vcpu_pend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
{
	long spsr;
	int ret;

	local_irq_save(spsr);
	ret = test_and_set_bit(vec, &VCPU(vcpu, irr[0]));
	local_irq_restore(spsr);

	vcpu->arch.irq_new_pending = 1;
}

void vcpu_unpend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
{
	long spsr;
	int ret;

	local_irq_save(spsr);
	ret = test_and_clear_bit(vec, &VCPU(vcpu, irr[0]));
	local_irq_restore(spsr);
	if (ret) {
		vcpu->arch.irq_new_pending = 1;
		wmb();
	}
}

void update_vhpi(struct kvm_vcpu *vcpu, int vec)
{
	u64 vhpi;

	if (vec == NULL_VECTOR)
		vhpi = 0;
	else if (vec == NMI_VECTOR)
		vhpi = 32;
	else if (vec == ExtINT_VECTOR)
		vhpi = 16;
	else
		vhpi = vec >> 4;

	VCPU(vcpu, vhpi) = vhpi;
	if (VCPU(vcpu, vac).a_int)
		ia64_call_vsa(PAL_VPS_SET_PENDING_INTERRUPT,
				(u64)vcpu->arch.vpd, 0, 0, 0, 0, 0, 0);
}

u64 vcpu_get_ivr(struct kvm_vcpu *vcpu)
{
	int vec, h_inservice, mask;

	vec = highest_pending_irq(vcpu);
	h_inservice = highest_inservice_irq(vcpu);
	mask = irq_masked(vcpu, vec, h_inservice);
	if (vec == NULL_VECTOR || mask == IRQ_MASKED_BY_INSVC) {
		if (VCPU(vcpu, vhpi))
			update_vhpi(vcpu, NULL_VECTOR);
		return IA64_SPURIOUS_INT_VECTOR;
	}
	if (mask == IRQ_MASKED_BY_VTPR) {
		update_vhpi(vcpu, vec);
		return IA64_SPURIOUS_INT_VECTOR;
	}
	VMX(vcpu, insvc[vec >> 6]) |= (1UL << (vec & 63));
	vcpu_unpend_interrupt(vcpu, vec);
	return  (u64)vec;
}

/**************************************************************************
  Privileged operation emulation routines
 **************************************************************************/
u64 vcpu_thash(struct kvm_vcpu *vcpu, u64 vadr)
{
	union ia64_pta vpta;
	union ia64_rr vrr;
	u64 pval;
	u64 vhpt_offset;

	vpta.val = vcpu_get_pta(vcpu);
	vrr.val = vcpu_get_rr(vcpu, vadr);
	vhpt_offset = ((vadr >> vrr.ps) << 3) & ((1UL << (vpta.size)) - 1);
	if (vpta.vf) {
		pval = ia64_call_vsa(PAL_VPS_THASH, vadr, vrr.val,
				vpta.val, 0, 0, 0, 0);
	} else {
		pval = (vadr & VRN_MASK) | vhpt_offset |
			(vpta.val << 3 >> (vpta.size + 3) << (vpta.size));
	}
	return  pval;
}

u64 vcpu_ttag(struct kvm_vcpu *vcpu, u64 vadr)
{
	union ia64_rr vrr;
	union ia64_pta vpta;
	u64 pval;

	vpta.val = vcpu_get_pta(vcpu);
	vrr.val = vcpu_get_rr(vcpu, vadr);
	if (vpta.vf) {
		pval = ia64_call_vsa(PAL_VPS_TTAG, vadr, vrr.val,
						0, 0, 0, 0, 0);
	} else
		pval = 1;

	return  pval;
}

u64 vcpu_tak(struct kvm_vcpu *vcpu, u64 vadr)
{
	struct thash_data *data;
	union ia64_pta vpta;
	u64 key;

	vpta.val = vcpu_get_pta(vcpu);
	if (vpta.vf == 0) {
		key = 1;
		return key;
	}
	data = vtlb_lookup(vcpu, vadr, D_TLB);
	if (!data || !data->p)
		key = 1;
	else
		key = data->key;

	return key;
}

void kvm_thash(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long thash, vadr;

	vadr = vcpu_get_gr(vcpu, inst.M46.r3);
	thash = vcpu_thash(vcpu, vadr);
	vcpu_set_gr(vcpu, inst.M46.r1, thash, 0);
}

void kvm_ttag(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long tag, vadr;

	vadr = vcpu_get_gr(vcpu, inst.M46.r3);
	tag = vcpu_ttag(vcpu, vadr);
	vcpu_set_gr(vcpu, inst.M46.r1, tag, 0);
}

int vcpu_tpa(struct kvm_vcpu *vcpu, u64 vadr, unsigned long *padr)
{
	struct thash_data *data;
	union ia64_isr visr, pt_isr;
	struct kvm_pt_regs *regs;
	struct ia64_psr vpsr;

	regs = vcpu_regs(vcpu);
	pt_isr.val = VMX(vcpu, cr_isr);
	visr.val = 0;
	visr.ei = pt_isr.ei;
	visr.ir = pt_isr.ir;
	vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
	visr.na = 1;

	data = vhpt_lookup(vadr);
	if (data) {
		if (data->p == 0) {
			vcpu_set_isr(vcpu, visr.val);
			data_page_not_present(vcpu, vadr);
			return IA64_FAULT;
		} else if (data->ma == VA_MATTR_NATPAGE) {
			vcpu_set_isr(vcpu, visr.val);
			dnat_page_consumption(vcpu, vadr);
			return IA64_FAULT;
		} else {
			*padr = (data->gpaddr >> data->ps << data->ps) |
				(vadr & (PSIZE(data->ps) - 1));
			return IA64_NO_FAULT;
		}
	}

	data = vtlb_lookup(vcpu, vadr, D_TLB);
	if (data) {
		if (data->p == 0) {
			vcpu_set_isr(vcpu, visr.val);
			data_page_not_present(vcpu, vadr);
			return IA64_FAULT;
		} else if (data->ma == VA_MATTR_NATPAGE) {
			vcpu_set_isr(vcpu, visr.val);
			dnat_page_consumption(vcpu, vadr);
			return IA64_FAULT;
		} else{
			*padr = ((data->ppn >> (data->ps - 12)) << data->ps)
				| (vadr & (PSIZE(data->ps) - 1));
			return IA64_NO_FAULT;
		}
	}
	if (!vhpt_enabled(vcpu, vadr, NA_REF)) {
		if (vpsr.ic) {
			vcpu_set_isr(vcpu, visr.val);
			alt_dtlb(vcpu, vadr);
			return IA64_FAULT;
		} else {
			nested_dtlb(vcpu);
			return IA64_FAULT;
		}
	} else {
		if (vpsr.ic) {
			vcpu_set_isr(vcpu, visr.val);
			dvhpt_fault(vcpu, vadr);
			return IA64_FAULT;
		} else{
			nested_dtlb(vcpu);
			return IA64_FAULT;
		}
	}

	return IA64_NO_FAULT;
}

int kvm_tpa(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r1, r3;

	r3 = vcpu_get_gr(vcpu, inst.M46.r3);

	if (vcpu_tpa(vcpu, r3, &r1))
		return IA64_FAULT;

	vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
	return(IA64_NO_FAULT);
}

void kvm_tak(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r1, r3;

	r3 = vcpu_get_gr(vcpu, inst.M46.r3);
	r1 = vcpu_tak(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
}

/************************************
 * Insert/Purge translation register/cache
 ************************************/
void vcpu_itc_i(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
{
	thash_purge_and_insert(vcpu, pte, itir, ifa, I_TLB);
}

void vcpu_itc_d(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
{
	thash_purge_and_insert(vcpu, pte, itir, ifa, D_TLB);
}

void vcpu_itr_i(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
{
	u64 ps, va, rid;
	struct thash_data *p_itr;

	ps = itir_ps(itir);
	va = PAGEALIGN(ifa, ps);
	pte &= ~PAGE_FLAGS_RV_MASK;
	rid = vcpu_get_rr(vcpu, ifa);
	rid = rid & RR_RID_MASK;
	p_itr = (struct thash_data *)&vcpu->arch.itrs[slot];
	vcpu_set_tr(p_itr, pte, itir, va, rid);
	vcpu_quick_region_set(VMX(vcpu, itr_regions), va);
}


void vcpu_itr_d(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
{
	u64 gpfn;
	u64 ps, va, rid;
	struct thash_data *p_dtr;

	ps = itir_ps(itir);
	va = PAGEALIGN(ifa, ps);
	pte &= ~PAGE_FLAGS_RV_MASK;

	if (ps != _PAGE_SIZE_16M)
		thash_purge_entries(vcpu, va, ps);
	gpfn = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
	if (__gpfn_is_io(gpfn))
		pte |= VTLB_PTE_IO;
	rid = vcpu_get_rr(vcpu, va);
	rid = rid & RR_RID_MASK;
	p_dtr = (struct thash_data *)&vcpu->arch.dtrs[slot];
	vcpu_set_tr((struct thash_data *)&vcpu->arch.dtrs[slot],
							pte, itir, va, rid);
	vcpu_quick_region_set(VMX(vcpu, dtr_regions), va);
}

void vcpu_ptr_d(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
{
	int index;
	u64 va;

	va = PAGEALIGN(ifa, ps);
	while ((index = vtr_find_overlap(vcpu, va, ps, D_TLB)) >= 0)
		vcpu->arch.dtrs[index].page_flags = 0;

	thash_purge_entries(vcpu, va, ps);
}

void vcpu_ptr_i(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
{
	int index;
	u64 va;

	va = PAGEALIGN(ifa, ps);
	while ((index = vtr_find_overlap(vcpu, va, ps, I_TLB)) >= 0)
		vcpu->arch.itrs[index].page_flags = 0;

	thash_purge_entries(vcpu, va, ps);
}

void vcpu_ptc_l(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
	va = PAGEALIGN(va, ps);
	thash_purge_entries(vcpu, va, ps);
}

void vcpu_ptc_e(struct kvm_vcpu *vcpu, u64 va)
{
	thash_purge_all(vcpu);
}

void vcpu_ptc_ga(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
	struct exit_ctl_data *p = &vcpu->arch.exit_data;
	long psr;
	local_irq_save(psr);
	p->exit_reason = EXIT_REASON_PTC_G;

	p->u.ptc_g_data.rr = vcpu_get_rr(vcpu, va);
	p->u.ptc_g_data.vaddr = va;
	p->u.ptc_g_data.ps = ps;
	vmm_transition(vcpu);
	/* Do Local Purge Here*/
	vcpu_ptc_l(vcpu, va, ps);
	local_irq_restore(psr);
}


void vcpu_ptc_g(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
	vcpu_ptc_ga(vcpu, va, ps);
}

void kvm_ptc_e(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	vcpu_ptc_e(vcpu, ifa);
}

void kvm_ptc_g(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa, itir;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	itir = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_ptc_g(vcpu, ifa, itir_ps(itir));
}

void kvm_ptc_ga(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa, itir;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	itir = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_ptc_ga(vcpu, ifa, itir_ps(itir));
}

void kvm_ptc_l(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa, itir;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	itir = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_ptc_l(vcpu, ifa, itir_ps(itir));
}

void kvm_ptr_d(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa, itir;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	itir = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_ptr_d(vcpu, ifa, itir_ps(itir));
}

void kvm_ptr_i(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long ifa, itir;

	ifa = vcpu_get_gr(vcpu, inst.M45.r3);
	itir = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_ptr_i(vcpu, ifa, itir_ps(itir));
}

void kvm_itr_d(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long itir, ifa, pte, slot;

	slot = vcpu_get_gr(vcpu, inst.M45.r3);
	pte = vcpu_get_gr(vcpu, inst.M45.r2);
	itir = vcpu_get_itir(vcpu);
	ifa = vcpu_get_ifa(vcpu);
	vcpu_itr_d(vcpu, slot, pte, itir, ifa);
}



void kvm_itr_i(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long itir, ifa, pte, slot;

	slot = vcpu_get_gr(vcpu, inst.M45.r3);
	pte = vcpu_get_gr(vcpu, inst.M45.r2);
	itir = vcpu_get_itir(vcpu);
	ifa = vcpu_get_ifa(vcpu);
	vcpu_itr_i(vcpu, slot, pte, itir, ifa);
}

void kvm_itc_d(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long itir, ifa, pte;

	itir = vcpu_get_itir(vcpu);
	ifa = vcpu_get_ifa(vcpu);
	pte = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_itc_d(vcpu, pte, itir, ifa);
}

void kvm_itc_i(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long itir, ifa, pte;

	itir = vcpu_get_itir(vcpu);
	ifa = vcpu_get_ifa(vcpu);
	pte = vcpu_get_gr(vcpu, inst.M45.r2);
	vcpu_itc_i(vcpu, pte, itir, ifa);
}

/*************************************
 * Moves to semi-privileged registers
 *************************************/

void kvm_mov_to_ar_imm(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long imm;

	if (inst.M30.s)
		imm = -inst.M30.imm;
	else
		imm = inst.M30.imm;

	vcpu_set_itc(vcpu, imm);
}

void kvm_mov_to_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r2;

	r2 = vcpu_get_gr(vcpu, inst.M29.r2);
	vcpu_set_itc(vcpu, r2);
}

void kvm_mov_from_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r1;

	r1 = vcpu_get_itc(vcpu);
	vcpu_set_gr(vcpu, inst.M31.r1, r1, 0);
}

/**************************************************************************
  struct kvm_vcpu protection key register access routines
 **************************************************************************/

unsigned long vcpu_get_pkr(struct kvm_vcpu *vcpu, unsigned long reg)
{
	return ((unsigned long)ia64_get_pkr(reg));
}

void vcpu_set_pkr(struct kvm_vcpu *vcpu, unsigned long reg, unsigned long val)
{
	ia64_set_pkr(reg, val);
}

/********************************
 * Moves to privileged registers
 ********************************/
unsigned long vcpu_set_rr(struct kvm_vcpu *vcpu, unsigned long reg,
					unsigned long val)
{
	union ia64_rr oldrr, newrr;
	unsigned long rrval;
	struct exit_ctl_data *p = &vcpu->arch.exit_data;
	unsigned long psr;

	oldrr.val = vcpu_get_rr(vcpu, reg);
	newrr.val = val;
	vcpu->arch.vrr[reg >> VRN_SHIFT] = val;

	switch ((unsigned long)(reg >> VRN_SHIFT)) {
	case VRN6:
		vcpu->arch.vmm_rr = vrrtomrr(val);
		local_irq_save(psr);
		p->exit_reason = EXIT_REASON_SWITCH_RR6;
		vmm_transition(vcpu);
		local_irq_restore(psr);
		break;
	case VRN4:
		rrval = vrrtomrr(val);
		vcpu->arch.metaphysical_saved_rr4 = rrval;
		if (!is_physical_mode(vcpu))
			ia64_set_rr(reg, rrval);
		break;
	case VRN0:
		rrval = vrrtomrr(val);
		vcpu->arch.metaphysical_saved_rr0 = rrval;
		if (!is_physical_mode(vcpu))
			ia64_set_rr(reg, rrval);
		break;
	default:
		ia64_set_rr(reg, vrrtomrr(val));
		break;
	}

	return (IA64_NO_FAULT);
}

void kvm_mov_to_rr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r2;

	r3 = vcpu_get_gr(vcpu, inst.M42.r3);
	r2 = vcpu_get_gr(vcpu, inst.M42.r2);
	vcpu_set_rr(vcpu, r3, r2);
}

void kvm_mov_to_dbr(struct kvm_vcpu *vcpu, INST64 inst)
{
}

void kvm_mov_to_ibr(struct kvm_vcpu *vcpu, INST64 inst)
{
}

void kvm_mov_to_pmc(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r2;

	r3 = vcpu_get_gr(vcpu, inst.M42.r3);
	r2 = vcpu_get_gr(vcpu, inst.M42.r2);
	vcpu_set_pmc(vcpu, r3, r2);
}

void kvm_mov_to_pmd(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r2;

	r3 = vcpu_get_gr(vcpu, inst.M42.r3);
	r2 = vcpu_get_gr(vcpu, inst.M42.r2);
	vcpu_set_pmd(vcpu, r3, r2);
}

void kvm_mov_to_pkr(struct kvm_vcpu *vcpu, INST64 inst)
{
	u64 r3, r2;

	r3 = vcpu_get_gr(vcpu, inst.M42.r3);
	r2 = vcpu_get_gr(vcpu, inst.M42.r2);
	vcpu_set_pkr(vcpu, r3, r2);
}

void kvm_mov_from_rr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_rr(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

void kvm_mov_from_pkr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_pkr(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

void kvm_mov_from_dbr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_dbr(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

void kvm_mov_from_ibr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_ibr(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

void kvm_mov_from_pmc(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_pmc(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

unsigned long vcpu_get_cpuid(struct kvm_vcpu *vcpu, unsigned long reg)
{
	/* FIXME: This could get called as a result of a rsvd-reg fault */
	if (reg > (ia64_get_cpuid(3) & 0xff))
		return 0;
	else
		return ia64_get_cpuid(reg);
}

void kvm_mov_from_cpuid(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r3, r1;

	r3 = vcpu_get_gr(vcpu, inst.M43.r3);
	r1 = vcpu_get_cpuid(vcpu, r3);
	vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}

void vcpu_set_tpr(struct kvm_vcpu *vcpu, unsigned long val)
{
	VCPU(vcpu, tpr) = val;
	vcpu->arch.irq_check = 1;
}

unsigned long kvm_mov_to_cr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long r2;

	r2 = vcpu_get_gr(vcpu, inst.M32.r2);
	VCPU(vcpu, vcr[inst.M32.cr3]) = r2;

	switch (inst.M32.cr3) {
	case 0:
		vcpu_set_dcr(vcpu, r2);
		break;
	case 1:
		vcpu_set_itm(vcpu, r2);
		break;
	case 66:
		vcpu_set_tpr(vcpu, r2);
		break;
	case 67:
		vcpu_set_eoi(vcpu, r2);
		break;
	default:
		break;
	}

	return 0;
}

unsigned long kvm_mov_from_cr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long tgt = inst.M33.r1;
	unsigned long val;

	switch (inst.M33.cr3) {
	case 65:
		val = vcpu_get_ivr(vcpu);
		vcpu_set_gr(vcpu, tgt, val, 0);
		break;

	case 67:
		vcpu_set_gr(vcpu, tgt, 0L, 0);
		break;
	default:
		val = VCPU(vcpu, vcr[inst.M33.cr3]);
		vcpu_set_gr(vcpu, tgt, val, 0);
		break;
	}

	return 0;
}

void vcpu_set_psr(struct kvm_vcpu *vcpu, unsigned long val)
{

	unsigned long mask;
	struct kvm_pt_regs *regs;
	struct ia64_psr old_psr, new_psr;

	old_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);

	regs = vcpu_regs(vcpu);
	/* We only support guest as:
	 *  vpsr.pk = 0
	 *  vpsr.is = 0
	 * Otherwise panic
	 */
	if (val & (IA64_PSR_PK | IA64_PSR_IS | IA64_PSR_VM))
		panic_vm(vcpu, "Only support guests with vpsr.pk =0 \
				& vpsr.is=0\n");

	/*
	 * For those IA64_PSR bits: id/da/dd/ss/ed/ia
	 * Since these bits will become 0, after success execution of each
	 * instruction, we will change set them to mIA64_PSR
	 */
	VCPU(vcpu, vpsr) = val
		& (~(IA64_PSR_ID | IA64_PSR_DA | IA64_PSR_DD |
			IA64_PSR_SS | IA64_PSR_ED | IA64_PSR_IA));

	if (!old_psr.i && (val & IA64_PSR_I)) {
		/* vpsr.i 0->1 */
		vcpu->arch.irq_check = 1;
	}
	new_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);

	/*
	 * All vIA64_PSR bits shall go to mPSR (v->tf->tf_special.psr)
	 * , except for the following bits:
	 *  ic/i/dt/si/rt/mc/it/bn/vm
	 */
	mask =  IA64_PSR_IC + IA64_PSR_I + IA64_PSR_DT + IA64_PSR_SI +
		IA64_PSR_RT + IA64_PSR_MC + IA64_PSR_IT + IA64_PSR_BN +
		IA64_PSR_VM;

	regs->cr_ipsr = (regs->cr_ipsr & mask) | (val & (~mask));

	check_mm_mode_switch(vcpu, old_psr, new_psr);

	return ;
}

unsigned long vcpu_cover(struct kvm_vcpu *vcpu)
{
	struct ia64_psr vpsr;

	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);

	if (!vpsr.ic)
		VCPU(vcpu, ifs) = regs->cr_ifs;
	regs->cr_ifs = IA64_IFS_V;
	return (IA64_NO_FAULT);
}



/**************************************************************************
  VCPU banked general register access routines
 **************************************************************************/
#define vcpu_bsw0_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT)	\
	do {     							\
		__asm__ __volatile__ (					\
				";;extr.u %0 = %3,%6,16;;\n"		\
				"dep %1 = %0, %1, 0, 16;;\n"		\
				"st8 [%4] = %1\n"			\
				"extr.u %0 = %2, 16, 16;;\n"		\
				"dep %3 = %0, %3, %6, 16;;\n"		\
				"st8 [%5] = %3\n"			\
				::"r"(i), "r"(*b1unat), "r"(*b0unat),	\
				"r"(*runat), "r"(b1unat), "r"(runat),	\
				"i"(VMM_PT_REGS_R16_SLOT) : "memory");	\
	} while (0)

void vcpu_bsw0(struct kvm_vcpu *vcpu)
{
	unsigned long i;

	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	unsigned long *r = &regs->r16;
	unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
	unsigned long *b1 = &VCPU(vcpu, vgr[0]);
	unsigned long *runat = &regs->eml_unat;
	unsigned long *b0unat = &VCPU(vcpu, vbnat);
	unsigned long *b1unat = &VCPU(vcpu, vnat);


	if (VCPU(vcpu, vpsr) & IA64_PSR_BN) {
		for (i = 0; i < 16; i++) {
			*b1++ = *r;
			*r++ = *b0++;
		}
		vcpu_bsw0_unat(i, b0unat, b1unat, runat,
				VMM_PT_REGS_R16_SLOT);
		VCPU(vcpu, vpsr) &= ~IA64_PSR_BN;
	}
}

#define vcpu_bsw1_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT)	\
	do {             						\
		__asm__ __volatile__ (";;extr.u %0 = %3, %6, 16;;\n"	\
				"dep %1 = %0, %1, 16, 16;;\n"		\
				"st8 [%4] = %1\n"			\
				"extr.u %0 = %2, 0, 16;;\n"		\
				"dep %3 = %0, %3, %6, 16;;\n"		\
				"st8 [%5] = %3\n"			\
				::"r"(i), "r"(*b0unat), "r"(*b1unat),	\
				"r"(*runat), "r"(b0unat), "r"(runat),	\
				"i"(VMM_PT_REGS_R16_SLOT) : "memory");	\
	} while (0)

void vcpu_bsw1(struct kvm_vcpu *vcpu)
{
	unsigned long i;
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	unsigned long *r = &regs->r16;
	unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
	unsigned long *b1 = &VCPU(vcpu, vgr[0]);
	unsigned long *runat = &regs->eml_unat;
	unsigned long *b0unat = &VCPU(vcpu, vbnat);
	unsigned long *b1unat = &VCPU(vcpu, vnat);

	if (!(VCPU(vcpu, vpsr) & IA64_PSR_BN)) {
		for (i = 0; i < 16; i++) {
			*b0++ = *r;
			*r++ = *b1++;
		}
		vcpu_bsw1_unat(i, b0unat, b1unat, runat,
				VMM_PT_REGS_R16_SLOT);
		VCPU(vcpu, vpsr) |= IA64_PSR_BN;
	}
}

void vcpu_rfi(struct kvm_vcpu *vcpu)
{
	unsigned long ifs, psr;
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);

	psr = VCPU(vcpu, ipsr);
	if (psr & IA64_PSR_BN)
		vcpu_bsw1(vcpu);
	else
		vcpu_bsw0(vcpu);
	vcpu_set_psr(vcpu, psr);
	ifs = VCPU(vcpu, ifs);
	if (ifs >> 63)
		regs->cr_ifs = ifs;
	regs->cr_iip = VCPU(vcpu, iip);
}

/*
   VPSR can't keep track of below bits of guest PSR
   This function gets guest PSR
 */

unsigned long vcpu_get_psr(struct kvm_vcpu *vcpu)
{
	unsigned long mask;
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);

	mask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
		IA64_PSR_MFH | IA64_PSR_CPL | IA64_PSR_RI;
	return (VCPU(vcpu, vpsr) & ~mask) | (regs->cr_ipsr & mask);
}

void kvm_rsm(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long vpsr;
	unsigned long imm24 = (inst.M44.i<<23) | (inst.M44.i2<<21)
					| inst.M44.imm;

	vpsr = vcpu_get_psr(vcpu);
	vpsr &= (~imm24);
	vcpu_set_psr(vcpu, vpsr);
}

void kvm_ssm(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long vpsr;
	unsigned long imm24 = (inst.M44.i << 23) | (inst.M44.i2 << 21)
				| inst.M44.imm;

	vpsr = vcpu_get_psr(vcpu);
	vpsr |= imm24;
	vcpu_set_psr(vcpu, vpsr);
}

/* Generate Mask
 * Parameter:
 *  bit -- starting bit
 *  len -- how many bits
 */
#define MASK(bit,len)				   	\
({							\
		__u64	ret;				\
							\
		__asm __volatile("dep %0=-1, r0, %1, %2"\
				: "=r" (ret):		\
		  "M" (bit),				\
		  "M" (len));				\
		ret;					\
})

void vcpu_set_psr_l(struct kvm_vcpu *vcpu, unsigned long val)
{
	val = (val & MASK(0, 32)) | (vcpu_get_psr(vcpu) & MASK(32, 32));
	vcpu_set_psr(vcpu, val);
}

void kvm_mov_to_psr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long val;

	val = vcpu_get_gr(vcpu, inst.M35.r2);
	vcpu_set_psr_l(vcpu, val);
}

void kvm_mov_from_psr(struct kvm_vcpu *vcpu, INST64 inst)
{
	unsigned long val;

	val = vcpu_get_psr(vcpu);
	val = (val & MASK(0, 32)) | (val & MASK(35, 2));
	vcpu_set_gr(vcpu, inst.M33.r1, val, 0);
}

void vcpu_increment_iip(struct kvm_vcpu *vcpu)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	struct ia64_psr *ipsr = (struct ia64_psr *)&regs->cr_ipsr;
	if (ipsr->ri == 2) {
		ipsr->ri = 0;
		regs->cr_iip += 16;
	} else
		ipsr->ri++;
}

void vcpu_decrement_iip(struct kvm_vcpu *vcpu)
{
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);
	struct ia64_psr *ipsr = (struct ia64_psr *)&regs->cr_ipsr;

	if (ipsr->ri == 0) {
		ipsr->ri = 2;
		regs->cr_iip -= 16;
	} else
		ipsr->ri--;
}

/** Emulate a privileged operation.
 *
 *
 * @param vcpu virtual cpu
 * @cause the reason cause virtualization fault
 * @opcode the instruction code which cause virtualization fault
 */

void kvm_emulate(struct kvm_vcpu *vcpu, struct kvm_pt_regs *regs)
{
	unsigned long status, cause, opcode ;
	INST64 inst;

	status = IA64_NO_FAULT;
	cause = VMX(vcpu, cause);
	opcode = VMX(vcpu, opcode);
	inst.inst = opcode;
	/*
	 * Switch to actual virtual rid in rr0 and rr4,
	 * which is required by some tlb related instructions.
	 */
	prepare_if_physical_mode(vcpu);

	switch (cause) {
	case EVENT_RSM:
		kvm_rsm(vcpu, inst);
		break;
	case EVENT_SSM:
		kvm_ssm(vcpu, inst);
		break;
	case EVENT_MOV_TO_PSR:
		kvm_mov_to_psr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_PSR:
		kvm_mov_from_psr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_CR:
		kvm_mov_from_cr(vcpu, inst);
		break;
	case EVENT_MOV_TO_CR:
		kvm_mov_to_cr(vcpu, inst);
		break;
	case EVENT_BSW_0:
		vcpu_bsw0(vcpu);
		break;
	case EVENT_BSW_1:
		vcpu_bsw1(vcpu);
		break;
	case EVENT_COVER:
		vcpu_cover(vcpu);
		break;
	case EVENT_RFI:
		vcpu_rfi(vcpu);
		break;
	case EVENT_ITR_D:
		kvm_itr_d(vcpu, inst);
		break;
	case EVENT_ITR_I:
		kvm_itr_i(vcpu, inst);
		break;
	case EVENT_PTR_D:
		kvm_ptr_d(vcpu, inst);
		break;
	case EVENT_PTR_I:
		kvm_ptr_i(vcpu, inst);
		break;
	case EVENT_ITC_D:
		kvm_itc_d(vcpu, inst);
		break;
	case EVENT_ITC_I:
		kvm_itc_i(vcpu, inst);
		break;
	case EVENT_PTC_L:
		kvm_ptc_l(vcpu, inst);
		break;
	case EVENT_PTC_G:
		kvm_ptc_g(vcpu, inst);
		break;
	case EVENT_PTC_GA:
		kvm_ptc_ga(vcpu, inst);
		break;
	case EVENT_PTC_E:
		kvm_ptc_e(vcpu, inst);
		break;
	case EVENT_MOV_TO_RR:
		kvm_mov_to_rr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_RR:
		kvm_mov_from_rr(vcpu, inst);
		break;
	case EVENT_THASH:
		kvm_thash(vcpu, inst);
		break;
	case EVENT_TTAG:
		kvm_ttag(vcpu, inst);
		break;
	case EVENT_TPA:
		status = kvm_tpa(vcpu, inst);
		break;
	case EVENT_TAK:
		kvm_tak(vcpu, inst);
		break;
	case EVENT_MOV_TO_AR_IMM:
		kvm_mov_to_ar_imm(vcpu, inst);
		break;
	case EVENT_MOV_TO_AR:
		kvm_mov_to_ar_reg(vcpu, inst);
		break;
	case EVENT_MOV_FROM_AR:
		kvm_mov_from_ar_reg(vcpu, inst);
		break;
	case EVENT_MOV_TO_DBR:
		kvm_mov_to_dbr(vcpu, inst);
		break;
	case EVENT_MOV_TO_IBR:
		kvm_mov_to_ibr(vcpu, inst);
		break;
	case EVENT_MOV_TO_PMC:
		kvm_mov_to_pmc(vcpu, inst);
		break;
	case EVENT_MOV_TO_PMD:
		kvm_mov_to_pmd(vcpu, inst);
		break;
	case EVENT_MOV_TO_PKR:
		kvm_mov_to_pkr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_DBR:
		kvm_mov_from_dbr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_IBR:
		kvm_mov_from_ibr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_PMC:
		kvm_mov_from_pmc(vcpu, inst);
		break;
	case EVENT_MOV_FROM_PKR:
		kvm_mov_from_pkr(vcpu, inst);
		break;
	case EVENT_MOV_FROM_CPUID:
		kvm_mov_from_cpuid(vcpu, inst);
		break;
	case EVENT_VMSW:
		status = IA64_FAULT;
		break;
	default:
		break;
	};
	/*Assume all status is NO_FAULT ?*/
	if (status == IA64_NO_FAULT && cause != EVENT_RFI)
		vcpu_increment_iip(vcpu);

	recover_if_physical_mode(vcpu);
}

void init_vcpu(struct kvm_vcpu *vcpu)
{
	int i;

	vcpu->arch.mode_flags = GUEST_IN_PHY;
	VMX(vcpu, vrr[0]) = 0x38;
	VMX(vcpu, vrr[1]) = 0x38;
	VMX(vcpu, vrr[2]) = 0x38;
	VMX(vcpu, vrr[3]) = 0x38;
	VMX(vcpu, vrr[4]) = 0x38;
	VMX(vcpu, vrr[5]) = 0x38;
	VMX(vcpu, vrr[6]) = 0x38;
	VMX(vcpu, vrr[7]) = 0x38;
	VCPU(vcpu, vpsr) = IA64_PSR_BN;
	VCPU(vcpu, dcr) = 0;
	/* pta.size must not be 0.  The minimum is 15 (32k) */
	VCPU(vcpu, pta) = 15 << 2;
	VCPU(vcpu, itv) = 0x10000;
	VCPU(vcpu, itm) = 0;
	VMX(vcpu, last_itc) = 0;

	VCPU(vcpu, lid) = VCPU_LID(vcpu);
	VCPU(vcpu, ivr) = 0;
	VCPU(vcpu, tpr) = 0x10000;
	VCPU(vcpu, eoi) = 0;
	VCPU(vcpu, irr[0]) = 0;
	VCPU(vcpu, irr[1]) = 0;
	VCPU(vcpu, irr[2]) = 0;
	VCPU(vcpu, irr[3]) = 0;
	VCPU(vcpu, pmv) = 0x10000;
	VCPU(vcpu, cmcv) = 0x10000;
	VCPU(vcpu, lrr0) = 0x10000;   /* default reset value? */
	VCPU(vcpu, lrr1) = 0x10000;   /* default reset value? */
	update_vhpi(vcpu, NULL_VECTOR);
	VLSAPIC_XTP(vcpu) = 0x80;	/* disabled */

	for (i = 0; i < 4; i++)
		VLSAPIC_INSVC(vcpu, i) = 0;
}

void kvm_init_all_rr(struct kvm_vcpu *vcpu)
{
	unsigned long psr;

	local_irq_save(psr);

	/* WARNING: not allow co-exist of both virtual mode and physical
	 * mode in same region
	 */

	vcpu->arch.metaphysical_saved_rr0 = vrrtomrr(VMX(vcpu, vrr[VRN0]));
	vcpu->arch.metaphysical_saved_rr4 = vrrtomrr(VMX(vcpu, vrr[VRN4]));

	if (is_physical_mode(vcpu)) {
		if (vcpu->arch.mode_flags & GUEST_PHY_EMUL)
			panic_vm(vcpu, "Machine Status conflicts!\n");

		ia64_set_rr((VRN0 << VRN_SHIFT), vcpu->arch.metaphysical_rr0);
		ia64_dv_serialize_data();
		ia64_set_rr((VRN4 << VRN_SHIFT), vcpu->arch.metaphysical_rr4);
		ia64_dv_serialize_data();
	} else {
		ia64_set_rr((VRN0 << VRN_SHIFT),
				vcpu->arch.metaphysical_saved_rr0);
		ia64_dv_serialize_data();
		ia64_set_rr((VRN4 << VRN_SHIFT),
				vcpu->arch.metaphysical_saved_rr4);
		ia64_dv_serialize_data();
	}
	ia64_set_rr((VRN1 << VRN_SHIFT),
			vrrtomrr(VMX(vcpu, vrr[VRN1])));
	ia64_dv_serialize_data();
	ia64_set_rr((VRN2 << VRN_SHIFT),
			vrrtomrr(VMX(vcpu, vrr[VRN2])));
	ia64_dv_serialize_data();
	ia64_set_rr((VRN3 << VRN_SHIFT),
			vrrtomrr(VMX(vcpu, vrr[VRN3])));
	ia64_dv_serialize_data();
	ia64_set_rr((VRN5 << VRN_SHIFT),
			vrrtomrr(VMX(vcpu, vrr[VRN5])));
	ia64_dv_serialize_data();
	ia64_set_rr((VRN7 << VRN_SHIFT),
			vrrtomrr(VMX(vcpu, vrr[VRN7])));
	ia64_dv_serialize_data();
	ia64_srlz_d();
	ia64_set_psr(psr);
}

int vmm_entry(void)
{
	struct kvm_vcpu *v;
	v = current_vcpu;

	ia64_call_vsa(PAL_VPS_RESTORE, (unsigned long)v->arch.vpd,
						0, 0, 0, 0, 0, 0);
	kvm_init_vtlb(v);
	kvm_init_vhpt(v);
	init_vcpu(v);
	kvm_init_all_rr(v);
	vmm_reset_entry();

	return 0;
}

static void kvm_show_registers(struct kvm_pt_regs *regs)
{
	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;

	struct kvm_vcpu *vcpu = current_vcpu;
	if (vcpu != NULL)
		printk("vcpu 0x%p vcpu %d\n",
		       vcpu, vcpu->vcpu_id);

	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]\n",
	       regs->cr_ipsr, regs->cr_ifs, ip);

	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
	printk("rnat: %016lx bspstore: %016lx pr  : %016lx\n",
	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0,
							regs->b6, regs->b7);
	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
	       regs->f6.u.bits[1], regs->f6.u.bits[0],
	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
	       regs->f8.u.bits[1], regs->f8.u.bits[0],
	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
	       regs->f10.u.bits[1], regs->f10.u.bits[0],
	       regs->f11.u.bits[1], regs->f11.u.bits[0]);

	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1,
							regs->r2, regs->r3);
	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8,
							regs->r9, regs->r10);
	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11,
							regs->r12, regs->r13);
	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14,
							regs->r15, regs->r16);
	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17,
							regs->r18, regs->r19);
	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20,
							regs->r21, regs->r22);
	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23,
							regs->r24, regs->r25);
	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26,
							regs->r27, regs->r28);
	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29,
							regs->r30, regs->r31);

}

void panic_vm(struct kvm_vcpu *v, const char *fmt, ...)
{
	va_list args;
	char buf[256];

	struct kvm_pt_regs *regs = vcpu_regs(v);
	struct exit_ctl_data *p = &v->arch.exit_data;
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(buf);
	kvm_show_registers(regs);
	p->exit_reason = EXIT_REASON_VM_PANIC;
	vmm_transition(v);
	/*Never to return*/
	while (1);
}