/*
* kvm_vcpu.c: handling all virtual cpu related thing.
* Copyright (c) 2005, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Shaofan Li (Susue Li) <susie.li@intel.com>
* Yaozu Dong (Eddie Dong) (Eddie.dong@intel.com)
* Xuefei Xu (Anthony Xu) (Anthony.xu@intel.com)
* Xiantao Zhang <xiantao.zhang@intel.com>
*/
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <asm/processor.h>
#include <asm/ia64regs.h>
#include <asm/gcc_intrin.h>
#include <asm/kregs.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>
#include "asm-offsets.h"
#include "vcpu.h"
/*
* Special notes:
* - Index by it/dt/rt sequence
* - Only existing mode transitions are allowed in this table
* - RSE is placed at lazy mode when emulating guest partial mode
* - If gva happens to be rr0 and rr4, only allowed case is identity
* mapping (gva=gpa), or panic! (How?)
*/
int mm_switch_table[8][8] = {
/* 2004/09/12(Kevin): Allow switch to self */
/*
* (it,dt,rt): (0,0,0) -> (1,1,1)
* This kind of transition usually occurs in the very early
* stage of Linux boot up procedure. Another case is in efi
* and pal calls. (see "arch/ia64/kernel/head.S")
*
* (it,dt,rt): (0,0,0) -> (0,1,1)
* This kind of transition is found when OSYa exits efi boot
* service. Due to gva = gpa in this case (Same region),
* data access can be satisfied though itlb entry for physical
* emulation is hit.
*/
{SW_SELF, 0, 0, SW_NOP, 0, 0, 0, SW_P2V},
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
/*
* (it,dt,rt): (0,1,1) -> (1,1,1)
* This kind of transition is found in OSYa.
*
* (it,dt,rt): (0,1,1) -> (0,0,0)
* This kind of transition is found in OSYa
*/
{SW_NOP, 0, 0, SW_SELF, 0, 0, 0, SW_P2V},
/* (1,0,0)->(1,1,1) */
{0, 0, 0, 0, 0, 0, 0, SW_P2V},
/*
* (it,dt,rt): (1,0,1) -> (1,1,1)
* This kind of transition usually occurs when Linux returns
* from the low level TLB miss handlers.
* (see "arch/ia64/kernel/ivt.S")
*/
{0, 0, 0, 0, 0, SW_SELF, 0, SW_P2V},
{0, 0, 0, 0, 0, 0, 0, 0},
/*
* (it,dt,rt): (1,1,1) -> (1,0,1)
* This kind of transition usually occurs in Linux low level
* TLB miss handler. (see "arch/ia64/kernel/ivt.S")
*
* (it,dt,rt): (1,1,1) -> (0,0,0)
* This kind of transition usually occurs in pal and efi calls,
* which requires running in physical mode.
* (see "arch/ia64/kernel/head.S")
* (1,1,1)->(1,0,0)
*/
{SW_V2P, 0, 0, 0, SW_V2P, SW_V2P, 0, SW_SELF},
};
void physical_mode_init(struct kvm_vcpu *vcpu)
{
vcpu->arch.mode_flags = GUEST_IN_PHY;
}
void switch_to_physical_rid(struct kvm_vcpu *vcpu)
{
unsigned long psr;
/* Save original virtual mode rr[0] and rr[4] */
psr = ia64_clear_ic();
ia64_set_rr(VRN0<<VRN_SHIFT, vcpu->arch.metaphysical_rr0);
ia64_srlz_d();
ia64_set_rr(VRN4<<VRN_SHIFT, vcpu->arch.metaphysical_rr4);
ia64_srlz_d();
ia64_set_psr(psr);
return;
}
void switch_to_virtual_rid(struct kvm_vcpu *vcpu)
{
unsigned long psr;
psr = ia64_clear_ic();
ia64_set_rr(VRN0 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr0);
ia64_srlz_d();
ia64_set_rr(VRN4 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr4);
ia64_srlz_d();
ia64_set_psr(psr);
return;
}
static int mm_switch_action(struct ia64_psr opsr, struct ia64_psr npsr)
{
return mm_switch_table[MODE_IND(opsr)][MODE_IND(npsr)];
}
void switch_mm_mode(struct kvm_vcpu *vcpu, struct ia64_psr old_psr,
struct ia64_psr new_psr)
{
int act;
act = mm_switch_action(old_psr, new_psr);
switch (act) {
case SW_V2P:
/*printk("V -> P mode transition: (0x%lx -> 0x%lx)\n",
old_psr.val, new_psr.val);*/
switch_to_physical_rid(vcpu);
/*
* Set rse to enforced lazy, to prevent active rse
*save/restor when guest physical mode.
*/
vcpu->arch.mode_flags |= GUEST_IN_PHY;
break;
case SW_P2V:
switch_to_virtual_rid(vcpu);
/*
* recover old mode which is saved when entering
* guest physical mode
*/
vcpu->arch.mode_flags &= ~GUEST_IN_PHY;
break;
case SW_SELF:
break;
case SW_NOP:
break;
default:
/* Sanity check */
break;
}
return;
}
/*
* In physical mode, insert tc/tr for region 0 and 4 uses
* RID[0] and RID[4] which is for physical mode emulation.
* However what those inserted tc/tr wants is rid for
* virtual mode. So original virtual rid needs to be restored
* before insert.
*
* Operations which required such switch include:
* - insertions (itc.*, itr.*)
* - purges (ptc.* and ptr.*)
* - tpa
* - tak
* - thash?, ttag?
* All above needs actual virtual rid for destination entry.
*/
void check_mm_mode_switch(struct kvm_vcpu *vcpu, struct ia64_psr old_psr,
struct ia64_psr new_psr)
{
if ((old_psr.dt != new_psr.dt)
|| (old_psr.it != new_psr.it)
|| (old_psr.rt != new_psr.rt))
switch_mm_mode(vcpu, old_psr, new_psr);
return;
}
/*
* In physical mode, insert tc/tr for region 0 and 4 uses
* RID[0] and RID[4] which is for physical mode emulation.
* However what those inserted tc/tr wants is rid for
* virtual mode. So original virtual rid needs to be restored
* before insert.
*
* Operations which required such switch include:
* - insertions (itc.*, itr.*)
* - purges (ptc.* and ptr.*)
* - tpa
* - tak
* - thash?, ttag?
* All above needs actual virtual rid for destination entry.
*/
void prepare_if_physical_mode(struct kvm_vcpu *vcpu)
{
if (is_physical_mode(vcpu)) {
vcpu->arch.mode_flags |= GUEST_PHY_EMUL;
switch_to_virtual_rid(vcpu);
}
return;
}
/* Recover always follows prepare */
void recover_if_physical_mode(struct kvm_vcpu *vcpu)
{
if (is_physical_mode(vcpu))
switch_to_physical_rid(vcpu);
vcpu->arch.mode_flags &= ~GUEST_PHY_EMUL;
return;
}
#define RPT(x) ((u16) &((struct kvm_pt_regs *)0)->x)
static u16 gr_info[32] = {
0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
RPT(r1), RPT(r2), RPT(r3),
RPT(r4), RPT(r5), RPT(r6), RPT(r7),
RPT(r8), RPT(r9), RPT(r10), RPT(r11),
RPT(r12), RPT(r13), RPT(r14), RPT(r15),
RPT(r16), RPT(r17), RPT(r18), RPT(r19),
RPT(r20), RPT(r21), RPT(r22), RPT(r23),
RPT(r24), RPT(r25), RPT(r26), RPT(r27),
RPT(r28), RPT(r29), RPT(r30), RPT(r31)
};
#define IA64_FIRST_STACKED_GR 32
#define IA64_FIRST_ROTATING_FR 32
static inline unsigned long
rotate_reg(unsigned long sor, unsigned long rrb, unsigned long reg)
{
reg += rrb;
if (reg >= sor)
reg -= sor;
return reg;
}
/*
* Return the (rotated) index for floating point register
* be in the REGNUM (REGNUM must range from 32-127,
* result is in the range from 0-95.
*/
static inline unsigned long fph_index(struct kvm_pt_regs *regs,
long regnum)
{
unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
}
/*
* The inverse of the above: given bspstore and the number of
* registers, calculate ar.bsp.
*/
static inline unsigned long *kvm_rse_skip_regs(unsigned long *addr,
long num_regs)
{
long delta = ia64_rse_slot_num(addr) + num_regs;
int i = 0;
if (num_regs < 0)
delta -= 0x3e;
if (delta < 0) {
while (delta <= -0x3f) {
i--;
delta += 0x3f;
}
} else {
while (delta >= 0x3f) {
i++;
delta -= 0x3f;
}
}
return addr + num_regs + i;
}
static void get_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
unsigned long *val, int *nat)
{
unsigned long *bsp, *addr, *rnat_addr, *bspstore;
unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
unsigned long nat_mask;
unsigned long old_rsc, new_rsc;
long sof = (regs->cr_ifs) & 0x7f;
long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
long ridx = r1 - 32;
if (ridx < sor)
ridx = rotate_reg(sor, rrb_gr, ridx);
old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
new_rsc = old_rsc&(~(0x3));
ia64_setreg(_IA64_REG_AR_RSC, new_rsc);
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
bsp = kbs + (regs->loadrs >> 19);
addr = kvm_rse_skip_regs(bsp, -sof + ridx);
nat_mask = 1UL << ia64_rse_slot_num(addr);
rnat_addr = ia64_rse_rnat_addr(addr);
if (addr >= bspstore) {
ia64_flushrs();
ia64_mf();
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
}
*val = *addr;
if (nat) {
if (bspstore < rnat_addr)
*nat = (int)!!(ia64_getreg(_IA64_REG_AR_RNAT)
& nat_mask);
else
*nat = (int)!!((*rnat_addr) & nat_mask);
ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
}
}
void set_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
unsigned long val, unsigned long nat)
{
unsigned long *bsp, *bspstore, *addr, *rnat_addr;
unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
unsigned long nat_mask;
unsigned long old_rsc, new_rsc, psr;
unsigned long rnat;
long sof = (regs->cr_ifs) & 0x7f;
long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
long ridx = r1 - 32;
if (ridx < sor)
ridx = rotate_reg(sor, rrb_gr, ridx);
old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
/* put RSC to lazy mode, and set loadrs 0 */
new_rsc = old_rsc & (~0x3fff0003);
ia64_setreg(_IA64_REG_AR_RSC, new_rsc);
bsp = kbs + (regs->loadrs >> 19); /* 16 + 3 */
addr = kvm_rse_skip_regs(bsp, -sof + ridx);
nat_mask = 1UL << ia64_rse_slot_num(addr);
rnat_addr = ia64_rse_rnat_addr(addr);
local_irq_save(psr);
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
if (addr >= bspstore) {
ia64_flushrs();
ia64_mf();
*addr = val;
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
rnat = ia64_getreg(_IA64_REG_AR_RNAT);
if (bspstore < rnat_addr)
rnat = rnat & (~nat_mask);
else
*rnat_addr = (*rnat_addr)&(~nat_mask);
ia64_mf();
ia64_loadrs();
ia64_setreg(_IA64_REG_AR_RNAT, rnat);
} else {
rnat = ia64_getreg(_IA64_REG_AR_RNAT);
*addr = val;
if (bspstore < rnat_addr)
rnat = rnat&(~nat_mask);
else
*rnat_addr = (*rnat_addr) & (~nat_mask);
ia64_setreg(_IA64_REG_AR_BSPSTORE, bspstore);
ia64_setreg(_IA64_REG_AR_RNAT, rnat);
}
local_irq_restore(psr);
ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
}
void getreg(unsigned long regnum, unsigned long *val,
int *nat, struct kvm_pt_regs *regs)
{
unsigned long addr, *unat;
if (regnum >= IA64_FIRST_STACKED_GR) {
get_rse_reg(regs, regnum, val, nat);
return;
}
/*
* Now look at registers in [0-31] range and init correct UNAT
*/
addr = (unsigned long)regs;
unat = ®s->eml_unat;;
addr += gr_info[regnum];
*val = *(unsigned long *)addr;
/*
* do it only when requested
*/
if (nat)
*nat = (*unat >> ((addr >> 3) & 0x3f)) & 0x1UL;
}
void setreg(unsigned long regnum, unsigned long val,
int nat, struct kvm_pt_regs *regs)
{
unsigned long addr;
unsigned long bitmask;
unsigned long *unat;
/*
* First takes care of stacked registers
*/
if (regnum >= IA64_FIRST_STACKED_GR) {
set_rse_reg(regs, regnum, val, nat);
return;
}
/*
* Now look at registers in [0-31] range and init correct UNAT
*/
addr = (unsigned long)regs;
unat = ®s->eml_unat;
/*
* add offset from base of struct
* and do it !
*/
addr += gr_info[regnum];
*(unsigned long *)addr = val;
/*
* We need to clear the corresponding UNAT bit to fully emulate the load
* UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
*/
bitmask = 1UL << ((addr >> 3) & 0x3f);
if (nat)
*unat |= bitmask;
else
*unat &= ~bitmask;
}
u64 vcpu_get_gr(struct kvm_vcpu *vcpu, unsigned long reg)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
u64 val;
if (!reg)
return 0;
getreg(reg, &val, 0, regs);
return val;
}
void vcpu_set_gr(struct kvm_vcpu *vcpu, u64 reg, u64 value, int nat)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
long sof = (regs->cr_ifs) & 0x7f;
if (!reg)
return;
if (reg >= sof + 32)
return;
setreg(reg, value, nat, regs); /* FIXME: handle NATs later*/
}
void getfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
struct kvm_pt_regs *regs)
{
/* Take floating register rotation into consideration*/
if (regnum >= IA64_FIRST_ROTATING_FR)
regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);
#define CASE_FIXED_FP(reg) \
case (reg) : \
ia64_stf_spill(fpval, reg); \
break
switch (regnum) {
CASE_FIXED_FP(0);
CASE_FIXED_FP(1);
CASE_FIXED_FP(2);
CASE_FIXED_FP(3);
CASE_FIXED_FP(4);
CASE_FIXED_FP(5);
CASE_FIXED_FP(6);
CASE_FIXED_FP(7);
CASE_FIXED_FP(8);
CASE_FIXED_FP(9);
CASE_FIXED_FP(10);
CASE_FIXED_FP(11);
CASE_FIXED_FP(12);
CASE_FIXED_FP(13);
CASE_FIXED_FP(14);
CASE_FIXED_FP(15);
CASE_FIXED_FP(16);
CASE_FIXED_FP(17);
CASE_FIXED_FP(18);
CASE_FIXED_FP(19);
CASE_FIXED_FP(20);
CASE_FIXED_FP(21);
CASE_FIXED_FP(22);
CASE_FIXED_FP(23);
CASE_FIXED_FP(24);
CASE_FIXED_FP(25);
CASE_FIXED_FP(26);
CASE_FIXED_FP(27);
CASE_FIXED_FP(28);
CASE_FIXED_FP(29);
CASE_FIXED_FP(30);
CASE_FIXED_FP(31);
CASE_FIXED_FP(32);
CASE_FIXED_FP(33);
CASE_FIXED_FP(34);
CASE_FIXED_FP(35);
CASE_FIXED_FP(36);
CASE_FIXED_FP(37);
CASE_FIXED_FP(38);
CASE_FIXED_FP(39);
CASE_FIXED_FP(40);
CASE_FIXED_FP(41);
CASE_FIXED_FP(42);
CASE_FIXED_FP(43);
CASE_FIXED_FP(44);
CASE_FIXED_FP(45);
CASE_FIXED_FP(46);
CASE_FIXED_FP(47);
CASE_FIXED_FP(48);
CASE_FIXED_FP(49);
CASE_FIXED_FP(50);
CASE_FIXED_FP(51);
CASE_FIXED_FP(52);
CASE_FIXED_FP(53);
CASE_FIXED_FP(54);
CASE_FIXED_FP(55);
CASE_FIXED_FP(56);
CASE_FIXED_FP(57);
CASE_FIXED_FP(58);
CASE_FIXED_FP(59);
CASE_FIXED_FP(60);
CASE_FIXED_FP(61);
CASE_FIXED_FP(62);
CASE_FIXED_FP(63);
CASE_FIXED_FP(64);
CASE_FIXED_FP(65);
CASE_FIXED_FP(66);
CASE_FIXED_FP(67);
CASE_FIXED_FP(68);
CASE_FIXED_FP(69);
CASE_FIXED_FP(70);
CASE_FIXED_FP(71);
CASE_FIXED_FP(72);
CASE_FIXED_FP(73);
CASE_FIXED_FP(74);
CASE_FIXED_FP(75);
CASE_FIXED_FP(76);
CASE_FIXED_FP(77);
CASE_FIXED_FP(78);
CASE_FIXED_FP(79);
CASE_FIXED_FP(80);
CASE_FIXED_FP(81);
CASE_FIXED_FP(82);
CASE_FIXED_FP(83);
CASE_FIXED_FP(84);
CASE_FIXED_FP(85);
CASE_FIXED_FP(86);
CASE_FIXED_FP(87);
CASE_FIXED_FP(88);
CASE_FIXED_FP(89);
CASE_FIXED_FP(90);
CASE_FIXED_FP(91);
CASE_FIXED_FP(92);
CASE_FIXED_FP(93);
CASE_FIXED_FP(94);
CASE_FIXED_FP(95);
CASE_FIXED_FP(96);
CASE_FIXED_FP(97);
CASE_FIXED_FP(98);
CASE_FIXED_FP(99);
CASE_FIXED_FP(100);
CASE_FIXED_FP(101);
CASE_FIXED_FP(102);
CASE_FIXED_FP(103);
CASE_FIXED_FP(104);
CASE_FIXED_FP(105);
CASE_FIXED_FP(106);
CASE_FIXED_FP(107);
CASE_FIXED_FP(108);
CASE_FIXED_FP(109);
CASE_FIXED_FP(110);
CASE_FIXED_FP(111);
CASE_FIXED_FP(112);
CASE_FIXED_FP(113);
CASE_FIXED_FP(114);
CASE_FIXED_FP(115);
CASE_FIXED_FP(116);
CASE_FIXED_FP(117);
CASE_FIXED_FP(118);
CASE_FIXED_FP(119);
CASE_FIXED_FP(120);
CASE_FIXED_FP(121);
CASE_FIXED_FP(122);
CASE_FIXED_FP(123);
CASE_FIXED_FP(124);
CASE_FIXED_FP(125);
CASE_FIXED_FP(126);
CASE_FIXED_FP(127);
}
#undef CASE_FIXED_FP
}
void setfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
struct kvm_pt_regs *regs)
{
/* Take floating register rotation into consideration*/
if (regnum >= IA64_FIRST_ROTATING_FR)
regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);
#define CASE_FIXED_FP(reg) \
case (reg) : \
ia64_ldf_fill(reg, fpval); \
break
switch (regnum) {
CASE_FIXED_FP(2);
CASE_FIXED_FP(3);
CASE_FIXED_FP(4);
CASE_FIXED_FP(5);
CASE_FIXED_FP(6);
CASE_FIXED_FP(7);
CASE_FIXED_FP(8);
CASE_FIXED_FP(9);
CASE_FIXED_FP(10);
CASE_FIXED_FP(11);
CASE_FIXED_FP(12);
CASE_FIXED_FP(13);
CASE_FIXED_FP(14);
CASE_FIXED_FP(15);
CASE_FIXED_FP(16);
CASE_FIXED_FP(17);
CASE_FIXED_FP(18);
CASE_FIXED_FP(19);
CASE_FIXED_FP(20);
CASE_FIXED_FP(21);
CASE_FIXED_FP(22);
CASE_FIXED_FP(23);
CASE_FIXED_FP(24);
CASE_FIXED_FP(25);
CASE_FIXED_FP(26);
CASE_FIXED_FP(27);
CASE_FIXED_FP(28);
CASE_FIXED_FP(29);
CASE_FIXED_FP(30);
CASE_FIXED_FP(31);
CASE_FIXED_FP(32);
CASE_FIXED_FP(33);
CASE_FIXED_FP(34);
CASE_FIXED_FP(35);
CASE_FIXED_FP(36);
CASE_FIXED_FP(37);
CASE_FIXED_FP(38);
CASE_FIXED_FP(39);
CASE_FIXED_FP(40);
CASE_FIXED_FP(41);
CASE_FIXED_FP(42);
CASE_FIXED_FP(43);
CASE_FIXED_FP(44);
CASE_FIXED_FP(45);
CASE_FIXED_FP(46);
CASE_FIXED_FP(47);
CASE_FIXED_FP(48);
CASE_FIXED_FP(49);
CASE_FIXED_FP(50);
CASE_FIXED_FP(51);
CASE_FIXED_FP(52);
CASE_FIXED_FP(53);
CASE_FIXED_FP(54);
CASE_FIXED_FP(55);
CASE_FIXED_FP(56);
CASE_FIXED_FP(57);
CASE_FIXED_FP(58);
CASE_FIXED_FP(59);
CASE_FIXED_FP(60);
CASE_FIXED_FP(61);
CASE_FIXED_FP(62);
CASE_FIXED_FP(63);
CASE_FIXED_FP(64);
CASE_FIXED_FP(65);
CASE_FIXED_FP(66);
CASE_FIXED_FP(67);
CASE_FIXED_FP(68);
CASE_FIXED_FP(69);
CASE_FIXED_FP(70);
CASE_FIXED_FP(71);
CASE_FIXED_FP(72);
CASE_FIXED_FP(73);
CASE_FIXED_FP(74);
CASE_FIXED_FP(75);
CASE_FIXED_FP(76);
CASE_FIXED_FP(77);
CASE_FIXED_FP(78);
CASE_FIXED_FP(79);
CASE_FIXED_FP(80);
CASE_FIXED_FP(81);
CASE_FIXED_FP(82);
CASE_FIXED_FP(83);
CASE_FIXED_FP(84);
CASE_FIXED_FP(85);
CASE_FIXED_FP(86);
CASE_FIXED_FP(87);
CASE_FIXED_FP(88);
CASE_FIXED_FP(89);
CASE_FIXED_FP(90);
CASE_FIXED_FP(91);
CASE_FIXED_FP(92);
CASE_FIXED_FP(93);
CASE_FIXED_FP(94);
CASE_FIXED_FP(95);
CASE_FIXED_FP(96);
CASE_FIXED_FP(97);
CASE_FIXED_FP(98);
CASE_FIXED_FP(99);
CASE_FIXED_FP(100);
CASE_FIXED_FP(101);
CASE_FIXED_FP(102);
CASE_FIXED_FP(103);
CASE_FIXED_FP(104);
CASE_FIXED_FP(105);
CASE_FIXED_FP(106);
CASE_FIXED_FP(107);
CASE_FIXED_FP(108);
CASE_FIXED_FP(109);
CASE_FIXED_FP(110);
CASE_FIXED_FP(111);
CASE_FIXED_FP(112);
CASE_FIXED_FP(113);
CASE_FIXED_FP(114);
CASE_FIXED_FP(115);
CASE_FIXED_FP(116);
CASE_FIXED_FP(117);
CASE_FIXED_FP(118);
CASE_FIXED_FP(119);
CASE_FIXED_FP(120);
CASE_FIXED_FP(121);
CASE_FIXED_FP(122);
CASE_FIXED_FP(123);
CASE_FIXED_FP(124);
CASE_FIXED_FP(125);
CASE_FIXED_FP(126);
CASE_FIXED_FP(127);
}
}
void vcpu_get_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
struct ia64_fpreg *val)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
getfpreg(reg, val, regs); /* FIXME: handle NATs later*/
}
void vcpu_set_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
struct ia64_fpreg *val)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
if (reg > 1)
setfpreg(reg, val, regs); /* FIXME: handle NATs later*/
}
/************************************************************************
* lsapic timer
***********************************************************************/
u64 vcpu_get_itc(struct kvm_vcpu *vcpu)
{
unsigned long guest_itc;
guest_itc = VMX(vcpu, itc_offset) + ia64_getreg(_IA64_REG_AR_ITC);
if (guest_itc >= VMX(vcpu, last_itc)) {
VMX(vcpu, last_itc) = guest_itc;
return guest_itc;
} else
return VMX(vcpu, last_itc);
}
static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val);
static void vcpu_set_itc(struct kvm_vcpu *vcpu, u64 val)
{
struct kvm_vcpu *v;
int i;
long itc_offset = val - ia64_getreg(_IA64_REG_AR_ITC);
unsigned long vitv = VCPU(vcpu, itv);
if (vcpu->vcpu_id == 0) {
for (i = 0; i < KVM_MAX_VCPUS; i++) {
v = (struct kvm_vcpu *)((char *)vcpu +
sizeof(struct kvm_vcpu_data) * i);
VMX(v, itc_offset) = itc_offset;
VMX(v, last_itc) = 0;
}
}
VMX(vcpu, last_itc) = 0;
if (VCPU(vcpu, itm) <= val) {
VMX(vcpu, itc_check) = 0;
vcpu_unpend_interrupt(vcpu, vitv);
} else {
VMX(vcpu, itc_check) = 1;
vcpu_set_itm(vcpu, VCPU(vcpu, itm));
}
}
static inline u64 vcpu_get_itm(struct kvm_vcpu *vcpu)
{
return ((u64)VCPU(vcpu, itm));
}
static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val)
{
unsigned long vitv = VCPU(vcpu, itv);
VCPU(vcpu, itm) = val;
if (val > vcpu_get_itc(vcpu)) {
VMX(vcpu, itc_check) = 1;
vcpu_unpend_interrupt(vcpu, vitv);
VMX(vcpu, timer_pending) = 0;
} else
VMX(vcpu, itc_check) = 0;
}
#define ITV_VECTOR(itv) (itv&0xff)
#define ITV_IRQ_MASK(itv) (itv&(1<<16))
static inline void vcpu_set_itv(struct kvm_vcpu *vcpu, u64 val)
{
VCPU(vcpu, itv) = val;
if (!ITV_IRQ_MASK(val) && vcpu->arch.timer_pending) {
vcpu_pend_interrupt(vcpu, ITV_VECTOR(val));
vcpu->arch.timer_pending = 0;
}
}
static inline void vcpu_set_eoi(struct kvm_vcpu *vcpu, u64 val)
{
int vec;
vec = highest_inservice_irq(vcpu);
if (vec == NULL_VECTOR)
return;
VMX(vcpu, insvc[vec >> 6]) &= ~(1UL << (vec & 63));
VCPU(vcpu, eoi) = 0;
vcpu->arch.irq_new_pending = 1;
}
/* See Table 5-8 in SDM vol2 for the definition */
int irq_masked(struct kvm_vcpu *vcpu, int h_pending, int h_inservice)
{
union ia64_tpr vtpr;
vtpr.val = VCPU(vcpu, tpr);
if (h_inservice == NMI_VECTOR)
return IRQ_MASKED_BY_INSVC;
if (h_pending == NMI_VECTOR) {
/* Non Maskable Interrupt */
return IRQ_NO_MASKED;
}
if (h_inservice == ExtINT_VECTOR)
return IRQ_MASKED_BY_INSVC;
if (h_pending == ExtINT_VECTOR) {
if (vtpr.mmi) {
/* mask all external IRQ */
return IRQ_MASKED_BY_VTPR;
} else
return IRQ_NO_MASKED;
}
if (is_higher_irq(h_pending, h_inservice)) {
if (is_higher_class(h_pending, vtpr.mic + (vtpr.mmi << 4)))
return IRQ_NO_MASKED;
else
return IRQ_MASKED_BY_VTPR;
} else {
return IRQ_MASKED_BY_INSVC;
}
}
void vcpu_pend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
{
long spsr;
int ret;
local_irq_save(spsr);
ret = test_and_set_bit(vec, &VCPU(vcpu, irr[0]));
local_irq_restore(spsr);
vcpu->arch.irq_new_pending = 1;
}
void vcpu_unpend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
{
long spsr;
int ret;
local_irq_save(spsr);
ret = test_and_clear_bit(vec, &VCPU(vcpu, irr[0]));
local_irq_restore(spsr);
if (ret) {
vcpu->arch.irq_new_pending = 1;
wmb();
}
}
void update_vhpi(struct kvm_vcpu *vcpu, int vec)
{
u64 vhpi;
if (vec == NULL_VECTOR)
vhpi = 0;
else if (vec == NMI_VECTOR)
vhpi = 32;
else if (vec == ExtINT_VECTOR)
vhpi = 16;
else
vhpi = vec >> 4;
VCPU(vcpu, vhpi) = vhpi;
if (VCPU(vcpu, vac).a_int)
ia64_call_vsa(PAL_VPS_SET_PENDING_INTERRUPT,
(u64)vcpu->arch.vpd, 0, 0, 0, 0, 0, 0);
}
u64 vcpu_get_ivr(struct kvm_vcpu *vcpu)
{
int vec, h_inservice, mask;
vec = highest_pending_irq(vcpu);
h_inservice = highest_inservice_irq(vcpu);
mask = irq_masked(vcpu, vec, h_inservice);
if (vec == NULL_VECTOR || mask == IRQ_MASKED_BY_INSVC) {
if (VCPU(vcpu, vhpi))
update_vhpi(vcpu, NULL_VECTOR);
return IA64_SPURIOUS_INT_VECTOR;
}
if (mask == IRQ_MASKED_BY_VTPR) {
update_vhpi(vcpu, vec);
return IA64_SPURIOUS_INT_VECTOR;
}
VMX(vcpu, insvc[vec >> 6]) |= (1UL << (vec & 63));
vcpu_unpend_interrupt(vcpu, vec);
return (u64)vec;
}
/**************************************************************************
Privileged operation emulation routines
**************************************************************************/
u64 vcpu_thash(struct kvm_vcpu *vcpu, u64 vadr)
{
union ia64_pta vpta;
union ia64_rr vrr;
u64 pval;
u64 vhpt_offset;
vpta.val = vcpu_get_pta(vcpu);
vrr.val = vcpu_get_rr(vcpu, vadr);
vhpt_offset = ((vadr >> vrr.ps) << 3) & ((1UL << (vpta.size)) - 1);
if (vpta.vf) {
pval = ia64_call_vsa(PAL_VPS_THASH, vadr, vrr.val,
vpta.val, 0, 0, 0, 0);
} else {
pval = (vadr & VRN_MASK) | vhpt_offset |
(vpta.val << 3 >> (vpta.size + 3) << (vpta.size));
}
return pval;
}
u64 vcpu_ttag(struct kvm_vcpu *vcpu, u64 vadr)
{
union ia64_rr vrr;
union ia64_pta vpta;
u64 pval;
vpta.val = vcpu_get_pta(vcpu);
vrr.val = vcpu_get_rr(vcpu, vadr);
if (vpta.vf) {
pval = ia64_call_vsa(PAL_VPS_TTAG, vadr, vrr.val,
0, 0, 0, 0, 0);
} else
pval = 1;
return pval;
}
u64 vcpu_tak(struct kvm_vcpu *vcpu, u64 vadr)
{
struct thash_data *data;
union ia64_pta vpta;
u64 key;
vpta.val = vcpu_get_pta(vcpu);
if (vpta.vf == 0) {
key = 1;
return key;
}
data = vtlb_lookup(vcpu, vadr, D_TLB);
if (!data || !data->p)
key = 1;
else
key = data->key;
return key;
}
void kvm_thash(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long thash, vadr;
vadr = vcpu_get_gr(vcpu, inst.M46.r3);
thash = vcpu_thash(vcpu, vadr);
vcpu_set_gr(vcpu, inst.M46.r1, thash, 0);
}
void kvm_ttag(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long tag, vadr;
vadr = vcpu_get_gr(vcpu, inst.M46.r3);
tag = vcpu_ttag(vcpu, vadr);
vcpu_set_gr(vcpu, inst.M46.r1, tag, 0);
}
int vcpu_tpa(struct kvm_vcpu *vcpu, u64 vadr, u64 *padr)
{
struct thash_data *data;
union ia64_isr visr, pt_isr;
struct kvm_pt_regs *regs;
struct ia64_psr vpsr;
regs = vcpu_regs(vcpu);
pt_isr.val = VMX(vcpu, cr_isr);
visr.val = 0;
visr.ei = pt_isr.ei;
visr.ir = pt_isr.ir;
vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
visr.na = 1;
data = vhpt_lookup(vadr);
if (data) {
if (data->p == 0) {
vcpu_set_isr(vcpu, visr.val);
data_page_not_present(vcpu, vadr);
return IA64_FAULT;
} else if (data->ma == VA_MATTR_NATPAGE) {
vcpu_set_isr(vcpu, visr.val);
dnat_page_consumption(vcpu, vadr);
return IA64_FAULT;
} else {
*padr = (data->gpaddr >> data->ps << data->ps) |
(vadr & (PSIZE(data->ps) - 1));
return IA64_NO_FAULT;
}
}
data = vtlb_lookup(vcpu, vadr, D_TLB);
if (data) {
if (data->p == 0) {
vcpu_set_isr(vcpu, visr.val);
data_page_not_present(vcpu, vadr);
return IA64_FAULT;
} else if (data->ma == VA_MATTR_NATPAGE) {
vcpu_set_isr(vcpu, visr.val);
dnat_page_consumption(vcpu, vadr);
return IA64_FAULT;
} else{
*padr = ((data->ppn >> (data->ps - 12)) << data->ps)
| (vadr & (PSIZE(data->ps) - 1));
return IA64_NO_FAULT;
}
}
if (!vhpt_enabled(vcpu, vadr, NA_REF)) {
if (vpsr.ic) {
vcpu_set_isr(vcpu, visr.val);
alt_dtlb(vcpu, vadr);
return IA64_FAULT;
} else {
nested_dtlb(vcpu);
return IA64_FAULT;
}
} else {
if (vpsr.ic) {
vcpu_set_isr(vcpu, visr.val);
dvhpt_fault(vcpu, vadr);
return IA64_FAULT;
} else{
nested_dtlb(vcpu);
return IA64_FAULT;
}
}
return IA64_NO_FAULT;
}
int kvm_tpa(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r1, r3;
r3 = vcpu_get_gr(vcpu, inst.M46.r3);
if (vcpu_tpa(vcpu, r3, &r1))
return IA64_FAULT;
vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
return(IA64_NO_FAULT);
}
void kvm_tak(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r1, r3;
r3 = vcpu_get_gr(vcpu, inst.M46.r3);
r1 = vcpu_tak(vcpu, r3);
vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
}
/************************************
* Insert/Purge translation register/cache
************************************/
void vcpu_itc_i(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
{
thash_purge_and_insert(vcpu, pte, itir, ifa, I_TLB);
}
void vcpu_itc_d(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
{
thash_purge_and_insert(vcpu, pte, itir, ifa, D_TLB);
}
void vcpu_itr_i(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
{
u64 ps, va, rid;
struct thash_data *p_itr;
ps = itir_ps(itir);
va = PAGEALIGN(ifa, ps);
pte &= ~PAGE_FLAGS_RV_MASK;
rid = vcpu_get_rr(vcpu, ifa);
rid = rid & RR_RID_MASK;
p_itr = (struct thash_data *)&vcpu->arch.itrs[slot];
vcpu_set_tr(p_itr, pte, itir, va, rid);
vcpu_quick_region_set(VMX(vcpu, itr_regions), va);
}
void vcpu_itr_d(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
{
u64 gpfn;
u64 ps, va, rid;
struct thash_data *p_dtr;
ps = itir_ps(itir);
va = PAGEALIGN(ifa, ps);
pte &= ~PAGE_FLAGS_RV_MASK;
if (ps != _PAGE_SIZE_16M)
thash_purge_entries(vcpu, va, ps);
gpfn = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
if (__gpfn_is_io(gpfn))
pte |= VTLB_PTE_IO;
rid = vcpu_get_rr(vcpu, va);
rid = rid & RR_RID_MASK;
p_dtr = (struct thash_data *)&vcpu->arch.dtrs[slot];
vcpu_set_tr((struct thash_data *)&vcpu->arch.dtrs[slot],
pte, itir, va, rid);
vcpu_quick_region_set(VMX(vcpu, dtr_regions), va);
}
void vcpu_ptr_d(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
{
int index;
u64 va;
va = PAGEALIGN(ifa, ps);
while ((index = vtr_find_overlap(vcpu, va, ps, D_TLB)) >= 0)
vcpu->arch.dtrs[index].page_flags = 0;
thash_purge_entries(vcpu, va, ps);
}
void vcpu_ptr_i(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
{
int index;
u64 va;
va = PAGEALIGN(ifa, ps);
while ((index = vtr_find_overlap(vcpu, va, ps, I_TLB)) >= 0)
vcpu->arch.itrs[index].page_flags = 0;
thash_purge_entries(vcpu, va, ps);
}
void vcpu_ptc_l(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
va = PAGEALIGN(va, ps);
thash_purge_entries(vcpu, va, ps);
}
void vcpu_ptc_e(struct kvm_vcpu *vcpu, u64 va)
{
thash_purge_all(vcpu);
}
void vcpu_ptc_ga(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
struct exit_ctl_data *p = &vcpu->arch.exit_data;
long psr;
local_irq_save(psr);
p->exit_reason = EXIT_REASON_PTC_G;
p->u.ptc_g_data.rr = vcpu_get_rr(vcpu, va);
p->u.ptc_g_data.vaddr = va;
p->u.ptc_g_data.ps = ps;
vmm_transition(vcpu);
/* Do Local Purge Here*/
vcpu_ptc_l(vcpu, va, ps);
local_irq_restore(psr);
}
void vcpu_ptc_g(struct kvm_vcpu *vcpu, u64 va, u64 ps)
{
vcpu_ptc_ga(vcpu, va, ps);
}
void kvm_ptc_e(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
vcpu_ptc_e(vcpu, ifa);
}
void kvm_ptc_g(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa, itir;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
itir = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_ptc_g(vcpu, ifa, itir_ps(itir));
}
void kvm_ptc_ga(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa, itir;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
itir = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_ptc_ga(vcpu, ifa, itir_ps(itir));
}
void kvm_ptc_l(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa, itir;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
itir = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_ptc_l(vcpu, ifa, itir_ps(itir));
}
void kvm_ptr_d(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa, itir;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
itir = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_ptr_d(vcpu, ifa, itir_ps(itir));
}
void kvm_ptr_i(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long ifa, itir;
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
itir = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_ptr_i(vcpu, ifa, itir_ps(itir));
}
void kvm_itr_d(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long itir, ifa, pte, slot;
slot = vcpu_get_gr(vcpu, inst.M45.r3);
pte = vcpu_get_gr(vcpu, inst.M45.r2);
itir = vcpu_get_itir(vcpu);
ifa = vcpu_get_ifa(vcpu);
vcpu_itr_d(vcpu, slot, pte, itir, ifa);
}
void kvm_itr_i(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long itir, ifa, pte, slot;
slot = vcpu_get_gr(vcpu, inst.M45.r3);
pte = vcpu_get_gr(vcpu, inst.M45.r2);
itir = vcpu_get_itir(vcpu);
ifa = vcpu_get_ifa(vcpu);
vcpu_itr_i(vcpu, slot, pte, itir, ifa);
}
void kvm_itc_d(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long itir, ifa, pte;
itir = vcpu_get_itir(vcpu);
ifa = vcpu_get_ifa(vcpu);
pte = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_itc_d(vcpu, pte, itir, ifa);
}
void kvm_itc_i(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long itir, ifa, pte;
itir = vcpu_get_itir(vcpu);
ifa = vcpu_get_ifa(vcpu);
pte = vcpu_get_gr(vcpu, inst.M45.r2);
vcpu_itc_i(vcpu, pte, itir, ifa);
}
/*************************************
* Moves to semi-privileged registers
*************************************/
void kvm_mov_to_ar_imm(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long imm;
if (inst.M30.s)
imm = -inst.M30.imm;
else
imm = inst.M30.imm;
vcpu_set_itc(vcpu, imm);
}
void kvm_mov_to_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r2;
r2 = vcpu_get_gr(vcpu, inst.M29.r2);
vcpu_set_itc(vcpu, r2);
}
void kvm_mov_from_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r1;
r1 = vcpu_get_itc(vcpu);
vcpu_set_gr(vcpu, inst.M31.r1, r1, 0);
}
/**************************************************************************
struct kvm_vcpu*protection key register access routines
**************************************************************************/
unsigned long vcpu_get_pkr(struct kvm_vcpu *vcpu, unsigned long reg)
{
return ((unsigned long)ia64_get_pkr(reg));
}
void vcpu_set_pkr(struct kvm_vcpu *vcpu, unsigned long reg, unsigned long val)
{
ia64_set_pkr(reg, val);
}
unsigned long vcpu_get_itir_on_fault(struct kvm_vcpu *vcpu, unsigned long ifa)
{
union ia64_rr rr, rr1;
rr.val = vcpu_get_rr(vcpu, ifa);
rr1.val = 0;
rr1.ps = rr.ps;
rr1.rid = rr.rid;
return (rr1.val);
}
/********************************
* Moves to privileged registers
********************************/
unsigned long vcpu_set_rr(struct kvm_vcpu *vcpu, unsigned long reg,
unsigned long val)
{
union ia64_rr oldrr, newrr;
unsigned long rrval;
struct exit_ctl_data *p = &vcpu->arch.exit_data;
unsigned long psr;
oldrr.val = vcpu_get_rr(vcpu, reg);
newrr.val = val;
vcpu->arch.vrr[reg >> VRN_SHIFT] = val;
switch ((unsigned long)(reg >> VRN_SHIFT)) {
case VRN6:
vcpu->arch.vmm_rr = vrrtomrr(val);
local_irq_save(psr);
p->exit_reason = EXIT_REASON_SWITCH_RR6;
vmm_transition(vcpu);
local_irq_restore(psr);
break;
case VRN4:
rrval = vrrtomrr(val);
vcpu->arch.metaphysical_saved_rr4 = rrval;
if (!is_physical_mode(vcpu))
ia64_set_rr(reg, rrval);
break;
case VRN0:
rrval = vrrtomrr(val);
vcpu->arch.metaphysical_saved_rr0 = rrval;
if (!is_physical_mode(vcpu))
ia64_set_rr(reg, rrval);
break;
default:
ia64_set_rr(reg, vrrtomrr(val));
break;
}
return (IA64_NO_FAULT);
}
void kvm_mov_to_rr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r2;
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
vcpu_set_rr(vcpu, r3, r2);
}
void kvm_mov_to_dbr(struct kvm_vcpu *vcpu, INST64 inst)
{
}
void kvm_mov_to_ibr(struct kvm_vcpu *vcpu, INST64 inst)
{
}
void kvm_mov_to_pmc(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r2;
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
vcpu_set_pmc(vcpu, r3, r2);
}
void kvm_mov_to_pmd(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r2;
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
vcpu_set_pmd(vcpu, r3, r2);
}
void kvm_mov_to_pkr(struct kvm_vcpu *vcpu, INST64 inst)
{
u64 r3, r2;
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
vcpu_set_pkr(vcpu, r3, r2);
}
void kvm_mov_from_rr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_rr(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
void kvm_mov_from_pkr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_pkr(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
void kvm_mov_from_dbr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_dbr(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
void kvm_mov_from_ibr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_ibr(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
void kvm_mov_from_pmc(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_pmc(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
unsigned long vcpu_get_cpuid(struct kvm_vcpu *vcpu, unsigned long reg)
{
/* FIXME: This could get called as a result of a rsvd-reg fault */
if (reg > (ia64_get_cpuid(3) & 0xff))
return 0;
else
return ia64_get_cpuid(reg);
}
void kvm_mov_from_cpuid(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r3, r1;
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
r1 = vcpu_get_cpuid(vcpu, r3);
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
}
void vcpu_set_tpr(struct kvm_vcpu *vcpu, unsigned long val)
{
VCPU(vcpu, tpr) = val;
vcpu->arch.irq_check = 1;
}
unsigned long kvm_mov_to_cr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long r2;
r2 = vcpu_get_gr(vcpu, inst.M32.r2);
VCPU(vcpu, vcr[inst.M32.cr3]) = r2;
switch (inst.M32.cr3) {
case 0:
vcpu_set_dcr(vcpu, r2);
break;
case 1:
vcpu_set_itm(vcpu, r2);
break;
case 66:
vcpu_set_tpr(vcpu, r2);
break;
case 67:
vcpu_set_eoi(vcpu, r2);
break;
default:
break;
}
return 0;
}
unsigned long kvm_mov_from_cr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long tgt = inst.M33.r1;
unsigned long val;
switch (inst.M33.cr3) {
case 65:
val = vcpu_get_ivr(vcpu);
vcpu_set_gr(vcpu, tgt, val, 0);
break;
case 67:
vcpu_set_gr(vcpu, tgt, 0L, 0);
break;
default:
val = VCPU(vcpu, vcr[inst.M33.cr3]);
vcpu_set_gr(vcpu, tgt, val, 0);
break;
}
return 0;
}
void vcpu_set_psr(struct kvm_vcpu *vcpu, unsigned long val)
{
unsigned long mask;
struct kvm_pt_regs *regs;
struct ia64_psr old_psr, new_psr;
old_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
regs = vcpu_regs(vcpu);
/* We only support guest as:
* vpsr.pk = 0
* vpsr.is = 0
* Otherwise panic
*/
if (val & (IA64_PSR_PK | IA64_PSR_IS | IA64_PSR_VM))
panic_vm(vcpu);
/*
* For those IA64_PSR bits: id/da/dd/ss/ed/ia
* Since these bits will become 0, after success execution of each
* instruction, we will change set them to mIA64_PSR
*/
VCPU(vcpu, vpsr) = val
& (~(IA64_PSR_ID | IA64_PSR_DA | IA64_PSR_DD |
IA64_PSR_SS | IA64_PSR_ED | IA64_PSR_IA));
if (!old_psr.i && (val & IA64_PSR_I)) {
/* vpsr.i 0->1 */
vcpu->arch.irq_check = 1;
}
new_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
/*
* All vIA64_PSR bits shall go to mPSR (v->tf->tf_special.psr)
* , except for the following bits:
* ic/i/dt/si/rt/mc/it/bn/vm
*/
mask = IA64_PSR_IC + IA64_PSR_I + IA64_PSR_DT + IA64_PSR_SI +
IA64_PSR_RT + IA64_PSR_MC + IA64_PSR_IT + IA64_PSR_BN +
IA64_PSR_VM;
regs->cr_ipsr = (regs->cr_ipsr & mask) | (val & (~mask));
check_mm_mode_switch(vcpu, old_psr, new_psr);
return ;
}
unsigned long vcpu_cover(struct kvm_vcpu *vcpu)
{
struct ia64_psr vpsr;
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
if (!vpsr.ic)
VCPU(vcpu, ifs) = regs->cr_ifs;
regs->cr_ifs = IA64_IFS_V;
return (IA64_NO_FAULT);
}
/**************************************************************************
VCPU banked general register access routines
**************************************************************************/
#define vcpu_bsw0_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT) \
do { \
__asm__ __volatile__ ( \
";;extr.u %0 = %3,%6,16;;\n" \
"dep %1 = %0, %1, 0, 16;;\n" \
"st8 [%4] = %1\n" \
"extr.u %0 = %2, 16, 16;;\n" \
"dep %3 = %0, %3, %6, 16;;\n" \
"st8 [%5] = %3\n" \
::"r"(i), "r"(*b1unat), "r"(*b0unat), \
"r"(*runat), "r"(b1unat), "r"(runat), \
"i"(VMM_PT_REGS_R16_SLOT) : "memory"); \
} while (0)
void vcpu_bsw0(struct kvm_vcpu *vcpu)
{
unsigned long i;
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
unsigned long *r = ®s->r16;
unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
unsigned long *b1 = &VCPU(vcpu, vgr[0]);
unsigned long *runat = ®s->eml_unat;
unsigned long *b0unat = &VCPU(vcpu, vbnat);
unsigned long *b1unat = &VCPU(vcpu, vnat);
if (VCPU(vcpu, vpsr) & IA64_PSR_BN) {
for (i = 0; i < 16; i++) {
*b1++ = *r;
*r++ = *b0++;
}
vcpu_bsw0_unat(i, b0unat, b1unat, runat,
VMM_PT_REGS_R16_SLOT);
VCPU(vcpu, vpsr) &= ~IA64_PSR_BN;
}
}
#define vcpu_bsw1_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT) \
do { \
__asm__ __volatile__ (";;extr.u %0 = %3, %6, 16;;\n" \
"dep %1 = %0, %1, 16, 16;;\n" \
"st8 [%4] = %1\n" \
"extr.u %0 = %2, 0, 16;;\n" \
"dep %3 = %0, %3, %6, 16;;\n" \
"st8 [%5] = %3\n" \
::"r"(i), "r"(*b0unat), "r"(*b1unat), \
"r"(*runat), "r"(b0unat), "r"(runat), \
"i"(VMM_PT_REGS_R16_SLOT) : "memory"); \
} while (0)
void vcpu_bsw1(struct kvm_vcpu *vcpu)
{
unsigned long i;
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
unsigned long *r = ®s->r16;
unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
unsigned long *b1 = &VCPU(vcpu, vgr[0]);
unsigned long *runat = ®s->eml_unat;
unsigned long *b0unat = &VCPU(vcpu, vbnat);
unsigned long *b1unat = &VCPU(vcpu, vnat);
if (!(VCPU(vcpu, vpsr) & IA64_PSR_BN)) {
for (i = 0; i < 16; i++) {
*b0++ = *r;
*r++ = *b1++;
}
vcpu_bsw1_unat(i, b0unat, b1unat, runat,
VMM_PT_REGS_R16_SLOT);
VCPU(vcpu, vpsr) |= IA64_PSR_BN;
}
}
void vcpu_rfi(struct kvm_vcpu *vcpu)
{
unsigned long ifs, psr;
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
psr = VCPU(vcpu, ipsr);
if (psr & IA64_PSR_BN)
vcpu_bsw1(vcpu);
else
vcpu_bsw0(vcpu);
vcpu_set_psr(vcpu, psr);
ifs = VCPU(vcpu, ifs);
if (ifs >> 63)
regs->cr_ifs = ifs;
regs->cr_iip = VCPU(vcpu, iip);
}
/*
VPSR can't keep track of below bits of guest PSR
This function gets guest PSR
*/
unsigned long vcpu_get_psr(struct kvm_vcpu *vcpu)
{
unsigned long mask;
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
mask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
IA64_PSR_MFH | IA64_PSR_CPL | IA64_PSR_RI;
return (VCPU(vcpu, vpsr) & ~mask) | (regs->cr_ipsr & mask);
}
void kvm_rsm(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long vpsr;
unsigned long imm24 = (inst.M44.i<<23) | (inst.M44.i2<<21)
| inst.M44.imm;
vpsr = vcpu_get_psr(vcpu);
vpsr &= (~imm24);
vcpu_set_psr(vcpu, vpsr);
}
void kvm_ssm(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long vpsr;
unsigned long imm24 = (inst.M44.i << 23) | (inst.M44.i2 << 21)
| inst.M44.imm;
vpsr = vcpu_get_psr(vcpu);
vpsr |= imm24;
vcpu_set_psr(vcpu, vpsr);
}
/* Generate Mask
* Parameter:
* bit -- starting bit
* len -- how many bits
*/
#define MASK(bit,len) \
({ \
__u64 ret; \
\
__asm __volatile("dep %0=-1, r0, %1, %2"\
: "=r" (ret): \
"M" (bit), \
"M" (len)); \
ret; \
})
void vcpu_set_psr_l(struct kvm_vcpu *vcpu, unsigned long val)
{
val = (val & MASK(0, 32)) | (vcpu_get_psr(vcpu) & MASK(32, 32));
vcpu_set_psr(vcpu, val);
}
void kvm_mov_to_psr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long val;
val = vcpu_get_gr(vcpu, inst.M35.r2);
vcpu_set_psr_l(vcpu, val);
}
void kvm_mov_from_psr(struct kvm_vcpu *vcpu, INST64 inst)
{
unsigned long val;
val = vcpu_get_psr(vcpu);
val = (val & MASK(0, 32)) | (val & MASK(35, 2));
vcpu_set_gr(vcpu, inst.M33.r1, val, 0);
}
void vcpu_increment_iip(struct kvm_vcpu *vcpu)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
struct ia64_psr *ipsr = (struct ia64_psr *)®s->cr_ipsr;
if (ipsr->ri == 2) {
ipsr->ri = 0;
regs->cr_iip += 16;
} else
ipsr->ri++;
}
void vcpu_decrement_iip(struct kvm_vcpu *vcpu)
{
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
struct ia64_psr *ipsr = (struct ia64_psr *)®s->cr_ipsr;
if (ipsr->ri == 0) {
ipsr->ri = 2;
regs->cr_iip -= 16;
} else
ipsr->ri--;
}
/** Emulate a privileged operation.
*
*
* @param vcpu virtual cpu
* @cause the reason cause virtualization fault
* @opcode the instruction code which cause virtualization fault
*/
void kvm_emulate(struct kvm_vcpu *vcpu, struct kvm_pt_regs *regs)
{
unsigned long status, cause, opcode ;
INST64 inst;
status = IA64_NO_FAULT;
cause = VMX(vcpu, cause);
opcode = VMX(vcpu, opcode);
inst.inst = opcode;
/*
* Switch to actual virtual rid in rr0 and rr4,
* which is required by some tlb related instructions.
*/
prepare_if_physical_mode(vcpu);
switch (cause) {
case EVENT_RSM:
kvm_rsm(vcpu, inst);
break;
case EVENT_SSM:
kvm_ssm(vcpu, inst);
break;
case EVENT_MOV_TO_PSR:
kvm_mov_to_psr(vcpu, inst);
break;
case EVENT_MOV_FROM_PSR:
kvm_mov_from_psr(vcpu, inst);
break;
case EVENT_MOV_FROM_CR:
kvm_mov_from_cr(vcpu, inst);
break;
case EVENT_MOV_TO_CR:
kvm_mov_to_cr(vcpu, inst);
break;
case EVENT_BSW_0:
vcpu_bsw0(vcpu);
break;
case EVENT_BSW_1:
vcpu_bsw1(vcpu);
break;
case EVENT_COVER:
vcpu_cover(vcpu);
break;
case EVENT_RFI:
vcpu_rfi(vcpu);
break;
case EVENT_ITR_D:
kvm_itr_d(vcpu, inst);
break;
case EVENT_ITR_I:
kvm_itr_i(vcpu, inst);
break;
case EVENT_PTR_D:
kvm_ptr_d(vcpu, inst);
break;
case EVENT_PTR_I:
kvm_ptr_i(vcpu, inst);
break;
case EVENT_ITC_D:
kvm_itc_d(vcpu, inst);
break;
case EVENT_ITC_I:
kvm_itc_i(vcpu, inst);
break;
case EVENT_PTC_L:
kvm_ptc_l(vcpu, inst);
break;
case EVENT_PTC_G:
kvm_ptc_g(vcpu, inst);
break;
case EVENT_PTC_GA:
kvm_ptc_ga(vcpu, inst);
break;
case EVENT_PTC_E:
kvm_ptc_e(vcpu, inst);
break;
case EVENT_MOV_TO_RR:
kvm_mov_to_rr(vcpu, inst);
break;
case EVENT_MOV_FROM_RR:
kvm_mov_from_rr(vcpu, inst);
break;
case EVENT_THASH:
kvm_thash(vcpu, inst);
break;
case EVENT_TTAG:
kvm_ttag(vcpu, inst);
break;
case EVENT_TPA:
status = kvm_tpa(vcpu, inst);
break;
case EVENT_TAK:
kvm_tak(vcpu, inst);
break;
case EVENT_MOV_TO_AR_IMM:
kvm_mov_to_ar_imm(vcpu, inst);
break;
case EVENT_MOV_TO_AR:
kvm_mov_to_ar_reg(vcpu, inst);
break;
case EVENT_MOV_FROM_AR:
kvm_mov_from_ar_reg(vcpu, inst);
break;
case EVENT_MOV_TO_DBR:
kvm_mov_to_dbr(vcpu, inst);
break;
case EVENT_MOV_TO_IBR:
kvm_mov_to_ibr(vcpu, inst);
break;
case EVENT_MOV_TO_PMC:
kvm_mov_to_pmc(vcpu, inst);
break;
case EVENT_MOV_TO_PMD:
kvm_mov_to_pmd(vcpu, inst);
break;
case EVENT_MOV_TO_PKR:
kvm_mov_to_pkr(vcpu, inst);
break;
case EVENT_MOV_FROM_DBR:
kvm_mov_from_dbr(vcpu, inst);
break;
case EVENT_MOV_FROM_IBR:
kvm_mov_from_ibr(vcpu, inst);
break;
case EVENT_MOV_FROM_PMC:
kvm_mov_from_pmc(vcpu, inst);
break;
case EVENT_MOV_FROM_PKR:
kvm_mov_from_pkr(vcpu, inst);
break;
case EVENT_MOV_FROM_CPUID:
kvm_mov_from_cpuid(vcpu, inst);
break;
case EVENT_VMSW:
status = IA64_FAULT;
break;
default:
break;
};
/*Assume all status is NO_FAULT ?*/
if (status == IA64_NO_FAULT && cause != EVENT_RFI)
vcpu_increment_iip(vcpu);
recover_if_physical_mode(vcpu);
}
void init_vcpu(struct kvm_vcpu *vcpu)
{
int i;
vcpu->arch.mode_flags = GUEST_IN_PHY;
VMX(vcpu, vrr[0]) = 0x38;
VMX(vcpu, vrr[1]) = 0x38;
VMX(vcpu, vrr[2]) = 0x38;
VMX(vcpu, vrr[3]) = 0x38;
VMX(vcpu, vrr[4]) = 0x38;
VMX(vcpu, vrr[5]) = 0x38;
VMX(vcpu, vrr[6]) = 0x38;
VMX(vcpu, vrr[7]) = 0x38;
VCPU(vcpu, vpsr) = IA64_PSR_BN;
VCPU(vcpu, dcr) = 0;
/* pta.size must not be 0. The minimum is 15 (32k) */
VCPU(vcpu, pta) = 15 << 2;
VCPU(vcpu, itv) = 0x10000;
VCPU(vcpu, itm) = 0;
VMX(vcpu, last_itc) = 0;
VCPU(vcpu, lid) = VCPU_LID(vcpu);
VCPU(vcpu, ivr) = 0;
VCPU(vcpu, tpr) = 0x10000;
VCPU(vcpu, eoi) = 0;
VCPU(vcpu, irr[0]) = 0;
VCPU(vcpu, irr[1]) = 0;
VCPU(vcpu, irr[2]) = 0;
VCPU(vcpu, irr[3]) = 0;
VCPU(vcpu, pmv) = 0x10000;
VCPU(vcpu, cmcv) = 0x10000;
VCPU(vcpu, lrr0) = 0x10000; /* default reset value? */
VCPU(vcpu, lrr1) = 0x10000; /* default reset value? */
update_vhpi(vcpu, NULL_VECTOR);
VLSAPIC_XTP(vcpu) = 0x80; /* disabled */
for (i = 0; i < 4; i++)
VLSAPIC_INSVC(vcpu, i) = 0;
}
void kvm_init_all_rr(struct kvm_vcpu *vcpu)
{
unsigned long psr;
local_irq_save(psr);
/* WARNING: not allow co-exist of both virtual mode and physical
* mode in same region
*/
vcpu->arch.metaphysical_saved_rr0 = vrrtomrr(VMX(vcpu, vrr[VRN0]));
vcpu->arch.metaphysical_saved_rr4 = vrrtomrr(VMX(vcpu, vrr[VRN4]));
if (is_physical_mode(vcpu)) {
if (vcpu->arch.mode_flags & GUEST_PHY_EMUL)
panic_vm(vcpu);
ia64_set_rr((VRN0 << VRN_SHIFT), vcpu->arch.metaphysical_rr0);
ia64_dv_serialize_data();
ia64_set_rr((VRN4 << VRN_SHIFT), vcpu->arch.metaphysical_rr4);
ia64_dv_serialize_data();
} else {
ia64_set_rr((VRN0 << VRN_SHIFT),
vcpu->arch.metaphysical_saved_rr0);
ia64_dv_serialize_data();
ia64_set_rr((VRN4 << VRN_SHIFT),
vcpu->arch.metaphysical_saved_rr4);
ia64_dv_serialize_data();
}
ia64_set_rr((VRN1 << VRN_SHIFT),
vrrtomrr(VMX(vcpu, vrr[VRN1])));
ia64_dv_serialize_data();
ia64_set_rr((VRN2 << VRN_SHIFT),
vrrtomrr(VMX(vcpu, vrr[VRN2])));
ia64_dv_serialize_data();
ia64_set_rr((VRN3 << VRN_SHIFT),
vrrtomrr(VMX(vcpu, vrr[VRN3])));
ia64_dv_serialize_data();
ia64_set_rr((VRN5 << VRN_SHIFT),
vrrtomrr(VMX(vcpu, vrr[VRN5])));
ia64_dv_serialize_data();
ia64_set_rr((VRN7 << VRN_SHIFT),
vrrtomrr(VMX(vcpu, vrr[VRN7])));
ia64_dv_serialize_data();
ia64_srlz_d();
ia64_set_psr(psr);
}
int vmm_entry(void)
{
struct kvm_vcpu *v;
v = current_vcpu;
ia64_call_vsa(PAL_VPS_RESTORE, (unsigned long)v->arch.vpd,
0, 0, 0, 0, 0, 0);
kvm_init_vtlb(v);
kvm_init_vhpt(v);
init_vcpu(v);
kvm_init_all_rr(v);
vmm_reset_entry();
return 0;
}
void panic_vm(struct kvm_vcpu *v)
{
struct exit_ctl_data *p = &v->arch.exit_data;
p->exit_reason = EXIT_REASON_VM_PANIC;
vmm_transition(v);
/*Never to return*/
while (1);
}